

January 29, 2021

TRANSMITTAL VIA EMAIL 01/29/2021

Ms. Lori Babcock
Michigan Department of Environment, Great Lakes, and Energy
Materials Management Division
Saginaw Bay District Office
401 Ketchum St, Suite B
Bay City, Michigan 48708

SUBJECT: 2020 Annual Groundwater Monitoring and Corrective Action Report

DE Karn Bottom Ash Pond Coal Combustion Residuals (CCR) Unit

Dear Ms. Babcock,

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule) (USEPA, April 2015 as amended). Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90 – 257.98), apply to the Consumers Energy Company (Consumers Energy) Bottom Ash Pond CCR Unit at the DE Karn Power Plant Site. Pursuant to the CCR Rule, no later than January 31, 2018, and annually thereafter, the owner or operator of a CCR unit must prepare an annual groundwater monitoring and corrective action report for the CCR unit documenting the status of groundwater monitoring and corrective action for the preceding year in accordance with §257.90(e). This 2020 Annual Groundwater Monitoring and Corrective Action report documents activities from July 2020 through December 2020 and incorporates by reference the Semiannual Progress Report (Consumers Energy, July 2020) that documents activities completed from January 2020 through June 2020. The Semiannual Progress Report was prepared, submitted to the EGLE, and posted on Consumers Energy's CCR Rule Compliance Data and Information website on July 30, 2020. Collectively, the two reports cover the period of January 1, 2020 to December 31, 2020.

Consumers Energy prepared and submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) a closure work plan for the Karn Bottom Ash Pond (Karn Bottom Ash Pond Work Plan) and a Response Action Plan developed in accordance with Part 115 dated November 30, 2018 and March 15, 2019, respectively. These plans were developed in anticipation of supporting the Assessment of Corrective Measures that would be necessary for evaluating and selecting a remedy for the Karn Bottom Ash Pond. Consumers Energy provided notification on January 14, 2019 of exceeding a Groundwater Protection Standard (GWPS) per §257.95(g), which documented arsenic was present in five of six downgradient wells at the Karn Bottom Ash Pond. The Karn Bottom Ash Pond was in assessment monitoring at the beginning and at the end of the period covered by this report. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97 and is continuing semiannual assessment

DE Karn Semiannual Progress Report Ms. Lori Babcock January 29, 2021



monitoring in accordance with §257.95.

#### Karn Bottom Ash Pond Assessment Activities

EGLE approved the Karn Bottom Ash Pond Work Plan on December 20, 2018 based on expectation that a report documenting the removal activities and certifying solid waste has been removed in accordance with the work plan would be submitted at the completion of activities. Subsequently, EGLE approved the Response Action Plan on May 14, 2019, which identified interim response activities taken or to be taken to control possible sources of contamination and noted that constituents with identified exceedances will be further evaluated as part of the forthcoming nature and extent analysis and Assessment of Corrective Measures. Consumers Energy submitted for review and approval, <u>D.E. Karn Generating Facility Bottom Ash Pond CCR Removal Documentation Report</u> (Karn Bottom Ash Pond Closure Report) on October 30, 2019 to satisfy requirements for completing the removal of solid waste which rendered the need for a solid waste operating license was unnecessary. EGLE approved the documentation removal report satisfying state requirements to close on December 1, 2020.

This Semiannual Progress Report, prepared as a requirement of §257.90(e) and §257.97(a) of the Federal Coal Combustion Residual (CCR) Rule, describes progress towards selecting and implementing any additional remedy for the Karn Bottom Ash Pond after the completion of the <u>Assessment of Corrective Measures, DE Karn Bottom Ash Pond Coal Combustion Residual Unit</u>, dated September 11, 2019 (Karn Bottom Ash Pond ACM) (TRC, 2019). Groundwater management alternatives considered to be technically feasible following source removal activities that could potentially address the residual arsenic under <u>known</u> groundwater conditions were identified in the report as: 1) Post-remedy monitoring, 2) Groundwater capture/control, 3) Impermeable barrier, 4) Active geochemical sequestration, and 5) Passive geochemical sequestration.

Based on completing the source removal activities, Consumers Energy continues to implement the Response Action Plan which has completed the following objectives:

- ➤ The source of contamination identified in the Response Action Plan has been removed to health-based criteria through a work plan and quality assurance program. This certification was approved by EGLE on December 1, 2020.
- > The potential for future migration from infiltration within the excavated footprint has been minimized by restoring the excavation footprint with placement of a compacted clay soil graded to facilitate stormwater runoff to perimeter stormwater ditches.
- ➤ The Nature and Extent of contamination from the Karn Bottom Ash Pond developed in the Response Action Pan and refined in the Assessment of Corrective Measures continues to be validated through the assessment monitoring program and the Karn Landfill Groundwater Surface Water Interface (GSI) Compliance Monitoring Program



approved in Hydrogeological Monitoring Plan, Rev. 3. DE Karn Solid Waste Disposal Area (Consumers, 2017). There are no adverse effects on human health or the environment in either surface water or groundwater due to CCR management at the Karn Bottom Ash Pond.

- ➤ The potentiometric "high" from the Karn Bottom Ash Pond pool elevation has been reduced by at least six feet and the potentiometric surface around the previous pool continues to flatten based on observations of the average hydraulic gradient evaluated over time.
- ➤ The groundwater monitoring system that identified arsenic at statistically significant concentrations above the §257.95(h) GWPS criteria continues to validate that no other constituents have exceeded the GWPS at statistical significance indicating that further releases from the unit are being mitigated effectively through the source removal.

#### **Results of October 2020 Sampling Event**

Statistical analysis from the October 2020 assessment groundwater monitoring event verified that the only constituent of concern that is present at statistically significant levels above the established GWPS is arsenic. Results are presented in the enclosed <u>October 2020 Assessment Monitoring Data Summary and Statistical Evaluation, DE Karn Site, Bottom Ash Pond CCR Unit</u> (October 2020 Event Summary) (TRC, 2021). Additionally, monitoring performed under the Karn GSI Compliance Monitoring Program demonstrates protection of human health and the environment with criteria determined to be protective at the potential point of exposure. These results are depicted in Figures 4 and 5 of the October 2020 Event Summary.

Significant observations from the event summary are as follows:

- Arsenic is observed to exceed statistical significance above Groundwater Protection Standard of 21 ug/L at 4 of 6 groundwater monitoring wells;
- No additional Appendix IV constituents have been observed at statistically significant levels above GWPS for the Karn Bottom Ash Pond groundwater monitoring system;
- ➤ Groundwater potentiometric surface continues to exhibit radial flow but the "high" point has shifted from the former Karn Bottom Ash Pond pool area to an area delineated by Monitoring Wells OW-11 and DEK-MW-15003;
- Arsenic concentrations reflect a negative Sen Slope (decreasing concentration trend) at DEK-MW-15002, DEK-MW-15003, and DEK-MW-18001; and
- Arsenic concentrations at DEK-MW-15002 have been below the GWPS for three consecutive sampling events.

DE Karn Semiannual Progress Report Ms. Lori Babcock January 29, 2021



#### Conclusions

Source removal activities for the Karn Bottom Ash Pond have been completed and documented in the Karn Bottom Ash Pond Closure Report and approved by EGLE on December 1, 2020. Observations from the October 2020 sampling event demonstrate that source removal has resulted in groundwater improvements based on reductions in potentiometric surface elevation and average groundwater flow gradient in combination with decreased concentrations of arsenic and/or decreasing trends observed in the groundwater monitoring system. Observations of ongoing changes in groundwater potentiometric surface that likely influence groundwater flow characteristics and/or alter groundwater redox conditions at monitoring locations that could influence constituent concentrations still require further evaluation before a final remedy can be selected.

Subsequent sampling events to improve the confidence in trends for the groundwater monitoring system will inform the on-going improvements and retention of monitoring-only, passive, or active remedial options following the source removal. Multiple lines of evidence demonstrate that the source removal has been effective in eliminating releases from the Karn Bottom Ash Pond and improving the concentrations of residual arsenic within the groundwater monitoring system through attenuation mechanisms. As conditions continue to be evaluated post-source removal, protection of the drinking water and groundwater-surface water interface (GSI) pathway are demonstrated through quarterly monitoring performed under the Michigan-approved hydrogeological monitoring plan that includes a GSI Compliance Monitoring Program.

The final remedy for the Karn Bottom Ash Pond will be formally selected per §257.97 and Michigan Solid Waste requirements once the selected option is reviewed and commented on by EGLE and a public meeting is conducted at least 30-days prior to the final selection as required under §257.96(e).

The next semiannual progress report will be submitted in six months by July 30, 2021. Please feel free to contact me with any questions or clarifications.

Sincerely,

Harold D. Register, Jr., P.E.

Principal Engineer

Landfill Operations Compliance

Phone: (517) 788-2982

Email: harold.registerjr@cmsenergy.com

DE Karn Semiannual Progress Report Ms. Lori Babcock January 29, 2021



cc: Mr. Phil Roycraft, EGLE Saginaw Bay District Office

Mr. Gary Schwerin, EGLE Saginaw Bay District Office

Ms. Margie Ring, EGLE Lansing Office Mr. Jim Arduin, EGLE Lansing Office Mr. Caleb Batts, Consumers Energy

Ms. Darby Litz, TRC Mr. Jacob Krenz, TRC

Enclosure: October 2020 Assessment Monitoring Data Summary and Statistical Evaluation,

Consumers Energy, DE Karn Site, Bottom Ash Pond CCR Unit. (TRC, January 29,

2021).





January 29, 2021

Harold Register Environmental Services Consumers Energy Company 1945 W. Parnall Road Jackson, MI 49201 VIA email: <u>Harold.RegisterJR@cmsenergy.com</u>

Subject:

October 2020 Assessment Monitoring Data Summary and Statistical Evaluation

Consumers Energy, DE Karn Site, Bottom Ash Pond CCR Unit

Dear Mr. Register:

Consumers Energy is continuing assessment monitoring in accordance with §257.95 of the CCR Rule<sup>1</sup> for the for the DE Karn Power Plant Bottom Ash Pond (Karn Bottom Ash Pond) located in Essexville, Michigan. Statistical evaluation of the May 2018 initial assessment monitoring event data determined that arsenic was present in one or more downgradient monitoring wells at statistically significant levels exceeding the Groundwater Protection Standard (GWPS). This letter report has been prepared to provide the summary of the October 2020 assessment groundwater monitoring results, data quality review, and statistical data evaluation for the Karn Bottom Ash Pond groundwater system.

#### **Assessment Monitoring Sampling Summary**

TRC conducted the second semiannual assessment monitoring event of 2020 for Appendix III and IV constituents at the Karn Bottom Ash Pond CCR Unit in accordance with the *DE Karn Monitoring Program Sample Analysis Plan* (ARCADIS, 2016) (SAP). The semiannual assessment monitoring event was performed on October 5 through October 13, 2020. Downgradient monitoring wells DEK-MW-18001, DEK-MW-15002 through DEK-MW-15006 and background monitoring wells MW-15002, MW-15008, MW-15016, and MW-15019 (Figure 2) were sampled during this monitoring event. There were no changes to the groundwater monitoring system during the time period covered by this report. There were no groundwater monitoring wells that were installed or decommissioned.

The October 2020 sampling event consisted of collecting static water level measurements from the Karn Bottom Ash Pond groundwater monitoring system. Static water elevation data are summarized in Table 1 and groundwater elevation data are shown on Figure 3. Monitoring wells were purged with peristaltic pumps utilizing low-flow sampling methodology. Field parameters were stabilized at each monitoring well prior to collecting groundwater samples. Stabilized field parameters for each monitoring well are summarized in Table 2.

<sup>&</sup>lt;sup>1</sup> USEPA final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) published April 17, 2015, as amended per Phase One, Part One of the CCR Rule (83 FR 36435).

The groundwater samples were analyzed by the Consumers Energy Trail Street Laboratory for Appendix III and IV constituents in accordance with the SAP. Radium analyses were completed by Eurofins TestAmerica Inc. (TestAmerica). The analytical results for the background wells are summarized in Table 3, and the analytical results for the downgradient monitoring wells are summarized in Table 4.

#### Groundwater Flow Rate and Direction

Groundwater elevation data collected during the October 2020 assessment monitoring event are provided in Table 1. These data were used to construct the groundwater contour map (Figure 3).

Groundwater elevations measured at the site in October 2020 are generally within the range of 581 to 587 feet above mean sea level (ft NAVD88) and groundwater is typically encountered at equal elevation relative to the surrounding surface water features measured by the NOAA gauging station or within approximately 6 feet higher, flowing toward the bounding surface water features.

Although historically the point source discharge of sluiced bottom ash into the Karn Bottom Ash Pond created localized mounding of the potentiometric surface, the new Karn Lined Impoundment went into service on June 7, 2018 and has been continuously collecting the process water and bottom ash that went into the former bottom ash pond. Since the former bottom ash pond is no longer being hydraulically loaded with sluiced ash and has been dewatered by gravity, the characteristic groundwater mound centered within the pooled area is no longer present. The groundwater elevation data collected from the groundwater monitoring system of the former bottom ash pond in October 2020 demonstrate a reduction in groundwater elevation measurements by several feet when compared to groundwater elevations measured prior to June 2018. Groundwater at the facility is locally influenced by incidental infiltration from precipitation over the uncovered acreage. Monitoring Wells OW-11 and DEK-MW-15003 delineate the newly established groundwater elevation high point with porewater flow generally flowing radially towards the adjacent surface water features from this newly established potentiometric "high", as illustrated in Figure 3.

The average hydraulic gradient observed on October 5, 2020 in the Karn Bottom Ash Pond area during these events is estimated at 0.0022 ft/ft. The gradient was calculated using the monitoring well pair DEK-MW-15004/DEK-MW-15005, as well as the well water elevation difference and distance between DEK-MW-15003 and the discharge channel. The discharge channel surface water elevation was based upon the NOAA gauging station data recorded the same date as the water level measurements (October 5, 2020). Using the mean hydraulic conductivity of 15 ft/day (ARCADIS, 2016) and an assumed effective porosity of 0.3, the estimated average seepage velocity was 0.16 ft/day or 57 ft/year which is similar to the April 2020 estimates of 0.11 ft/day or 40 ft/year and is slightly higher than the October 2019 estimates of 0.044 ft/day or 16 ft/year. Due to the operational changes of the bottom ash pond and the completion of the landfill capping activities, the gradient between the bottom ash pond area and the surrounding surface water bodies is flattening out as compared to previous



quarters as the groundwater elevations are reaching a new equilibrium, as expected. The general flow direction is similar to that identified in previous monitoring rounds and continues to demonstrate that the downgradient wells are appropriately positioned to detect the presence of Appendix III/IV constituents that could potentially migrate from the Karn Bottom Ash Pond.

#### **Data Quality**

Analytical data were found to be usable for assessment monitoring and were generally consistent with previous sampling events. The Data Quality Reviews are included as Attachment A.

#### **Assessment Monitoring Statistical Evaluation**

Based on the results from the October 2020 assessment monitoring event, the Karn Bottom Ash Pond will remain in assessment monitoring in accordance with §257.97. The following section summarizes the statistical approach applied to assess the October 2020 groundwater data in accordance with the assessment monitoring program.

#### Establishing Groundwater Protection Standards

The GWPSs are used to assess whether Appendix IV constituent concentrations are present in groundwater at unacceptable levels as a result of CCR Unit operations by statistically comparing concentrations in the downgradient wells to the GWPSs for each Appendix IV constituent. In accordance with §257.95(h) and the Stats Plan, GWPSs were established for the Appendix IV constituents following the preliminary assessment monitoring event using nine rounds of data collected from the background monitoring wells MW-15002, MW-15008, MW-15016, and MW-15019 (December 2015 through April 2018). The calculation of the GWPSs is documented in the Groundwater Protection Standards technical memorandum included as Appendix C of the 2018 Annual Groundwater Monitoring Report (TRC, 2019). The GWPS is established as the higher of the EPA Maximum Contaminant Level (MCL) or statistically derived background level for constituents with MCLs and the higher of the EPA Regional Screening Levels (RSLs) or background level for constituents without an established MCL.

#### Data Comparison to Groundwater Protection Standards

The compliance well groundwater concentrations for Appendix IV constituents were compared to the GWPSs to determine if a statistically significant exceedance had occurred in accordance with §257.95. Consistent with the *Unified Guidance*<sup>2</sup>, the preferred method for comparisons to a fixed standard are confidence limits. An exceedance of the standard occurs when the 99 percent lower confidence level of the downgradient monitoring well data exceeds the GWPS of any Appendix IV constituent. As documented in the January 14, 2019 Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g), arsenic was present at statistically significant levels above the federal GWPS in five of the six downgradient wells at the Karn Bottom Ash Pond.

<sup>&</sup>lt;sup>2</sup> USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.



Confidence intervals were established per the statistical methods detailed in the *Statistical Evaluation of October 2020 Assessment Monitoring Sampling Event* technical memorandum provided in Attachment B. For each Appendix IV constituent, the concentrations were first compared directly to their respective GWPS. Constituent-well combinations that included a direct exceedance of the GWPSs were retained for further statistical analysis using confidence limits.

Overall, the assessment monitoring statistical evaluations have confirmed that arsenic is the only Appendix IV constituent present at statistically significant levels above the GWPS. The statistical evaluation of the October 2020 semiannual assessment monitoring event data indicate that arsenic is present at statistically significant levels exceeding the GWPS in downgradient monitoring wells at the Karn Bottom Ash Pond:

| Constituent | GWPS    | #Downgradient Wells Observed |
|-------------|---------|------------------------------|
| Arsenic     | 21 ug/L | 4 of 6                       |

Previously, arsenic was present in downgradient well DEK-MW-15002 at a statistically significant level; however, the statistical evaluation of the May and October 2020 data show that the lower confidence limit for arsenic is currently below the GWPS. A summary of the confidence intervals for October 2020 is provided in Table 5.

#### **Nature and Extent of Affected Groundwater**

Since one or more Appendix IV constituents have been detected at the Karn Bottom Ash Pond at statistically significant levels above the GWPSs (i.e., arsenic), the nature and extent of the release was characterized in accordance with the requirements of §257.95(g)(1) and discussed in the Assessment of Corrective Measures, DE Karn Bottom Ash Pond Coal Combustion Residual Unit (Karn Bottom Ash Pond ACM) (TRC, 2019). Installation of additional monitoring wells at locations downgradient of the Karn Bottom Ash pond groundwater monitoring system was not necessary or feasible due to the presence of existing monitoring wells sampled under the GSI Compliance Monitoring Program administered under a Michigan-approved Hydrogeological Monitoring Plan (Consumers Energy, 2019), and the proximity of the surface water bodies. Monitoring wells designated for nature and extent characterization are shown on Figures 2 through 5 and data collected in 2020 from these nature and extent groundwater monitoring wells are included in Tables 1 and 2 of Attachment C. Although arsenic concentrations exceed the GWPS in on-site groundwater monitoring locations, arsenic is delineated within the limits of the property owned by Consumers Energy and there are currently no adverse effects on human health or the environment from either surface water or groundwater due to CCR management at the Karn Bottom Ash Pond. The property is owned and operated by Consumers Energy and groundwater is not used for drinking water. There are no on-site drinking water wells and there are no surface water potable water intakes within 3 miles of the site, so the drinking water pathway is not complete.

The distribution of arsenic relative to the Karn Bottom Ash Pond groundwater monitoring system in the shallow water-bearing unit as compared to the GWPS is presented in Figure 4. Three categories were assigned to groundwater data collected from March 2016 to October 2020, as follows:



- White No Exceedances: all concentrations were below the GWPS
- Yellow Two or More Exceedances: individual observations above the GWPS<sup>3</sup>
- Orange Statistically Significant GWPS Exceedances<sup>4</sup>

The groundwater impacts related to arsenic appear to be concentrically located around the Karn Bottom Ash Pond. The highest concentrations of arsenic have been observed at DEK MW-15003, a monitoring well located to the north of the bottom ash pond and associated with the shifted "highest" elevation of mounded groundwater relative to the Karn Bottom Ash Pond. The other groundwater monitoring wells are observed to be relatively consistent in the same concentration limit over the same time period but also located in "lesser" mounded areas indicating slower response to on-going biogeochemical changes after removing source material and reducing infiltration.

Recent data show that groundwater quality is improving for select constituents (e.g., downward trends in arsenic concentrations) since sluicing to the Karn Bottom Ash Pond ceased in June 2018 when the bottom ash and transport water was diverted to the Karn Lined Impoundment. Arsenic concentrations at DEK-MW-15002, DEK-MW-15003, and DEK-MW-18001 appear to exhibit a downward trend on the time-series chart (Attachment B). These data sets were tested further in Sanitas™ utilizing Sen's Slope to estimate the average rate of change in concentration over time and utilizing the Mann-Kendall trend test to test for significance of the trend at the 98% confidence level. The trend tests showed that arsenic concentrations are generally decreasing with time, as evidenced by the negative Sen's Slope but not deemed statistically significant at the 98% confidence level. Groundwater chemistry already appears to be improving as a result of discontinuing the hydraulic loading to the Karn Bottom Ash Pond and is expected to further improve as additional measures are implemented to reduce hydraulic loading and reduce the impacts from source materials. The influence of the bottom ash sluice water loading or changes in redox geochemistry impacted by the sluice water loading is still being evaluated as additional data collection events are completed.

Arsenic in the nature and extent monitoring wells located along the landfill perimeter bordering Saginaw Bay also exhibit concentrations above the GWPS. Although arsenic is present above the GWPS, the drinking water pathway is not complete as there are no drinking water wells on-site.

Due to the presence of the surrounding surface water bodies, another potentially relevant pathway is the Groundwater-Surface Water Interface (GSI) pathway. Transect/porewater GSI compliance sampling data collected quarterly under the Michigan-approved HMP shows that biogeochemical conditions are contributing to the reduction of arsenic in groundwater as observed in arsenic concentrations in transect push-point samples located along the water's edge of Saginaw Bay are

<sup>&</sup>lt;sup>4</sup> Lower confidence limit is above the GWPS based upon most recent assessment monitoring statistical evaluation.



<sup>&</sup>lt;sup>3</sup> Although an exceedance is defined as a single detection above the GWPS, confidence intervals will be used to determine compliance per the CCR Rule. Once corrective action is triggered (i.e., the lower confidence limit is above the GWPS), the upper confidence limit must be below the GWPS to demonstrate achievement of the GWPS for units that were not closed by removal. For units that are closed by removal, two consecutive rounds of data below the GWPS are needed to demonstrate closure.

much lower than the arsenic concentrations observed in the perimeter dike wells. Compliance with water quality criteria is demonstrated on a quarterly basis by evaluating the total chronic loading based on the authorization for the mixing zone.

The distribution of arsenic in the shallow water-bearing unit as compared to the mixing zone GSI criteria is presented in Figure 5. Three categories were assigned to the 2020 data<sup>5</sup>, as follows:

- White No Exceedances: all concentrations were below the mixing zone GSI criteria
- Light Blue Two consecutive exceedances of the chronic mixing zone GSI criterion
- Dark Blue Two consecutive exceedances of the acute mixing zone GSI criterion

Groundwater monitoring locations along the DE Karn Intake Channel and boundary between the coal ash management areas and the power plant complex (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001) document contaminant concentrations of arsenic are less than the authorized Mixing Zone-Based Chronic Concentration of 100 ug/L indicating current conditions are protective of the GSI pathway. Total chronic loading, calculated from concentrations observed in groundwater samples collected from push-point samplers advanced at locations T1-3GSI through T6-3GSI, remains below the chronic mixing zone GSI criterion.

#### **Next Steps**

Consumers Energy will continue assessment monitoring and evaluate corrective measures in accordance with §257.96 and §257.97 as outlined in the Karn Bottom Ash Pond ACM. The groundwater management remedy for the Karn Bottom Ash Pond will be selected as soon as feasible to meet the federal standards of §257.96(b) of the CCR Rule and state standards in R299.4444(2) of PA 640. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98. The next semiannual monitoring event is tentatively scheduled for the second calendar quarter of 2021.

Sincerely,

**TRC** 

Darby Litz

Hydrogeologist/Project Manager

Jacob Krenz Staff Geologist

<sup>&</sup>lt;sup>5</sup> Given the dynamic nature of the groundwater surface water interactions, it is appropriate to look at a shorter timeframe for data analysis.



#### **Attachments**

| Table 1  | Summary of Groundwater Elevation Data                                 |
|----------|-----------------------------------------------------------------------|
| Table 2  | Summary of Field Parameter Results                                    |
| Table 3  | Summary of Background Wells Groundwater Sampling Results (Analytical) |
| Table 4  | Summary of Groundwater Sampling Results (Analytical)                  |
| Table 5  | Summary of Groundwater Protection Standard Exceedances – October 2020 |
| Figure 1 | Site Location Map                                                     |
| Figure 2 | Karn and Weadock Complex Map                                          |
| Figure 3 | Shallow Groundwater Contour Map – October 2020                        |
| Figure 4 | Nature and Extent Summary GWPS Exceedances                            |
| Figure 5 | Nature and Extent Summary GWPS Exceedances                            |
|          |                                                                       |

Attachment A Data Quality Reviews

Attachment B Statistical Evaluation of October 2020 Assessment Monitoring Sampling Event

Attachment C Nature and Extent Groundwater Data (2020)

cc: Brad Runkel, Consumers Energy (via email: <a href="mailto:Bradley.Runkel@cmsenergy.com">Bradley.Runkel@cmsenergy.com</a>)



### **Tables**



Table 1 Summary of Groundwater Elevation Data DE Karn – RCRA CCR Monitoring Program Essexville, Michigan

|                            | тос               |                                     | Screen Interval                       | Augus             | et 3, 2020               | Octobe            | er 5, 2020               |
|----------------------------|-------------------|-------------------------------------|---------------------------------------|-------------------|--------------------------|-------------------|--------------------------|
| Well<br>Location           | Elevation<br>(ft) | Geologic Unit of<br>Screen Interval | Elevation (ft)                        | Depth to<br>Water | Groundwater<br>Elevation | Depth to<br>Water | Groundwater<br>Elevation |
|                            |                   |                                     |                                       | (ft BTOC)         | (ft)                     | (ft BTOC)         | (ft)                     |
| Background                 | T                 |                                     | T                                     |                   |                          |                   |                          |
| MW-15002 <sup>(1)</sup>    | 587.71            | Sand                                | 580.9 to 570.9                        | 5.45              | 582.26                   | 5.75              | 581.96                   |
| MW-15008 <sup>(1)</sup>    | 585.36            | Sand with clay                      | 578.7 to 568.7                        | 2.85              | 582.51                   | 3.29              | 582.07                   |
| MW-15016 <sup>(1)</sup>    | 586.49            | Sand                                | 581.2 to 578.2                        | 5.20              | 581.29                   | 3.94              | 582.55                   |
| MW-15019 <sup>(1)</sup>    | 586.17            | Sand and Sand/Clay                  | 579.5 to 569.5                        | 3.87              | 582.30                   | 4.25              | 581.92                   |
| DEK Bottom Ash Pon         | d                 | -                                   | · · · · · · · · · · · · · · · · · · · |                   |                          |                   | '                        |
| DEK-MW-15002               | 590.87            | Sand                                | 578.3 to 575.3                        | 6.00              | 584.87                   | 6.18              | 584.69                   |
| DEK-MW-15004               | 611.04            | Sand                                | 576.6 to 571.6                        | 27.20             | 583.84                   | 27.20             | 583.84                   |
| DEK-MW-15005               | 589.72            | Sand                                | 572.3 to 567.3                        | 6.91              | 582.81                   | 7.85              | 581.87                   |
| DEK-MW-15006               | 589.24            | Sand                                | 573.0 to 568.0                        | 6.40              | 582.84                   | 7.38              | 581.86                   |
| DEK Bottom Ash Pon         | d & Karn Lined Im | poundment                           | •                                     |                   |                          |                   |                          |
| DEK-MW-15003               | 602.74            | Sand                                | 578.8 to 574.8                        | 16.01             | 586.73                   | 16.20             | 586.54                   |
| DEK-MW-18001               | 593.47            | Sand                                | 579.2 to 574.2                        | 8.08              | 585.39                   | 8.31              | 585.16                   |
| OW-10                      | 591.58            | Silty Sand and Silty Clay           | 576.0 to 571.0                        | 6.12              | 585.46                   | 6.40              | 585.18                   |
| OW-11                      | 607.90            | Silt/Fly Ash                        | 587.5 to 582.5                        | 21.10             | 586.80                   | 21.23             | 586.67                   |
| OW-12                      | 603.07            | Silty Sand                          | 584.2 to 579.2                        | 17.05             | 586.02                   | 17.03             | 586.04                   |
| <b>DEK Nature and Exte</b> | nt                |                                     | •                                     |                   | •                        |                   |                          |
| MW-01                      | 597.02            | Sand                                | 573.0 to 570.0                        | 14.20             | 582.82                   | 15.10             | 581.92                   |
| MW-03                      | 597.30            | Sand                                | 569.8 to 566.8                        | 14.40             | 582.90                   | 15.38             | 581.92                   |
| MW-06                      | 589.44            | Sand and Silty Sand                 | 578.5 to 563.5                        | 6.60              | 582.84                   | 7.50              | 581.94                   |
| MW-08                      | 598.78            | Sand and Silty Clay                 | 580.9 to 570.9                        | 15.20             | 583.58                   | 16.57             | 582.21                   |
| MW-10                      | 596.97            | Sand                                | 582.5 to 572.5                        | 14.10             | 582.87                   | 15.33             | 581.64                   |
| MW-12                      | 598.60            | Sand                                | 583.9 to 573.9                        | 15.90             | 582.70                   | 16.64             | 581.96                   |
| MW-14                      | 594.37            | Sand and Silty Clay                 | 584.7 to 574.7                        | 11.60             | 582.77                   | 12.60             | 581.77                   |
| MW-16                      | 595.80            | Sand and Sand/Bottom Ash            | 584.1 to 574.1                        | 13.07             | 582.73                   | 13.89             | 581.91                   |
| MW-22                      | 598.99            | Ash/Sand                            | 571.4 to 568.4                        | 15.32             | 583.67                   | 15.75             | 583.24                   |
| MW-23                      | 595.57            | Ash/Sand                            | 576.9 to 571.9                        | 12.20             | 583.37                   | 12.41             | 583.16                   |
| DEK Static Water Lev       |                   |                                     |                                       |                   |                          |                   |                          |
| MW-02                      | 597.34            | Sand and Silty Clay                 | 572.5 to 567.5                        | 14.52             | 582.82                   | 15.48             | 581.86                   |
| MW-04                      | 598.01            | NR                                  | 569.5 to 564.5                        | 15.10             | 582.91                   | 16.14             | 581.87                   |
| MW-17                      | 597.91            | Sand                                | 577.0 to 574.0                        | 12.51             | 585.40                   | 12.67             | 585.24                   |
| MW-18                      | 609.22            | Silty Sand and Silty Clay           | 575.8 to 573.8                        | 24.95             | 584.27                   | 24.95             | 584.27                   |
| MW-19                      | 597.28            | NR                                  | 572.1 to 567.1                        | 14.40             | 582.88                   | 15.15             | 582.13                   |
| MW-20                      | 632.75            | Sand                                | 582.3 to 579.3                        | 50.02             | 582.73                   | 50.80             | 581.95                   |
| MW-21                      | 632.91            | Sand                                | 587.1 to 584.1                        | 49.80             | 583.11                   | 49.90             | 583.01                   |
| OW-01                      | 631.33            | NR                                  | 572.5 to 567.5                        | 48.80             | 582.53                   | 49.40             | 581.93                   |
| OW-02                      | 598.01            | Fly Ash                             | 579.4 to 576.4                        | 14.26             | 583.75                   | 14.64             | 583.37                   |
| OW-03                      | 597.94            | Fly Ash and Sand                    | 573.6 to 568.6                        | 14.90             | 583.04                   | 16.38             | 581.56                   |
| OW-04                      | 590.21            | Sand and Bottom/Fly Ash             | 579.1 to 574.1                        | 7.45              | 582.76                   | 8.48              | 581.73                   |
| OW-05                      | 593.53            | Sand                                | 576.9 to 571.9                        | 10.87             | 582.66                   | 11.30             | 582.23                   |
| OW-06                      | 603.95            | NR<br>Ash                           | 580.9 to 575.9                        | 12.95             | 591.00                   | 20.45             | 583.50                   |
| OW-07                      | 596.41            | Ash                                 | 583.3 to 580.3                        | 13.10             | 583.31                   | 13.28             | 583.13                   |
| OW-08                      | 593.93            | NR<br>NB                            | 581.0 to 576.0                        | 10.37             | 583.56                   | 11.58             | 582.35                   |
| OW-09                      | 593.45            | NR<br>NB                            | 585.5 to 580.5                        | 10.12             | 583.33                   | 10.18             | 583.27<br>584.72         |
| OW-13                      | 588.52            | NR<br>NB                            | 579.5 to 574.5                        | 3.39              | 585.13                   | 3.80              |                          |
| OW-15                      | 587.75            | NR                                  | 572.8 to 567.8                        | 3.25              | 584.50                   | 4.30              | 583.45                   |

Notes:
Survey data from: Rowe Professional Services Company (Nov. 2015) and Consumers Energy Company drawings: SG-21733, Sheet 1, Rev. G (Karn, 11/27/18); and SG-21733, Sheet 2, Rev. C (Weadock, 11/27/18).

Elevation in feet relative to North American Vertical Datum 1988 (NAVD 88).

TOC: Top of well casing.

ft BTOC: Feet below top of well casing.

NR: Not Recorded

(1) Water level measurements during the August event were collected on August 10, 2020.

Table 2
Summary of Field Parameters: October 2020
DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program

Essexville, Michigan

| Sample Location    | Sample Date | Dissolved<br>Oxygen | Oxidation<br>Reduction<br>Potential | рН   | Specific<br>Conductivity | Temperature | Turbidity |
|--------------------|-------------|---------------------|-------------------------------------|------|--------------------------|-------------|-----------|
|                    |             | (mg/L)              | (mV)                                | (SU) | (umhos/cm)               | (°C)        | (NTU)     |
| Background         |             |                     |                                     |      |                          |             |           |
| MW-15002           | 10/13/2020  | 1.09                | -148.0                              | 7.6  | 888                      | 16.6        | 0.5       |
| MW-15008           | 10/13/2020  | 1.12                | -118.9                              | 7.1  | 1,638                    | 14.5        | 9.3       |
| MW-15016           | 10/13/2020  | 2.00                | 36.0                                | 7.3  | 1,620                    | 15.9        | 1.0       |
| MW-15019           | 10/13/2020  | 1.27                | -105.8                              | 7.0  | 2,269                    | 14.2        | 1.2       |
| Karn Bottom Ash Po | ond         |                     |                                     |      |                          |             |           |
| DEK-MW-15002       | 10/6/2020   | 0.83                | -26.2                               | 7.1  | 1,253                    | 15.4        | 2.7       |
| DEK-MW-15003       | 10/6/2020   | 2.21                | -148.0                              | 8.5  | 400                      | 17.7        | 0.3       |
| DEK-MW-15004       | 10/7/2020   | 1.50                | -111.9                              | 7.6  | 872                      | 15.9        | 0.6       |
| DEK-MW-15005       | 10/7/2020   | 1.34                | -124.3                              | 7.7  | 1,170                    | 14.8        | 0.5       |
| DEK-MW-15006       | 10/7/2020   | 1.24                | -124.0                              | 7.7  | 1,604                    | 15.5        | 0.9       |
| DEK-MW-18001       | 10/6/2020   | 1.53                | -141.8                              | 7.6  | 813                      | 13.0        | 1.4       |

#### Notes:

mg/L - Milligrams per Liter.

mV - Millivolts.

SU - Standard units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celcius

NTU - Nephelometric Turbidity Unit.

#### Table 3

#### Summary of Groundwater Sampling Results (Analytical): October 2020 DE Karn & JC Weadock Background – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |             |                        |                        | Sample Location:  | MW-15002   | MW-15008   | MW-15016   | MW-15019   |
|------------------------|-------|-------------|------------------------|------------------------|-------------------|------------|------------|------------|------------|
|                        |       |             |                        |                        | Sample Date:      | 10/13/2020 | 10/13/2020 | 10/13/2020 | 10/13/2020 |
|                        |       |             |                        | MI Non-                | Sample Date.      | 10/13/2020 | 10/13/2020 | 10/13/2020 | 10/13/2020 |
| Constituent            | Unit  | EPA MCL     | MI Residential*        | Residential*           | MI GSI^           |            | Backo      | ground     |            |
| Appendix III           |       |             |                        |                        |                   |            |            |            |            |
| Boron                  | ug/L  | NC          | 500                    | 500                    | 4,000             | 28         | 148        | 510        | 288        |
| Calcium                | mg/L  | NC          | NC                     | NC                     | 500EE             | 62.7       | 115        | 259        | 158        |
| Chloride               | mg/L  | 250**       | 250 <sup>E</sup>       | 250⁵                   | 50                | 74.8       | 246        | 63.3       | 355        |
| Fluoride               | ug/L  | 4,000       | NC                     | NC                     | NC                | < 1,000    | < 1,000    | < 1,000    | < 1,000    |
| Sulfate                | mg/L  | 250**       | 250 <sup>E</sup>       | 250⁵                   | 500 <sup>EE</sup> | 8.86       | 2.55       | 521        | 35         |
| Total Dissolved Solids | mg/L  | 500**       | 500 <sup>E</sup>       | 500€                   | 500               | 466        | 871        | 1,150      | 1,180      |
| pH, Field              | SU    | 6.5 - 8.5** | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup> | 6.5 - 9.0         | 7.6        | 7.1        | 7.3        | 7.0        |
| Appendix IV            |       |             |                        |                        |                   |            |            |            |            |
| Antimony               | ug/L  | 6           | 6                      | 6                      | 2                 | < 1        | < 1        | < 1        | < 1        |
| Arsenic                | ug/L  | 10          | 10                     | 10                     | 10                | 3          | < 1        | 2          | < 1        |
| Barium                 | ug/L  | 2,000       | 2,000                  | 2,000                  | 1,200             | 51         | 65         | 55         | 290        |
| Beryllium              | ug/L  | 4           | 4                      | 4                      | 33                | < 1        | < 1        | < 1        | < 1        |
| Cadmium                | ug/L  | 5           | 5                      | 5                      | 2.5               | < 0.2      | < 0.2      | < 0.2      | < 0.2      |
| Chromium               | ug/L  | 100         | 100                    | 100                    | 11                | < 1        | 1          | < 1        | < 1        |
| Cobalt                 | ug/L  | NC          | 40                     | 100                    | 100               | < 6        | < 6        | < 6        | < 6        |
| Fluoride               | ug/L  | 4,000       | NC                     | NC                     | NC                | < 1,000    | < 1,000    | < 1,000    | < 1,000    |
| Lead                   | ug/L  | NC          | 4                      | 4                      | 14                | < 1        | < 1        | < 1        | < 1        |
| Lithium                | ug/L  | NC          | 170                    | 350                    | 440               | < 10       | 17         | 84         | 13         |
| Mercury                | ug/L  | 2           | 2                      | 2                      | 0.20#             | < 0.2      | < 0.2      | < 0.2      | < 0.2      |
| Molybdenum             | ug/L  | NC          | 73                     | 210                    | 120               | < 5        | < 5        | 6          | < 5        |
| Radium-226             | pci/L | NC          | NC                     | NC                     | NC                | < 0.295    | 0.593      | < 0.423    | 0.545      |
| Radium-228             | pci/L | NC          | NC                     | NC                     | NC                | < 0.409    | < 0.488    | < 0.537    | 0.65       |
| Radium-226/228         | pci/L | 5           | NC                     | NC                     | NC                | < 0.409    | 0.806      | < 0.537    | 1.19       |
| Selenium               | ug/L  | 50          | 50                     | 50                     | 5                 | < 1        | < 1        | 2          | < 1        |
| Thallium               | ug/L  | 2           | 2                      | 2                      | 2                 | < 2        | < 2        | < 2        | < 2        |
| MI Part 115 Parameter  | s     |             |                        |                        |                   |            |            |            |            |
| Iron                   | ug/L  | 300**       | 300€                   | 300⋿                   | 500,000EE         | 2,720      | 11,700     | 139        | 14,700     |
| Copper                 | ug/L  | 1,000**     | 1,000 <sup>E</sup>     | 1,000€                 | 20                | < 1        | < 1        | 4          | < 1        |
| Nickel                 | ug/L  | NC          | 100                    | 100                    | 120               | 2          | 2          | 7          | 4          |
| Silver                 | ug/L  | 100**       | 34                     | 98                     | 0.2               | < 0.2      | < 0.2      | < 0.2      | < 0.2      |
| Vanadium               | ug/L  | NC          | 4.5                    | 62                     | 27                | < 2        | 6          | < 2        | < 2        |
| Zinc                   | ug/L  | 5,000**     | 2,400                  | 5,000 <sup>E</sup>     | 260               | < 10       | < 10       | < 10       | < 10       |

#### Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria.

- \* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- \*\* Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using

hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan

Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is

to the Great Lakes or connecting waters per footnote {FF}

- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- $^{\rm E}$  Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

**BOLD** value indicates an exceedance of one or more of the listed criteria.

**RED** value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

#### Table 4

## Summary of Groundwater Sampling Results (Analytical): October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |             |                        |                         | Sample Location: | DEK-MW-15002 | DEK-MW-15003 | DEK-MW-15004 | DEK-MW-15005 | DEK-MW-15006 | DEK-MW-18001 |
|------------------------|-------|-------------|------------------------|-------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                        |       |             |                        |                         | Sample Date:     | 10/6/2020    | 10/6/2020    | 10/7/2020    | 10/7/2020    | 10/7/2020    | 10/6/2020    |
| Constituent            | Unit  | EPA MCL     | MI Residential*        | Ml Non-<br>Residential* | MI GSI^          |              |              | downg        | radient      |              |              |
| Appendix III           |       |             |                        |                         |                  |              |              |              |              |              |              |
| Boron                  | ug/L  | NC          | 500                    | 500                     | 4,000            | 1,580        | 842          | 850          | 847          | 1,220        | 1,740        |
| Calcium                | mg/L  | NC          | NC                     | NC                      | 500EE            | 126          | 29.7         | 68.4         | 155          | 106          | 71.7         |
| Chloride               | mg/L  | 250**       | 250 <sup>E</sup>       | 250€                    | 50               | 106          | 46.5         | 68.9         | 52.7         | 102          | 60.7         |
| Fluoride               | ug/L  | 4,000       | NC                     | NC                      | NC               | 1,300        | 1,190        | 1,170        | < 1000       | 1,060        | 1,240        |
| Sulfate                | mg/L  | 250**       | 250 <sup>E</sup>       | 250 <sup>E</sup>        | 500EE            | 142          | 44.6         | 136          | 102          | 296          | 91.9         |
| Total Dissolved Solids | mg/L  | 500**       | 500 <sup>E</sup>       | 500 <sup>E</sup>        | 500              | 791          | 237          | 509          | 687          | 1,010        | 476          |
| pH, Field              | SU    | 6.5 - 8.5** | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup>  | 6.5 - 9.0        | 7.1          | 8.5          | 7.6          | 7.7          | 7.7          | 7.6          |
| Appendix IV            |       |             |                        |                         |                  |              |              |              |              |              |              |
| Antimony               | ug/L  | 6           | 6                      | 6                       | 2                | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Arsenic                | ug/L  | 10          | 10                     | 10                      | 10               | 8            | 393          | 155          | 42           | 27           | 85           |
| Barium                 | ug/L  | 2,000       | 2,000                  | 2,000                   | 1,200            | 133          | 40           | 102          | 248          | 141          | 136          |
| Beryllium              | ug/L  | 4           | 4                      | 4                       | 33               | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Cadmium                | ug/L  | 5           | 5                      | 5                       | 2.5              | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        |
| Chromium               | ug/L  | 100         | 100                    | 100                     | 11               | 1            | < 1          | < 1          | < 1          | 6            | < 1          |
| Cobalt                 | ug/L  | NC          | 40                     | 100                     | 100              | < 6          | < 6          | < 6          | < 6          | < 6          | < 6          |
| Fluoride               | ug/L  | 4,000       | NC                     | NC                      | NC               | 1,300        | 1,190        | 1,170        | < 1,000      | 1,060        | 1,240        |
| Lead                   | ug/L  | NC          | 4                      | 4                       | 14               | < 1          | < 1          | < 1          | < 1          | < 1          | < 1          |
| Lithium                | ug/L  | NC          | 170                    | 350                     | 440              | 35           | 19           | 33           | 45           | 22           | 26           |
| Mercury                | ug/L  | 2           | 2                      | 2                       | 0.20#            | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        |
| Molybdenum             | ug/L  | NC          | 73                     | 210                     | 120              | < 5          | 59           | 10           | < 5          | 11           | < 5          |
| Radium-226             | pci/L | NC          | NC                     | NC                      | NC               | < 0.430      | < 0.628      | < 0.424      | 0.621        | 0.629        | < 0.473      |
| Radium-228             | pci/L | NC          | NC                     | NC                      | NC               | 0.642        | < 0.504      | 0.645        | < 0.502      | 0.492        | 0.463        |
| Radium-226/228         | pci/L | 5           | NC                     | NC                      | NC               | 1.06         | < 0.628      | 0.891        | 0.875        | 1.12         | 0.591        |
| Selenium               | ug/L  | 50          | 50                     | 50                      | 5                | < 1          | < 1          | < 1          | < 1          | < 1          | 1            |
| Thallium               | ug/L  | 2           | 2                      | 2                       | 2                | < 2          | < 2          | < 2          | < 2          | < 2          | < 2          |
| MI Part 115 Parameters |       |             |                        |                         |                  |              |              |              |              |              |              |
| ron                    | ug/L  | 300**       | 300 <sup>E</sup>       | 300Ĕ                    | 500,000EE        | 384          | 142          | 1,900        | 1,260        | 3,420        | 681          |
| Copper                 | ug/L  | 1,000**     | 1,000€                 | 1,000⊑                  | 20               | < 1          | < 1          | < 1          | 1            | 1            | < 1          |
| Nickel                 | ug/L  | NC          | 100                    | 100                     | 120              | < 2          | < 2          | < 2          | 2            | 111          | < 2          |
| Silver                 | ug/L  | 100**       | 34                     | 98                      | 0.2              | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        | < 0.2        |
| Vanadium               | ug/L  | NC          | 4.5                    | 62                      | 27               | < 2          | < 2          | < 2          | < 2          | 4            | < 2          |
| Zinc                   | ug/L  | 5,000**     | 2,400                  | 5,000E                  | 260              | < 10         | < 10         | < 10         | < 10         | < 10         | < 10         |

#### Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

pCi/L - picocuries per liter. SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria.

- \* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- \*\* Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan

Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for

surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is

to the Great Lakes or connecting waters per footnote {FF}

# - If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.

 $^{\text{E}}$  - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

**BOLD** value indicates an exceedance of one or more of the listed criteria.

**RED** value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

#### Table 5

# Summary of Groundwater Protection Standard Exceedances – October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

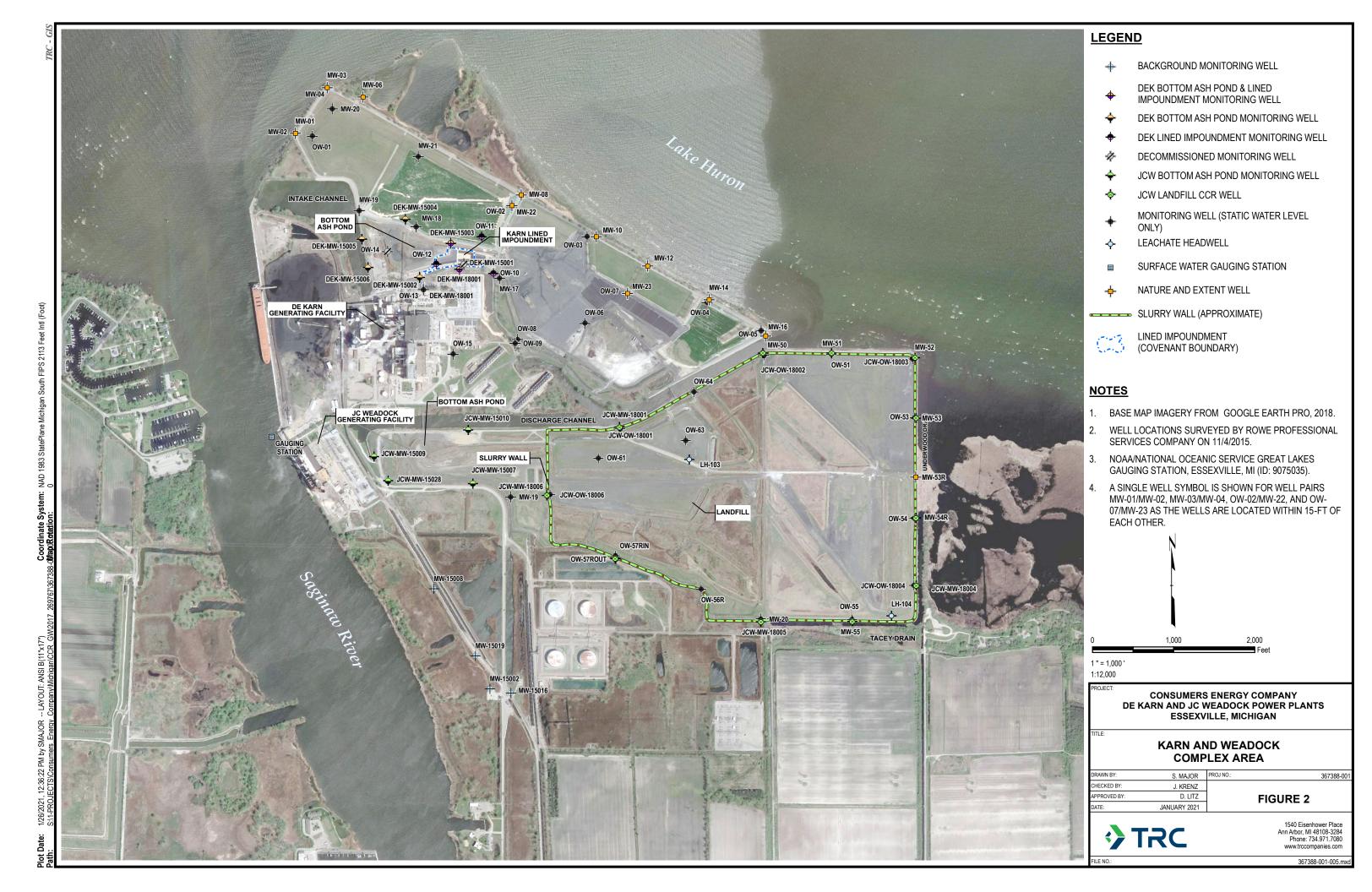
| Constituent | Units | GWPS | DEW-MW-15002 |     | DEK-MW-15003 |     | DEK-MW-15004 |     | DEK-MW-15005 |     | DEK-MW-15006 |     | DEK-MW-18001 |     |
|-------------|-------|------|--------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|-----|--------------|-----|
|             |       |      | LCL          | UCL |
| Arsenic     | ug/L  | 21   | 1.6          | 56  | 380          | 460 | 110          | 160 | 24           | 120 | 17           | 27  | 50           | 180 |

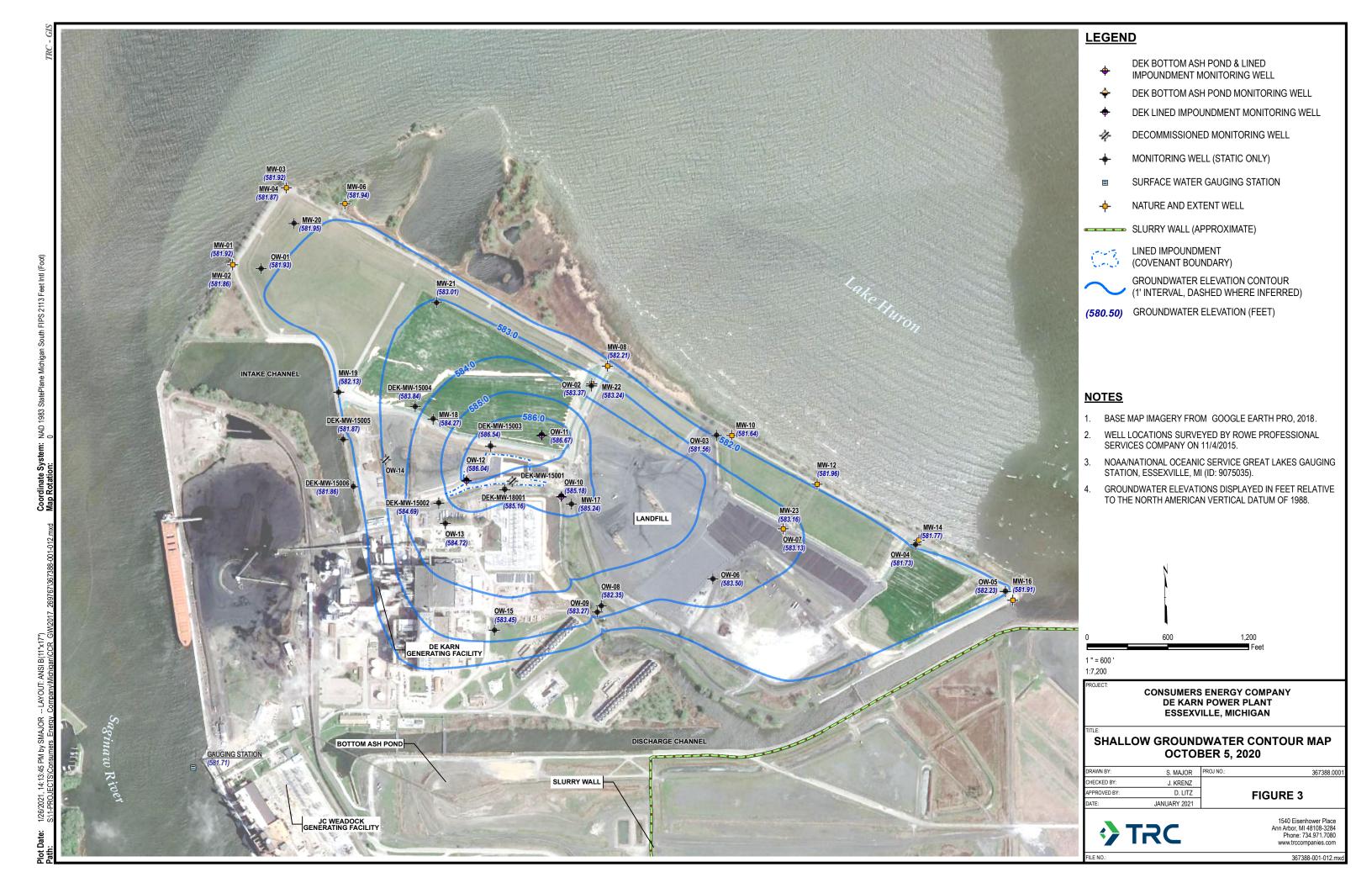
#### Notes:

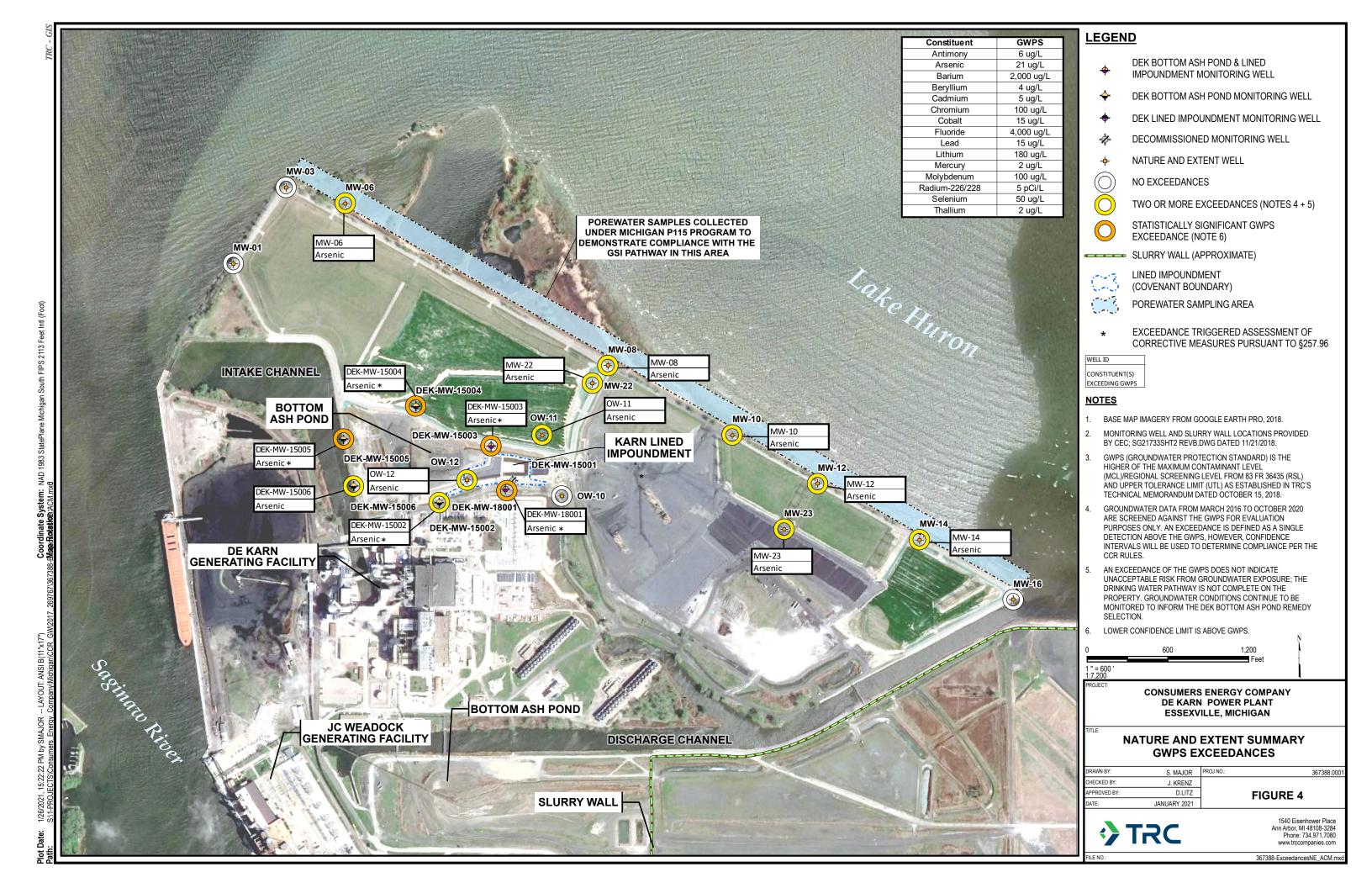
ug/L - micrograms per Liter.

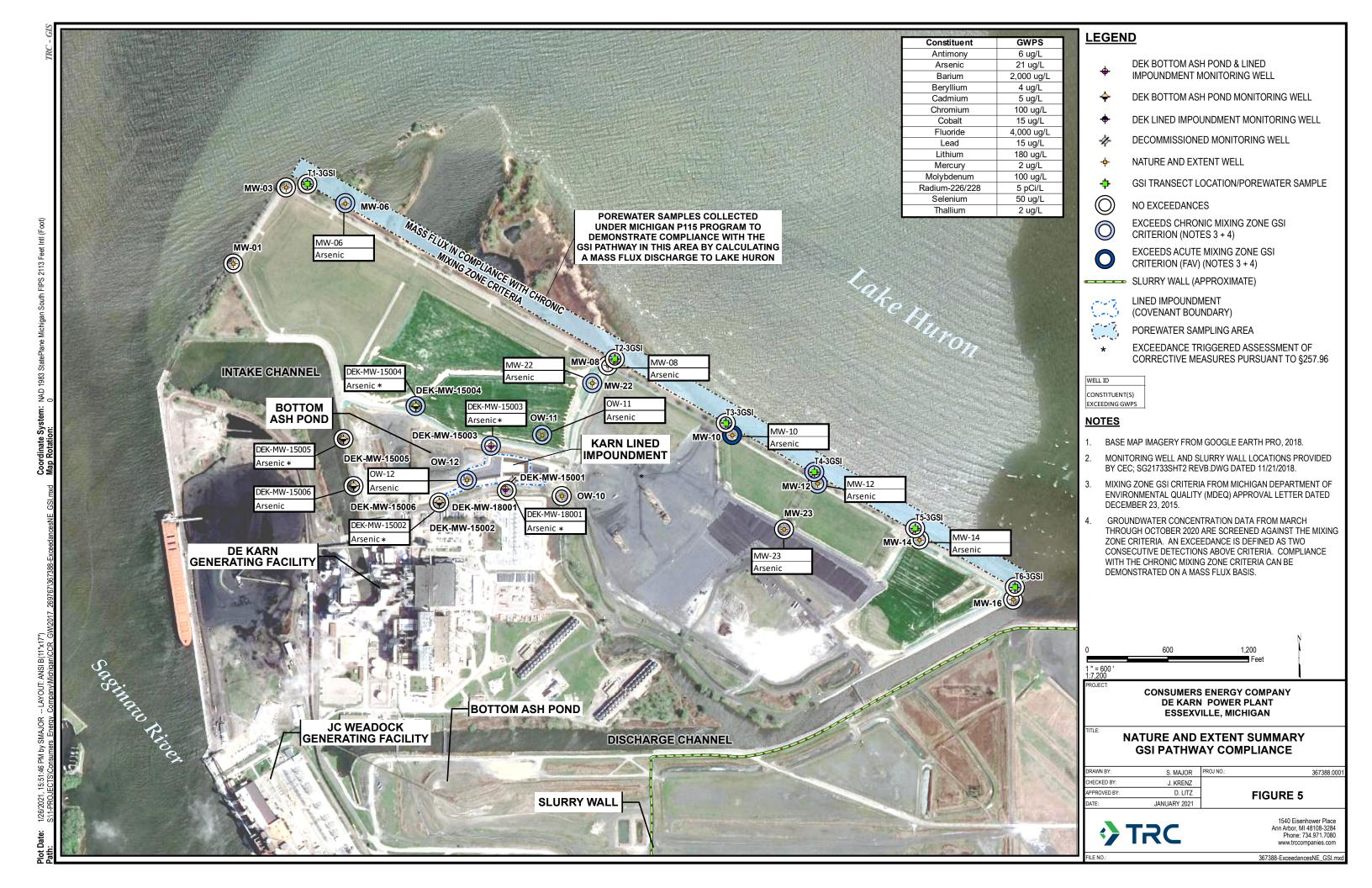
GWPS - Groundwater Protection Standard as established in TRC's Technical Memorandum dated October 15, 2018.

UCL - Upper Confidence Limit ( $\alpha$  = 0.01) of the downgradient data set.


LCL - Lower Confidence Limit ( $\alpha$  = 0.01) of the downgradient data set.


Indicates a statistically significant exceedance of the GWPS. An exceedance occurs when the LCL is greater than the GWPS.


### **Figures**














# Attachment A Data Quality Reviews



# Laboratory Data Quality Review Groundwater Monitoring Event October 2020 JC Weadock/ DE Karn Background

Groundwater samples were collected by TRC for the October 2020 sampling event. Samples were analyzed for total metals, anions, and total dissolved solids by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The radium analyses were subcontracted to Eurofins-TestAmerica in St. Louis, Missouri (Eurofins TA – St. Louis). The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 20-1105 and 240-138442-1.

During the October 2020 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-15002

■ MW-15008

■ MW-15016

■ MW-15019

Each sample was analyzed for one or more of the following constituents:

| Analyte Group                                     | Method               |
|---------------------------------------------------|----------------------|
| Anions (Fluoride, Chloride, Sulfate)              | EPA 300.0            |
| Total Dissolved Solids (TDS)                      | SM 2540C             |
| Total Metals                                      | SW-846 6020B/7470A   |
| Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228) | EPA 903.0, EPA 904.0 |

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

### **Data Usability Review Procedure**

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2017) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;

- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the metals, anions, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

#### **Review Summary**

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, and additional Part 115 constituents will be utilized for the purposes of a detection or assessment monitoring program.
- Data are usable for the purposes of the detection or assessment monitoring program.
- When the data are evaluated through a detection or assessment monitoring statistical program, findings below may be used to support the removal of outliers.

#### **QA/QC Sample Summary:**

- A method blank was analyzed for the radium 226 analysis only and radium 226 was not detected in the method blank. The laboratory inadvertently did not analyze a method blank for radium 228; therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures could not be evaluated for radium 228.
- One field blank (FB-04) sample was collected. Target analytes were not detected in the field blank.
- An equipment blank was not collected in this data set.
- MS and MSD analyses were not performed on a sample from this data set.
- An LCS and LCSD were analyzed with each analytical batch for radium; the following issues were noted:

- The recoveries of radium 228 in the LCS 160-488925/1-A (74%) and LCSD 160-488925/2-A (70%) were below the lower control limit (75%); the positive and non-detect results for radium 228 for all samples are potentially biased low, as summarized in the attached Table 1.
- The field duplicate pair samples were DUP-04 and MW-15008; relative percent differences (RPDs) between the parent and duplicate sample were within the QC limits.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- Carrier recoveries, where applicable, were within 40-110%.

Table 1
Summary of Data Non-Conformances for Groundwater Analytical Data
JC Weadock/DE Karn Background – RCRA CCR Monitoring Program
Essexville, Michigan

| Samples  | Collection<br>Date | Analyte    | Non-Conformance/Issue                                                                                         |
|----------|--------------------|------------|---------------------------------------------------------------------------------------------------------------|
| MW-15002 | 10/13/2020         |            |                                                                                                               |
| MW-15008 | 10/13/2020         | Radium 228 |                                                                                                               |
| MW-15016 | 10/13/2020         |            | LCS/LCSD recoveries below acceptance limit (75%). Positive and non-detect results are potentially biased low. |
| MW-15019 | 10/13/2020         |            |                                                                                                               |
| DUP-04   | 10/13/2020         |            |                                                                                                               |

# Laboratory Data Quality Review Groundwater Monitoring Event October 2020 DE Karn Bottom Ash Pond

Groundwater samples were collected by TRC for the October 2020 sampling event. Samples were analyzed for total metals, anions, and total dissolved solids by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The radium analyses were subcontracted to Eurofins–TestAmerica in St. Louis, Missouri (Eurofins TA – St. Louis). The laboratory analytical results were reported in laboratory sample delivery groups (SDG) 20-1108 and 240-138058-1.

During the October 2020 sampling event, a groundwater sample was collected from each of the following wells:

DEK-MW-15002

DEK-MW-15004

DEK-MW-15005

DEK-MW-15006

Each sample was analyzed for one or more of the following constituents:

| Analyte Group                                     | Method               |
|---------------------------------------------------|----------------------|
| Anions (Fluoride, Chloride, Sulfate)              | EPA 300.0            |
| Total Dissolved Solids (TDS)                      | SM 2540C             |
| Total Metals                                      | SW-846 6020B/7470A   |
| Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228) | EPA 903.0, EPA 904.0 |

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

### **Data Usability Review Procedure**

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2017) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;

- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the metals, anions and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

#### **Review Summary**

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, and additional Part 115 constituents will be utilized for the purposes of the assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

#### **QA/QC Sample Summary:**

- Method blanks were analyzed for the radium analyses. Target analytes were not detected in the method blanks.
- One field blank (FB-02) was collected. Target analytes were not detected in the field blank sample.
- An equipment blank was not collected with this data set.
- An LCS and LCSD were analyzed with each analytical batch for radium; the LCS and LCSD recoveries were within QC limits.
- MS and MSD analyses were not performed on a sample from this data set.

- The field duplicate pair samples were DUP-02 and DEK-MW-15002; relative percent differences (RPDs) between the parent and duplicate sample were within the QC limits.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- Carrier recoveries, where applicable, were within 40-110%.

# Laboratory Data Quality Review Groundwater Monitoring Event October 2020 DE Karn Bottom Ash Pond and Lined Impoundment

Groundwater samples were collected by TRC for the October 2020 sampling event. Samples were analyzed for total metals, anions, total dissolved solids, and alkalinity by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The radium analyses were subcontracted to Eurofins-TestAmerica in St. Louis, Missouri (Eurofins TA – St. Louis). The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 20-1109 and 240-138055-1.

During the October 2020 sampling event, a groundwater sample was collected from each of the following wells:

DEK-MW-15003

DEK-MW-18001

Each sample was analyzed for one or more of the following constituents:

| Analyte Group                                     | Method               |
|---------------------------------------------------|----------------------|
| Anions (Fluoride, Chloride, Sulfate)              | EPA 300.0            |
| Total Dissolved Solids (TDS)                      | SM 2540C             |
| Total Metals                                      | SW-846 6020B/7470A   |
| Alkalinity                                        | SM 2320B             |
| Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228) | EPA 903.0, EPA 904.0 |

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

### **Data Usability Review Procedure**

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2017) and the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;

- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the metals, anions, TDS, and alkalinity analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

### **Review Summary**

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, optional Piper Diagram analyses, and additional Part 115 constituents will be utilized for the purposes of a detection or assessment monitoring program.
- Data are usable for the purposes of the detection or assessment monitoring program.
- When the data are evaluated through a detection or assessment monitoring statistical program, findings below may be used to support the removal of outliers.

#### **QA/QC Sample Summary:**

- Method blanks were analyzed for the radium analyses. Target analytes were not detected in the method blanks.
- A field blank was not collected in this data set.
- An equipment blank was not collected in this data set.
- An LCS and LCSD were analyzed with each analytical batch for radium; the LCS and LCSD recoveries were within QC limits.

- MS and MSD analyses were performed on sample DEK-MW-18001 for metals, anions and alkalinity. The recoveries were within the acceptance limits. Relative percent differences (RPDs) were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A field duplicate pair was not collected with this data set.
- Laboratory duplicate analyses were not performed on a sample from this data set.
- Carrier recoveries, where applicable, were within 40-110%.

# Attachment B Statistical Evaluation of October 2020 Assessment Monitoring Sampling Event





**Date:** January 11, 2020

**To:** J.R. Register, Consumers Energy

From: Darby Litz, TRC

Katy Reminga, TRC

**Project No.:** 367388.0001 Phase 003, Task 002

**Subject:** Statistical Evaluation of October 2020 Assessment Monitoring Sampling Event

DE Karn Bottom Ash Pond, Consumers Energy Company, Essexville, Michigan

During the statistical evaluation of the initial assessment monitoring event (May 2018), arsenic was present in one or more downgradient monitoring wells at statistically significant levels exceeding the Groundwater Protection Standards (GWPSs). Therefore, Consumers Energy Company (Consumers Energy) initiated an Assessment of Corrective Measures (ACM) within 90 days from when the Appendix IV exceedance was determined. The ACM was completed on September 11, 2019. Currently, Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule <sup>1</sup> at the DE Karn Power Plant Bottom Ash Pond (Karn Bottom Ash Pond).

The second semiannual assessment monitoring event for 2020 was conducted on October 6 through October 7, 2020. In accordance with §257.95, the assessment monitoring data must be compared to GWPSs to determine whether or not Appendix IV constituents are detected at statistically significant levels above the GWPSs. GWPSs were established in accordance with §257.95(h), as detailed in the October 15, 2018 Groundwater Protection Standards technical memorandum, which was also included in the 2018 Annual Groundwater Monitoring Report (TRC, January 2019).

The statistical evaluation of the fifth semiannual assessment monitoring event data indicate the following constituent is present at statistically significant levels exceeding the GWPS in downgradient monitoring wells at the Karn Bottom Ash Pond:

| Constituent | GWPS    | #Downgradient Wells Observed |
|-------------|---------|------------------------------|
| Arsenic     | 21 ug/L | 4 of 6                       |

The results of the assessment monitoring statistical evaluation for the downgradient wells are consistent with the results of the previous assessment monitoring data statistical evaluations, indicating that arsenic is the only constituent present at concentrations above the GWPS. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 -

<sup>&</sup>lt;sup>1</sup> USEPA final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) published April 17, 2015, as amended per Phase One, Part One of the CCR Rule (83 FR 36435).

§257.98.

## **Assessment Monitoring Statistical Evaluation**

The compliance well network at the Karn Bottom Ash Pond includes six wells encircling the unit (DEK-MW-15002 through DEK-MW-15006 and DEK-MW-18001). Former downgradient monitoring well DEK-MW-15001 was decommissioned on April 18, 2018 to allow for construction of the new Karn Lined Impoundment. DEK-MW-18001 was installed approximately 80 feet southeast of the former DEK-MW-15001 location to maintain the perimeter downgradient monitoring well network. Although DEK-MW-18001 is considered to be a replacement well, the data from the two wells are not being combined in the statistical analyses at this time as groundwater chemistry data at DEK-MW-18001 is not comparable to DEK-MW-15001. Therefore, the statistical analysis for DEK-MW-15001 terminates at the April 2018 sampling event and statistical analysis for DEK-MW-18001 commenced with the first semiannual assessment monitoring event for 2019, following the collection of the minimum of four independent sampling events.

Following the second semiannual assessment monitoring sampling event for 2020, compliance well data for the DEK BAP were evaluated in accordance with the Groundwater Statistical Evaluation Plan (Stats Plan) (TRC, October 2017). An assessment monitoring program was developed to evaluate concentrations of CCR constituents present in the uppermost aquifer relative to acceptable levels (i.e., GWPSs). To evaluate whether or not a GWPS exceedance is statistically significant, the difference in concentration observed at the downgradient wells during a given assessment monitoring event compared to the GWPS must be large enough, after accounting for variability in the sample data, that the result is unlikely to have occurred merely by chance. Consistent with the Unified Guidance <sup>2</sup>, the preferred method for comparisons to a fixed standard are confidence limits. Based on the number of historical observations in the representative sample population, the population mean, the population standard deviation, and a selected confidence level (i.e., 99 percent), an upper and lower confidence limit is calculated. The true concentration, with 99 percent confidence, will fall between the lower and upper confidence limits.

The concentrations observed in the downgradient wells are deemed to be a statistically significant exceedance when the 99 percent lower confidence limit of the downgradient data exceeds the GWPS. If the confidence interval straddles the GWPS (i.e., the lower confidence level is below the GWPS, but the upper confidence level is above), the statistical test result indicates that there is insufficient confidence that the measured concentrations are different from the GWPS and thus no compelling evidence that the measured concentration is a result of a release from the CCR unit versus the inherent variability of the sample data. This statistical approach is consistent with the statistical methods for assessment monitoring presented in §257.93(f) and (g). Statistical evaluation methodologies built into the CCR Rule, and numerous other federal rules, are key in determining whether or not individually measured data points represent a concentration increase over the baseline or a fixed standard (such as a GWPS in an assessment monitoring program).

For each detected Appendix IV constituent, the concentrations from each well were first compared

<sup>&</sup>lt;sup>2</sup> USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

directly to the GWPS, as shown on Table 1. Parameter-well combinations that included a direct exceedance of the GWPS within the past eight sampling events (August 2017 through October 2020) were retained for further analysis. Arsenic in each of the downgradient monitoring wells at the Bottom Ash Pond had individual results exceeding the GWPS. Lead was detected in DEK-MW-15006 during May 2018 at a concentration of 320 ug/L, which exceeds its GWPS. However, this is the only detection of lead in the Bottom Ash Pond wells during either baseline sampling or assessment monitoring. Sampling conducted in November 2018 did not confirm the lead detection. Therefore, the single detection was classified as an outlier per the Double Quantification Rule as outlined in the Stats Plan and the Unified Guidance. As a result, only arsenic was retained for evaluation in all downgradient monitoring wells. In DEK-MW-15003, beryllium, cobalt, and thallium reporting limits exceeded the GWPSs in April 2019 due to sample dilutions performed due to the nature of the sample matrix. Beryllium, cobalt, and thallium have historically been non-detect at this location and results from October 2019 confirmed that these constituents are not detected above the GWPSs. Therefore, the elevated reporting limits are treated as outliers and no statistical evaluation will be completed for these parameter-well combinations.

Groundwater data were then evaluated utilizing Sanitas™ statistical software. Sanitas™ is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in the Unified Guidance. Within the Sanitas™ statistical program, confidence limits were selected to perform the statistical comparison of compliance data to a fixed standard. Parametric and non-parametric confidence intervals were calculated for each of the CCR Appendix IV constituents using a using a per test³ 99 percent confidence level, i.e., a significance level (α) of 0.01. The following narrative describes the methods employed, the results obtained and the Sanitas™ output files are included as an attachment.

The statistical data evaluation included the following steps:

- Review of data quality checklists for the data sets;
- Graphical representation of the monitoring data as time versus concentration by well/constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of visual trends apparent in the graphical representations for statistical significance;
- Evaluation of percentage of non-detects for each well/constituent pair;
- Distribution of the data: and
- Calculation of the confidence intervals for each cumulative dataset.

The results of these evaluations are presented and discussed below.

Data from each round were evaluated for completeness, overall quality, and usability and were deemed appropriate for the purposes of the CCR assessment monitoring program. Initially, the baseline (December 2015 through August 2017) results and the assessment monitoring results (April 2018 through October 2020) were observed visually for potential trends. No outliers were identified. Arsenic

3

<sup>&</sup>lt;sup>3</sup> Confidence level is assessed for each individual comparison (i.e. per well and per constituent).

concentrations at DEK-MW-15002, DEK-MW-15003, and DEK-MW-18001 appear to exhibit a downward trend on the time-series chart (Attachment 1). These data sets were tested further in Sanitas™ utilizing Sen's Slope to estimate the average rate of change in concentration over time and utilizing the Mann-Kendall trend test to test for significance of the trend at the 98% confidence level. The trend tests showed that arsenic concentrations are generally decreasing with time, as evidenced by the negative Sen's Slope but are not deemed statistically significant (Attachment 1). The decreases in arsenic concentrations at DEK-MW-15002, DEK-MW-15003, and DEK-MW-18001 are causing the confidence intervals to widen. Calculating a confidence interval around a trending data set incorporates not only variability present naturally in the underlying dataset, but also incorporates variability due to the trend itself. Arsenic concentrations have already triggered assessment monitoring (e.g., not a newly identified GWPS exceedance) and an interim measure has been initiated through the removal of CCR from the bottom ash pond in 2019; therefore, traditional confidence interval calculations are presented in this statistical evaluation until more post-CCR removal data are available. Once additional post-CCR removal data are collected, confidence bands may be a more appropriate assessment to determine compliance with the CCR Rule. Confidence bands are selected by the UG as the appropriate method for calculating confidence intervals on trending data. A confidence band calculates upper and lower confidence limits at each point along the trend to reduce variability and create a narrower confidence interval. At least 8 to 10 measurements should be available when computing a confidence band around a linear regression.

The Sanitas<sup>TM</sup> software was used to test compliance at the downgradient monitoring wells using the confidence interval method for the most recent 8 sampling events, with the exception of DEK-MW-18001, for which only six independent assessment monitoring sampling events have been completed. Eight independent sampling events provide the appropriate density of data as recommended per the UG yet are collected recently enough to provide an indication of current condition. The tests were run with a per-test significance of  $\alpha$  = 0.01. The software outputs are included in Attachment 1 along with data reports showing the values used for the evaluation. The percentage of non-detect observations for well/constituent pairs with a direct GWPS exceedance are also included in Attachment 1. Non-detect data was handled in accordance with the Stats Plan for the purposes of calculating the confidence intervals. Note that, as mentioned above, the statistical analysis for DEK-MW-15001 terminates at the April 2018 sampling event as it was decommissioned on April 18, 2018, and statistical analysis for DEK-MW-18001 commenced with the first semiannual sampling event for 2019.

The Sanitas™ software generates an output graph for the confidence intervals of each well. The data sets were found to be normally distributed with the exception of DEK-MW-15005, which used a non-parametric confidence interval due to non-normal data set, and DEK-MW-18001, which was normalized using a logarithmic transformation. The confidence interval test compares the lower confidence limit to the GWPS. The statistical evaluation of the Appendix IV parameters shows exceedances for arsenic at four of the six monitoring locations (DEK-MW-15003 through DEK-MW-15005 and DEK-MW-18001). The results of the assessment monitoring statistical evaluation for the other downgradient wells are consistent with the results of the previous assessment monitoring data statistical evaluations, indicating that arsenic is the only constituent present at concentrations above the GWPS. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

## **Attachments**

Table 1 Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020

Attachment 1 Sanitas™ Output Files

## Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |            |         | S         | ample Location: |          |           |           |           | DEK-M\    | N-15002   |            |           |           |           |
|------------------------|-------|------------|---------|-----------|-----------------|----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
|                        |       |            |         |           | Sample Date:    | 8/3/2017 | 9/18/2017 | 4/12/2018 | 5/23/2018 | 11/5/2018 | 4/11/2019 | 10/15/2019 | 5/13/2020 | 10/6/2020 | 10/6/2020 |
| Constituent            | Unit  | EPA MCL    | EPA RSL | UTL       | GWPS            |          |           |           |           | downg     | radient   |            |           |           |           |
| Appendix III           |       |            |         |           |                 |          |           |           |           |           |           |            |           |           | Field Dup |
| Boron                  | ug/L  | NC         | NA      | 619       | NA              | 805      | 870       |           | 967       | 894       | 860       | 1,600      | 1,390     | 1,580     | 1,600     |
| Calcium                | mg/L  | NC         | NA      | 302       | NA              | 71.1     | 66.9      |           | 53.7      | 67.8      | 72        | 130        | 170       | 126       | 122       |
| Chloride               | mg/L  | 250*       | NA      | 2,440     | NA              | 87.8     | 84.9      |           | 79.7      | 83.5      | 80        | 410        | 130       | 106       | 102       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | NA              | < 1,000  | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000    | < 1,000   | 1,300     | < 1,000   |
| Sulfate                | mg/L  | 250*       | NA      | 407       | NA              | 256      | 290       |           | 263       | 77.2      | 45        | 150        | 367       | 142       | 139       |
| Total Dissolved Solids | mg/L  | 500*       | NA      | 4,600     | NA              | 696      | 722       |           | 660       | 536       | 560       | 1,300      | 1,100     | 791       | 776       |
| pH, Field              | SU    | 6.5 - 8.5* | NA      | 6.5 - 7.3 | NA              | 7.8      | 7.9       | 7.5       | 8.0       | 7.3       | 7.5       | 7.3        | 7.1       | 7.1       |           |
| Appendix IV            |       |            |         |           |                 |          |           |           |           |           |           |            |           |           |           |
| Antimony               | ug/L  | 6          | NA      | 1         | 6               | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       | < 1       |
| Arsenic                | ug/L  | 10         | NA      | 21        | 21              | 48.3     |           | 56.4      | 67.0      | 31.7      | 9.0       | 6.5        | 3         | 8         | 8         |
| Barium                 | ug/L  | 2,000      | NA      | 1,300     | 2,000           | 96.1     |           | 82.7      | 84.5      | 71.6      | 71        | 140        | 196       | 133       | 131       |
| Beryllium              | ug/L  | 4          | NA      | 1         | 4               | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       | < 1       |
| Cadmium                | ug/L  | 5          | NA      | 0.2       | 5               | < 0.20   |           | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     | < 0.2     |
| Chromium               | ug/L  | 100        | NA      | 3         | 100             | < 1.0    |           | < 1.0     | < 1.0     | 1.4       | 1.3       | < 1.0      | < 1       | 1         | 1         |
| Cobalt                 | ug/L  | NC         | 6       | 15        | 15              | < 15.0   |           | < 15.0    | < 15.0    | < 6.0     | < 6.0     | < 6.0      | < 6       | < 6       | < 6       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | 4,000           | < 1,000  | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000   | <1,000     | < 1,000   | 1,300     | < 1,000   |
| Lead                   | ug/L  | NC         | 15      | 1         | 15              | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       | < 1       |
| Lithium                | ug/L  | NC         | 40      | 180       | 180             | 36       |           | 43        | 35        | 32        | 26        | 35         | 48        | 35        | 36        |
| Mercury                | ug/L  | 2          | NA      | 0.2       | 2               | < 0.20   |           | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     | < 0.2     |
| Molybdenum             | ug/L  | NC         | 100     | 6         | 100             | 27.7     |           | 30.8      | 35.4      | < 5.0     | < 5.0     | < 5.0      | < 5       | < 5       | < 5       |
| Radium-226             | pCi/L | NC         | NA      | NA        | NA              | < 0.854  |           | < 0.478   | < 0.698   | < 0.850   | < 0.376   | 0.334      | 0.673     | < 0.430   | < 0.577   |
| Radium-228             | pCi/L | NC         | NA      | NA        | NA              | 1.17     |           | 1.16      | < 0.744   | 0.730     | 0.684     | 0.654      | < 0.763   | 0.642     | < 0.460   |
| Radium-226/228         | pCi/L | 5          | NA      | 3.32      | 5               | 1.88     |           | 1.42      | < 1.44    | < 1.39    | 0.846     | 0.987      | 0.899     | 1.06      | < 0.577   |
| Selenium               | ug/L  | 50         | NA      | 2         | 50              | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       | 1         |
| Thallium               | ug/L  | 2          | NA      | 2         | 2               | < 2.0    |           | < 2.0     | < 2.0     | < 2.0     | < 2.0     | < 2.0      | < 2       | < 2       | < 2       |

### Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

 ${\sf GWPS-Groundwater\ Protection\ Standard.\ GWPS\ is\ the\ higher\ of\ the\ MCL/RSL\ and\ UTL\ as\ established\ in\ MCL/RSL\ and\ utl\ an\ established\ in\ MCL/RSL\ an\ estab$ 

TRC's Technical Memorandum dated October 15, 2018.

\* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

**Bold** value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

- (1) Outlier; single detection above reporting limit.
- $(2) \, \text{Laboratory reporting limits exceeds GWPS due to sample dilutions performed as a result of the sample matrix}.$

## Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |            |         | S         | ample Location: |          |           |           |           | EK-MW-150   | 03                   |            |           |           |
|------------------------|-------|------------|---------|-----------|-----------------|----------|-----------|-----------|-----------|-------------|----------------------|------------|-----------|-----------|
|                        |       |            |         |           | Sample Date:    | 8/4/2017 | 9/18/2017 | 4/12/2018 | 5/23/2018 | 11/6/2018   | 4/11/2019            | 10/15/2019 | 5/14/2020 | 10/6/2020 |
| Constituent            | Unit  | EPA MCL    | EPA RSL | UTL       | GWPS            |          |           |           |           | downgradier | nt                   |            |           |           |
| Appendix III           |       |            |         |           |                 |          |           |           |           |             |                      |            |           |           |
| Boron                  | ug/L  | NC         | NA      | 619       | NA              | 1,160    | 1,030     |           | 1,010     | 944         | 960                  | 1,100      | 739       | 842       |
| Calcium                | mg/L  | NC         | NA      | 302       | NA              | 58.8     | 62.1      |           | 58.1      | 62.9        | 52                   | 39         | 26.9      | 29.7      |
| Chloride               | mg/L  | 250*       | NA      | 2,440     | NA              | 61.7     | 60.2      |           | 57.2      | 61.7        | 58                   | 58         | 47.9      | 46.5      |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | NA              | < 1,000  | < 1,000   | < 1,000   | < 1,000   | < 1,000     | < 1,000              | < 1,000    | < 1,000   | 1,190     |
| Sulfate                | mg/L  | 250*       | NA      | 407       | NA              | 55.8     | 54.3      |           | 39.1      | 37.8        | 47                   | 52         | 55.6      | 44.6      |
| Total Dissolved Solids | mg/L  | 500*       | NA      | 4,600     | NA              | 506      | 426       |           | 354       | 370         | 360                  | 330        | 271       | 237       |
| pH, Field              | SU    | 6.5 - 8.5* | NA      | 6.5 - 7.3 | NA              | 7.9      | 7.9       | 7.8       | 8.2       | 8.0         | 8.0                  | 7.9        | 8.5       | 8.5       |
| Appendix IV            |       |            |         |           |                 |          |           |           |           |             |                      |            |           |           |
| Antimony               | ug/L  | 6          | NA      | 1         | 6               | < 1.0    |           | < 1.0     | < 1.0     | < 1.0       | < 5.0                | < 1.0      | 1         | < 1       |
| Arsenic                | ug/L  | 10         | NA      | 21        | 21              | 437      |           | 478       | 450       | 420         | 380                  | 420        | 365       | 393       |
| Barium                 | ug/L  | 2,000      | NA      | 1,300     | 2,000           | 68.5     |           | 61.2      | 73.3      | 70.9        | 62                   | 58         | 40        | 40        |
| Beryllium              | ug/L  | 4          | NA      | 1         | 4               | < 1.0    |           | < 1.0     | < 1.0     | < 1.0       | < 5.0 <sup>(2)</sup> | < 1.0      | < 1       | < 1       |
| Cadmium                | ug/L  | 5          | NA      | 0.2       | 5               | < 0.20   |           | < 0.20    | < 0.20    | < 0.20      | < 1.0                | < 0.20     | < 0.2     | < 0.2     |
| Chromium               | ug/L  | 100        | NA      | 3         | 100             | < 1.0    |           | < 1.0     | < 1.0     | < 1.0       | < 5.0                | < 1.0      | < 1       | < 1       |
| Cobalt                 | ug/L  | NC         | 6       | 15        | 15              | < 15.0   |           | < 15.0    | < 15.0    | < 6.0       | < 30 <sup>(2)</sup>  | < 6.0      | < 6       | < 6       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | 4,000           | < 1,000  | < 1,000   | < 1,000   | < 1,000   | < 1,000     | < 1,000              | <1,000     | < 1,000   | 1,190     |
| Lead                   | ug/L  | NC         | 15      | 1         | 15              | < 1.0    |           | < 1.0     | < 1.0     | < 1.0       | < 5.0                | < 1.0      | < 1       | < 1       |
| Lithium                | ug/L  | NC         | 40      | 180       | 180             | 35       |           | 39        | 33        | 33          | 28                   | 29         | 18        | 19        |
| Mercury                | ug/L  | 2          | NA      | 0.2       | 2               | < 0.20   |           | < 0.20    | < 0.20    | < 0.20      | < 0.20               | < 0.20     | < 0.2     | < 0.2     |
| Molybdenum             | ug/L  | NC         | 100     | 6         | 100             | 5.0      |           | < 5.0     | 5.3       | 5.2         | < 25                 | 28         | 52        | 59        |
| Radium-226             | pCi/L | NC         | NA      | NA        | NA              | 0.226    |           | 0.686     | < 0.842   | < 0.661     | < 0.424              | < 0.150    | < 0.271   | < 0.628   |
| Radium-228             | pCi/L | NC         | NA      | NA        | NA              | < 0.936  |           | < 0.755   | 1.12      | < 0.789     | < 0.495              | < 0.449    | < 0.468   | < 0.504   |
| Radium-226/228         | pCi/L | 5          | NA      | 3.32      | 5               | < 1.14   |           | < 1.33    | 1.63      | < 1.45      | < 0.495              | < 0.449    | 0.565     | < 0.628   |
| Selenium               | ug/L  | 50         | NA      | 2         | 50              | < 1.0    |           | < 1.0     | < 1.0     | < 1.0       | < 5.0                | < 1.0      | < 1       | < 1       |
| Thallium               | ug/L  | 2          | NA      | 2         | 2               | < 2.0    |           | < 2.0     | < 2.0     | < 2.0       | < 10 <sup>(2)</sup>  | < 2.0      | < 2       | < 2       |

### Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

\* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

**Bold** value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

All metals were analyzed as total unless otherwise specified.

(1) Outlier; single detection above reporting limit.

(2) Laboratory reporting limits exceeds GWPS due to sample dilutions performed as a result of the sample matrix.

## Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |            |         | S         | ample Location: |          |           |           |           |           | DEK-M     | W-15004   |           |           |            |           |           |
|------------------------|-------|------------|---------|-----------|-----------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
|                        |       |            |         |           | Sample Date:    | 8/3/2017 | 8/3/2017  | 9/19/2017 | 9/19/2017 | 4/12/2018 | 5/23/2018 | 5/23/2018 | 11/6/2018 | 4/11/2019 | 10/15/2019 | 5/14/2020 | 10/7/2020 |
| Constituent            | Unit  | EPA MCL    | EPA RSL | UTL       | GWPS            |          |           |           |           |           | down      | gradient  |           |           |            |           |           |
| Appendix III           |       |            |         |           |                 |          | Field Dup |           | Field Dup |           |           | Field Dup |           |           |            |           |           |
| Boron                  | ug/L  | NC         | NA      | 619       | NA              | 785      | 768       | 730       | 750       |           | 800       | 842       | 910       | 840       | 540        | 795       | 850       |
| Calcium                | mg/L  | NC         | NA      | 302       | NA              | 67.4     | 68.1      | 66.5      | 67.9      |           | 47.8      | 50.7      | 62.2      | 50        | 60         | 52.7      | 68.4      |
| Chloride               | mg/L  | 250*       | NA      | 2,440     | NA              | 81.4     | 81.5      | 79.8      | 79.9      |           | 72.5      | 72.6      | 70.6      | 63        | 77         | 66.6      | 68.9      |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | NA              | < 1,000  | < 1,000   | < 1,000   | < 1,000   | 1,200     | 1,100     | 1,100     | 1,100     | 1,100     | 1,100      | 1,140     | 1,170     |
| Sulfate                | mg/L  | 250*       | NA      | 407       | NA              | 258      | 261       | 283       | 281       |           | 176       | 178       | 168       | 150       | 160        | 125       | 136       |
| Total Dissolved Solids | mg/L  | 500*       | NA      | 4,600     | NA              | 642      | 582       | 596       | 564       |           | 494       | 504       | 482       | 490       | 530        | 509       | 509       |
| pH, Field              | SU    | 6.5 - 8.5* | NA      | 6.5 - 7.3 | NA              | 7.6      |           | 7.3       |           | 7.3       | 7.7       |           | 7.4       | 7.1       | 7.4        | 7.8       | 7.6       |
| Appendix IV            |       |            |         |           |                 |          |           |           |           |           |           |           |           |           |            |           |           |
| Antimony               | ug/L  | 6          | NA      | 1         | 6               | < 1.0    | < 1.0     |           |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Arsenic                | ug/L  | 10         | NA      | 21        | 21              | 121      | 129       |           |           | 134       | 119       | 126       | 123       | 110       | 180        | 157       | 155       |
| Barium                 | ug/L  | 2,000      | NA      | 1,300     | 2,000           | 111      | 115       |           |           | 86.9      | 79.6      | 82.6      | 95.1      | 77        | 99         | 96        | 102       |
| Beryllium              | ug/L  | 4          | NA      | 1         | 4               | < 1.0    | < 1.0     |           |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Cadmium                | ug/L  | 5          | NA      | 0.2       | 5               | < 0.20   | < 0.20    |           |           | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     |
| Chromium               | ug/L  | 100        | NA      | 3         | 100             | < 1.0    | < 1.0     |           |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Cobalt                 | ug/L  | NC         | 6       | 15        | 15              | < 15.0   | < 15.0    |           |           | < 15.0    | < 15.0    | < 15.0    | < 6.0     | < 6.0     | < 6.0      | < 6       | < 6       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | 4,000           | < 1,000  | < 1,000   | < 1,000   | < 1,000   | 1,200     | 1,100     | 1,100     | 1,100     | 1,100     | 1,100      | 1,140     | 1,170     |
| Lead                   | ug/L  | NC         | 15      | 1         | 15              | < 1.0    | < 1.0     |           |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Lithium                | ug/L  | NC         | 40      | 180       | 180             | 39       | 38        |           |           | 39        | 30        | 32        | 33        | 26        | 34         | 36        | 33        |
| Mercury                | ug/L  | 2          | NA      | 0.2       | 2               | < 0.20   | < 0.20    |           |           | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     |
| Molybdenum             | ug/L  | NC         | 100     | 6         | 100             | 30.4     | 31.4      |           |           | 32.0      | 30.9      | 30.4      | 28.0      | 23        | < 5.0      | 11        | 10        |
| Radium-226             | pCi/L | NC         | NA      | NA        | NA              | 0.805    | < 0.623   |           |           | < 0.641   | < 0.791   | < 0.679   | < 0.743   | < 0.316   | 0.204      | < 0.494   | < 0.424   |
| Radium-228             | pCi/L | NC         | NA      | NA        | NA              | 0.833    | 0.864     |           |           | < 0.847   | < 0.753   | 0.845     | < 0.794   | 0.924     | 0.537      | < 0.700   | 0.645     |
| Radium-226/228         | pCi/L | 5          | NA      | 3.32      | 5               | 1.64     | < 1.46    |           |           | < 1.49    | < 1.54    | 1.29      | < 1.54    | 1.07      | 0.741      | < 0.700   | 0.891     |
| Selenium               | ug/L  | 50         | NA      | 2         | 50              | < 1.0    | < 1.0     |           |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Thallium               | ug/L  | 2          | NA      | 2         | 2               | < 2.0    | < 2.0     |           |           | < 2.0     | < 2.0     | < 2.0     | < 2.0     | < 2.0     | < 2.0      | < 2       | < 2       |

### Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable. NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

\* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

**Bold** value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

- (1) Outlier; single detection above reporting limit.
- (2) Laboratory reporting limits exceeds GWPS due to sample dilutions performed as a result of the sample matrix.

## Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |            |         | Sa        | ample Location: |          |           |           |           |           | D         | EK-MW-150   | 05        |            |            |           |           |           |
|------------------------|-------|------------|---------|-----------|-----------------|----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|------------|------------|-----------|-----------|-----------|
|                        |       |            |         |           | Sample Date:    | 8/3/2017 | 9/18/2017 | 4/11/2018 | 4/11/2018 | 5/24/2018 | 11/6/2018 | 4/11/2019   | 4/11/2019 | 10/15/2019 | 10/15/2019 | 5/13/2020 | 5/13/2020 | 10/7/2020 |
| Constituent            | Unit  | EPA MCL    | EPA RSL | UTL       | GWPS            |          |           |           |           |           |           | downgradien | t         |            |            |           |           |           |
| Appendix III           |       |            |         |           |                 |          |           |           | Field Dup |           |           |             | Field Dup |            | Field Dup  |           | Field Dup |           |
| Boron                  | ug/L  | NC         | NA      | 619       | NA              | 792      | 714       |           |           | 806       | 947       | 910         | 910       | 700        | 650        | 863       | 858       | 847       |
| Calcium                | mg/L  | NC         | NA      | 302       | NA              | 49.2     | 44.3      |           |           | 33.4      | 32.9      | 31          | 31        | 60         | 59         | 71.0      | 72.1      | 155       |
| Chloride               | mg/L  | 250*       | NA      | 2,440     | NA              | 81.4     | 79.3      |           |           | 72.6      | 69.1      | 60          | 60        | 64         | 64         | 48.0      | 47.5      | 52.7      |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | NA              | < 1,000  | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000     | < 1,000   | < 1,000    | < 1,000    | < 1,000   | < 1,000   | < 1,000   |
| Sulfate                | mg/L  | 250*       | NA      | 407       | NA              | 300      | 273       |           |           | 182       | 160       | 140         | 140       | 5.2        | 5.0        | 18.9      | 18.9      | 102       |
| Total Dissolved Solids | mg/L  | 500*       | NA      | 4,600     | NA              | 732      | 638       |           |           | 524       | 474       | 470         | 470       | 390        | 400        | 419       | 425       | 687       |
| pH, Field              | SU    | 6.5 - 8.5* | NA      | 6.5 - 7.3 | NA              | 7.9      | 7.9       | 7.7       | -         | 7.8       | 7.9       | 7.7         |           | 7.6        |            | 8.1       |           | 7.7       |
| Appendix IV            |       |            |         |           |                 |          |           |           |           |           |           |             |           |            |            |           |           |           |
| Antimony               | ug/L  | 6          | NA      | 1         | 6               | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0       | < 1.0     | < 1.0      | < 1.0      | < 1       | < 1       | < 1       |
| Arsenic                | ug/L  | 10         | NA      | 21        | 21              | 31.9     |           | 28.3      | 29.1      | 31.7      | 35.0      | 24          | 24        | 120        | 120        | 34        | 34        | 42        |
| Barium                 | ug/L  | 2,000      | NA      | 1,300     | 2,000           | 92.2     |           | 54.9      | 55.8      | 58.5      | 56.7      | 46          | 45        | 110        | 100        | 127       | 127       | 248       |
| Beryllium              | ug/L  | 4          | NA      | 1         | 4               | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0       | < 1.0     | < 1.0      | < 1.0      | < 1       | < 1       | < 1       |
| Cadmium                | ug/L  | 5          | NA      | 0.2       | 5               | < 0.20   |           | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20      | < 0.20    | < 0.20     | < 0.20     | < 0.2     | < 0.2     | < 0.2     |
| Chromium               | ug/L  | 100        | NA      | 3         | 100             | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0       | < 1.0     | < 1.0      | < 1.0      | < 1       | < 1       | < 1       |
| Cobalt                 | ug/L  | NC         | 6       | 15        | 15              | < 15.0   |           | < 15.0    | < 15.0    | < 15.0    | < 6.0     | < 6.0       | < 6.0     | < 6.0      | < 6.0      | < 6       | < 6       | < 6       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | 4,000           | < 1,000  | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000   | < 1,000     | < 1,000   | <1,000     | <1,000     | < 1,000   | < 1,000   | < 1,000   |
| Lead                   | ug/L  | NC         | 15      | 1         | 15              | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0       | < 1.0     | < 1.0      | < 1.0      | < 1       | < 1       | < 1       |
| Lithium                | ug/L  | NC         | 40      | 180       | 180             | 27       |           | 24        | 24        | 19        | 17        | 15          | 14        | 16         | 15         | 20        | 20        | 45        |
| Mercury                | ug/L  | 2          | NA      | 0.2       | 2               | < 0.20   |           | < 0.20    | < 0.20    | < 0.20    | < 0.20    | < 0.20      | < 0.20    | < 0.20     | < 0.20     | < 0.2     | < 0.2     | < 0.2     |
| Molybdenum             | ug/L  | NC         | 100     | 6         | 100             | 41.9     |           | 39.0      | 40.5      | 41.9      | 45.3      | 39          | 38        | < 5.0      | < 5.0      | < 5       | < 5       | < 5       |
| Radium-226             | pCi/L | NC         | NA      | NA        | NA              | 0.707    |           | < 0.587   | 0.606     | < 0.740   | < 0.865   | < 0.379     | < 0.406   | 0.165      | 0.185      | < 0.469   | < 0.335   | 0.621     |
| Radium-228             | pCi/L | NC         | NA      | NA        | NA              | 1.01     |           | 0.756     | 0.886     | 0.857     | < 0.598   | < 0.754     | < 0.586   | < 0.456    | 0.497      | 1.14      | < 0.554   | < 0.502   |
| Radium-226/228         | pCi/L | 5          | NA      | 3.32      | 5               | 1.72     |           | < 1.34    | 1.49      | < 1.53    | < 1.46    | < 0.754     | < 0.586   | 0.524      | 0.682      | 1.34      | 0.662     | 0.875     |
| Selenium               | ug/L  | 50         | NA      | 2         | 50              | < 1.0    |           | < 1.0     | < 1.0     | < 1.0     | < 1.0     | < 1.0       | < 1.0     | < 1.0      | < 1.0      | < 1       | < 1       | < 1       |
| Thallium               | ug/L  | 2          | NA      | 2         | 2               | < 2.0    |           | < 2.0     | < 2.0     | < 2.0     | < 2.0     | < 2.0       | < 2.0     | < 2.0      | < 2.0      | < 2       | < 2       | < 2       |

### Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.
-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

 ${\it GWPS-Groundwater\ Protection\ Standard.\ \ GWPS\ is\ the\ higher\ of\ the\ MCL/RSL\ and\ UTL\ as\ established\ in\ Policy and the protection\ Policy and the protection\ Policy\ Policy\$ 

TRC's Technical Memorandum dated October 15, 2018.

\* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations

**Bold** value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

- (1) Outlier; single detection above reporting limit.
- (2) Laboratory reporting limits exceeds GWPS due to sample dilutions performed as a result of the sample matrix.

## Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |            |         | S         | ample Location: |          |           |           |                    | DEK-M     | N-15006   |           |            |           |           |
|------------------------|-------|------------|---------|-----------|-----------------|----------|-----------|-----------|--------------------|-----------|-----------|-----------|------------|-----------|-----------|
|                        |       |            |         |           | Sample Date:    | 8/3/2017 | 9/18/2017 | 4/11/2018 | 5/24/2018          | 11/5/2018 | 11/5/2018 | 4/11/2019 | 10/14/2019 | 5/13/2020 | 10/7/2020 |
| Constituent            | Unit  | EPA MCL    | EPA RSL | UTL       | GWPS            |          |           |           |                    | downg     | ıradient  |           |            |           |           |
| Appendix III           |       |            |         |           |                 |          |           |           |                    |           | Field Dup |           |            |           |           |
| Boron                  | ug/L  | NC         | NA      | 619       | NA              | 1,240    | 1,070     |           | 1,200              | 1,340     | 1,270     | 1,700     | 1,200      | 1,090     | 1,220     |
| Calcium                | mg/L  | NC         | NA      | 302       | NA              | 39.9     | 76.8      |           | 21.9               | 29.4      | 29.6      | 35        | 34         | 70.4      | 106       |
| Chloride               | mg/L  | 250*       | NA      | 2,440     | NA              | 104      | 133       |           | 85.8               | 87.9      | 88.3      | 75        | 45         | 71.5      | 102       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | NA              | < 1,000  | < 1,000   | < 1,000   | < 1,000            | < 1,000   | < 1,000   | < 1,000   | < 1,000    | < 1,000   | 1,060     |
| Sulfate                | mg/L  | 250*       | NA      | 407       | NA              | 547      | 886       |           | 401                | 341       | 344       | 320       | 74         | 316       | 296       |
| Total Dissolved Solids | mg/L  | 500*       | NA      | 4,600     | NA              | 1,110    | 1,670     |           | 944                | 792       | 784       | 780       | 450        | 833       | 1,010     |
| pH, Field              | SU    | 6.5 - 8.5* | NA      | 6.5 - 7.3 | NA              | 7.9      | 7.8       | 7.9       | 8.2                | 7.9       |           | 7.8       | 7.8        | 8.1       | 7.7       |
| Appendix IV            |       |            |         |           |                 |          |           |           |                    |           |           |           |            |           |           |
| Antimony               | ug/L  | 6          | NA      | 1         | 6               | < 1.0    |           | < 1.0     | < 1.0              | < 1.0     | < 1.0     | < 1.0     | < 1.0      | 3         | < 1       |
| Arsenic                | ug/L  | 10         | NA      | 21        | 21              | 14.6     |           | 18.3      | 25.7               | 20.9      | 19.6      | 21        | 27         | 21        | 27        |
| Barium                 | ug/L  | 2,000      | NA      | 1,300     | 2,000           | 31.0     |           | 39.6      | 22.8               | 38.5      | 38.3      | 43        | 51         | 86        | 141       |
| Beryllium              | ug/L  | 4          | NA      | 1         | 4               | < 1.0    |           | < 1.0     | < 1.0              | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Cadmium                | ug/L  | 5          | NA      | 0.2       | 5               | < 0.20   |           | < 0.20    | < 0.20             | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     |
| Chromium               | ug/L  | 100        | NA      | 3         | 100             | < 1.0    |           | < 1.0     | < 1.0              | < 1.0     | < 1.0     | < 1.0     | 1.1        | 2         | 6         |
| Cobalt                 | ug/L  | NC         | 6       | 15        | 15              | < 15.0   |           | < 15.0    | < 15.0             | < 6.0     | < 6.0     | < 6.0     | < 6.0      | < 6       | < 6       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | 4,000           | < 1,000  | < 1,000   | < 1,000   | < 1,000            | < 1,000   | < 1,000   | < 1,000   | <1,000     | < 1,000   | 1,060     |
| Lead                   | ug/L  | NC         | 15      | 1         | 15              | < 1.0    |           | < 1.0     | 320 <sup>(1)</sup> | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Lithium                | ug/L  | NC         | 40      | 180       | 180             | 17       |           | 18        | < 10               | < 10      | 10        | < 10      | 11         | 15        | 22        |
| Mercury                | ug/L  | 2          | NA      | 0.2       | 2               | < 0.20   |           | < 0.20    | < 0.20             | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     |
| Molybdenum             | ug/L  | NC         | 100     | 6         | 100             | 64.2     |           | 71.6      | 48.7               | 50.3      | 48.0      | 59        | 11         | 18        | 11        |
| Radium-226             | pCi/L | NC         | NA      | NA        | NA              | < 0.945  |           | < 0.688   | < 0.738            | < 0.885   | < 1.06    | < 0.459   | < 0.159    | < 0.370   | 0.629     |
| Radium-228             | pCi/L | NC         | NA      | NA        | NA              | < 0.906  |           | < 0.755   | < 1.12             | < 0.649   | < 0.897   | < 0.677   | < 0.581    | 0.78      | 0.492     |
| Radium-226/228         | pCi/L | 5          | NA      | 3.32      | 5               | < 1.85   |           | < 1.44    | < 1.86             | < 1.53    | < 1.96    | < 0.677   | < 0.581    | 1.01      | 1.12      |
| Selenium               | ug/L  | 50         | NA      | 2         | 50              | < 1.0    |           | < 1.0     | < 1.0              | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Thallium               | ug/L  | 2          | NA      | 2         | 2               | < 2.0    |           | < 2.0     | < 2.0              | < 2.0     | < 2.0     | < 2.0     | < 2.0      | < 2       | < 2       |

### Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

 ${\it GWPS-Groundwater\ Protection\ Standard.\ GWPS\ is\ the\ higher\ of\ the\ MCL/RSL\ and\ UTL\ as\ established\ in\ MCL/RSL\ and\ utl\ and\ utl\$ 

TRC's Technical Memorandum dated October 15, 2018.

\* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

**Bold** value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

- (1) Outlier; single detection above reporting limit.
- $(2) \, \text{Laboratory reporting limits exceeds GWPS due to sample dilutions performed as a result of the sample matrix}.$

## Comparison of Groundwater Sampling Results to Groundwater Protection Standards – August 2017 to October 2020 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

|                        |       |            |         | S         | ample Location: |           |           | DEK-M     | W-18001    |           |           |
|------------------------|-------|------------|---------|-----------|-----------------|-----------|-----------|-----------|------------|-----------|-----------|
|                        |       |            |         |           | Sample Date:    | 5/23/2018 | 11/6/2018 | 4/10/2019 | 10/15/2019 | 5/14/2020 | 10/6/2020 |
| Constituent            | Unit  | EPA MCL    | EPA RSL | UTL       | GWPS            |           |           | downg     | gradient   |           |           |
| Appendix III           |       |            |         |           |                 |           |           |           |            |           |           |
| Boron                  | ug/L  | NC         | NA      | 619       | NA              | 1,600     | 1,020     | 970       | 2,200      | 1,670     | 1,740     |
| Calcium                | mg/L  | NC         | NA      | 302       | NA              | 64.9      | 51.1      | 48        | 84         | 72.1      | 71.7      |
| Chloride               | mg/L  | 250*       | NA      | 2,440     | NA              | 69.1      | 76.6      | 69        | 81         | 64.7      | 60.7      |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | NA              | < 1,000   | 1,300     | 1,200     | 1,000      | 1,090     | 1,240     |
| Sulfate                | mg/L  | 250*       | NA      | 407       | NA              | 30.6      | < 2.0     | < 2.0     | 31         | 51.1      | 91.9      |
| Total Dissolved Solids | mg/L  | 500*       | NA      | 4,600     | NA              | 434       | 340       | 360       | 500        | 484       | 476       |
| pH, Field              | SU    | 6.5 - 8.5* | NA      | 6.5 - 7.3 | NA              | 7.8       | 7.5       | 7.2       | 7.3        | 7.7       | 7.6       |
| Appendix IV            |       |            |         |           |                 |           |           |           |            |           |           |
| Antimony               | ug/L  | 6          | NA      | 1         | 6               | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Arsenic                | ug/L  | 10         | NA      | 21        | 21              | 225       | 116       | 68        | 63         | 79        | 85        |
| Barium                 | ug/L  | 2,000      | NA      | 1,300     | 2,000           | 101       | 79.5      | 75        | 160        | 130       | 136       |
| Beryllium              | ug/L  | 4          | NA      | 1         | 4               | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Cadmium                | ug/L  | 5          | NA      | 0.2       | 5               | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     |
| Chromium               | ug/L  | 100        | NA      | 3         | 100             | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Cobalt                 | ug/L  | NC         | 6       | 15        | 15              | < 15.0    | < 6.0     | < 6.0     | < 6.0      | < 6       | < 6       |
| Fluoride               | ug/L  | 4,000      | NA      | 1,000     | 4,000           | < 1,000   | 1,300     | 1,200     | 1,000      | 1,090     | 1,240     |
| Lead                   | ug/L  | NC         | 15      | 1         | 15              | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | < 1       |
| Lithium                | ug/L  | NC         | 40      | 180       | 180             | 23        | 24        | 24        | 36         | 27        | 26        |
| Mercury                | ug/L  | 2          | NA      | 0.2       | 2               | < 0.20    | < 0.20    | < 0.20    | < 0.20     | < 0.2     | < 0.2     |
| Molybdenum             | ug/L  | NC         | 100     | 6         | 100             | < 5.0     | < 5.0     | < 5.0     | < 5.0      | < 5       | < 5       |
| Radium-226             | pCi/L | NC         | NA      | NA        | NA              | 0.906     | < 0.813   | 0.173     | 0.206      | < 0.608   | < 0.473   |
| Radium-228             | pCi/L | NC         | NA      | NA        | NA              | < 0.733   | 0.811     | 0.694     | 0.746      | < 0.676   | 0.463     |
| Radium-226/228         | pCi/L | 5          | NA      | 3.32      | 5               | 1.63      | 1.56      | 0.867     | 0.952      | < 0.676   | 0.591     |
| Selenium               | ug/L  | 50         | NA      | 2         | 50              | < 1.0     | < 1.0     | < 1.0     | < 1.0      | < 1       | 1         |
| Thallium               | ug/L  | 2          | NA      | 2         | 2               | < 2.0     | < 2.0     | < 2.0     | < 2.0      | < 2       | < 2       |

### Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

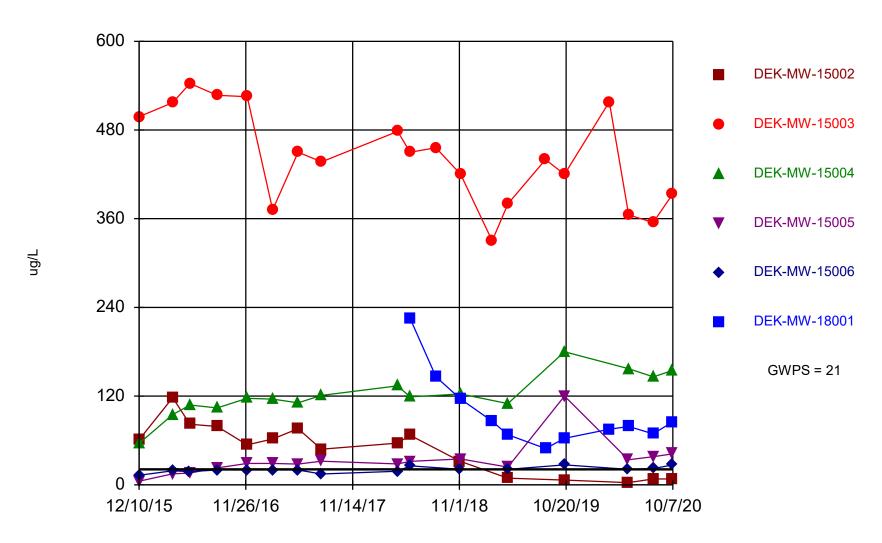
RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

 ${\sf GWPS-Groundwater\ Protection\ Standard.\ GWPS\ is\ the\ higher\ of\ the\ MCL/RSL\ and\ UTL\ as\ established\ in\ MCL/RSL\ and\ utl\ an\ established\ in\ MCL/RSL\ an\ estab$ 

TRC's Technical Memorandum dated October 15, 2018.

\* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.


**Bold** value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the

GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

- (1) Outlier; single detection above reporting limit.
- (2) Laboratory reporting limits exceeds GWPS due to sample dilutions performed as a result of the sample matrix.

## Attachment 1 Sanitas™ Output Files

## Arsenic, Total

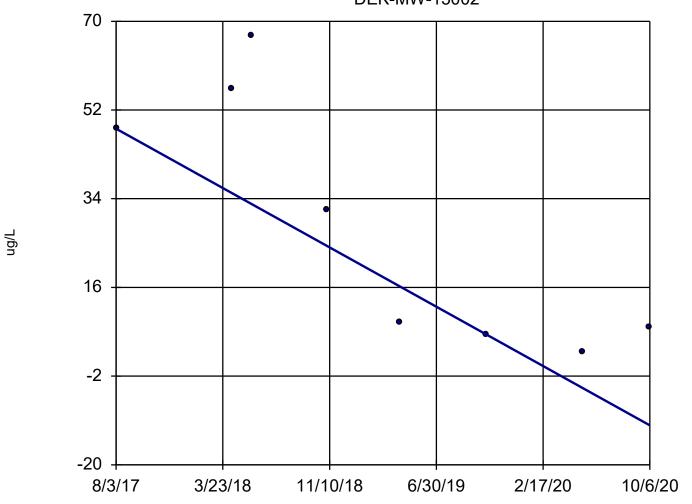


Time Series Analysis Run 12/8/2020 4:16 PM

Client: Consumers Energy Data: DEK\_CCR\_Sanitas\_20.11.18 \_KR

Sanitas™ v.9.6.27 Sanitas software licensed to Consumers Energy. U

## **Summary Report**


Constituent: Arsenic, Total Analysis Run 12/9/2020 12:21 PM
Client: Consumers Energy Data: DEK\_CCR\_Sanitas\_20.11.18

For observations made between 8/3/2017 and 10/7/2020, a summary of the selected data set:

Observations = 46 ND/Trace = 0 Wells = 6 Minimum Value = 3 Maximum Value = 478 Mean Value = 126.7 Median Value = 65 Standard Deviation = 145 Coefficient of Variation = 1.144 Skewness = 1.345

| <u>Well</u>  | #Obs. | ND/Trace | <u>Min</u> | <u>Max</u> | <u>Mean</u> | <u>Median</u> | Std.Dev. | CV      | <u>Skewness</u> |
|--------------|-------|----------|------------|------------|-------------|---------------|----------|---------|-----------------|
| DEK-MW-15002 | 8     | 0        | 3          | 67         | 28.74       | 20.35         | 25.63    | 0.8918  | 0.3634          |
| DEK-MW-15003 | 8     | 0        | 365        | 478        | 417.9       | 420           | 37.55    | 0.08986 | 0.1153          |
| DEK-MW-15004 | 8     | 0        | 110        | 180        | 137.4       | 128.5         | 24.16    | 0.1759  | 0.6104          |
| DEK-MW-15005 | 8     | 0        | 24         | 120        | 43.36       | 32.95         | 31.4     | 0.7241  | 2.145           |
| DEK-MW-15006 | 8     | 0        | 14.6       | 27         | 21.94       | 21            | 4.397    | 0.2004  | -0.2393         |
| DEK-MW-18001 | 6     | 0        | 63         | 225        | 106         | 82            | 61.19    | 0.5773  | 1.456           |

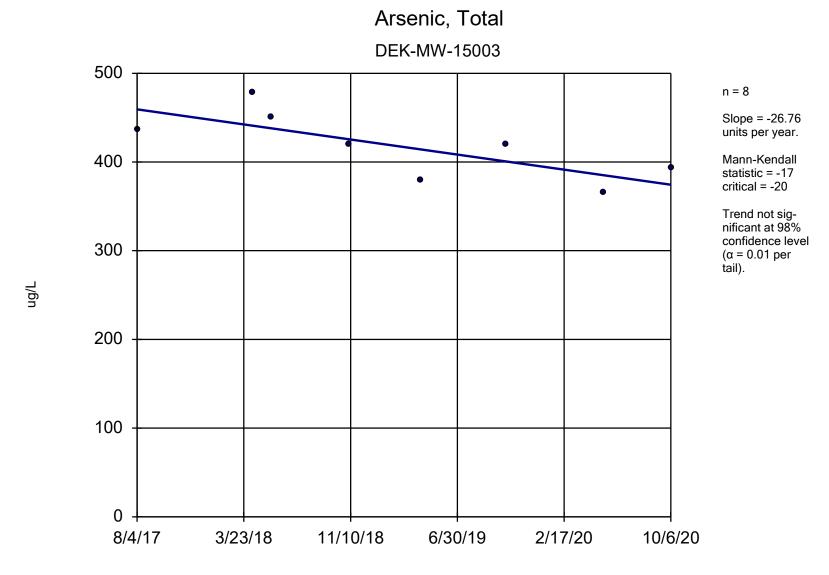
## Arsenic, Total **DEK-MW-15002**



n = 8

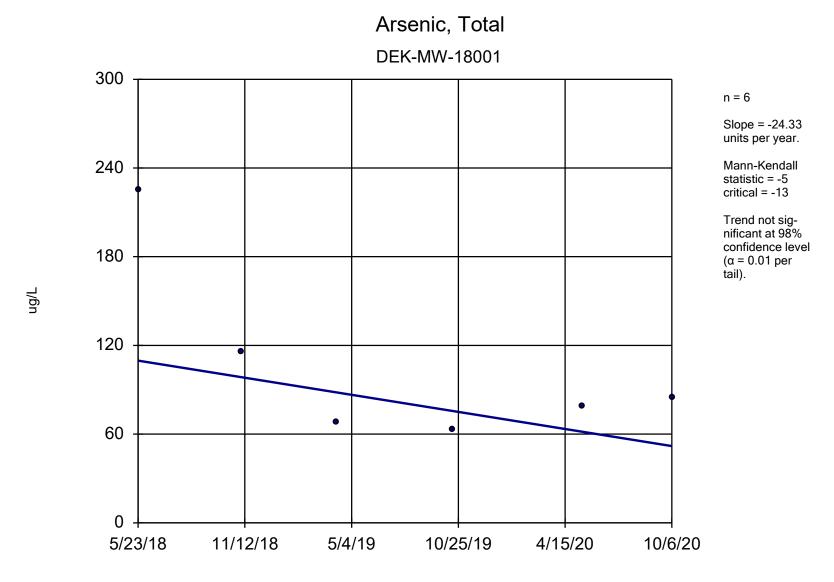
Slope = -18.94units per year.

Mann-Kendall statistic = -18 critical = -20


Trend not sig-nificant at 98% confidence level  $(\alpha = 0.01 \text{ per})$ tail).

Sen's Slope Estimator

Analysis Run 12/8/2020 4:36 PM

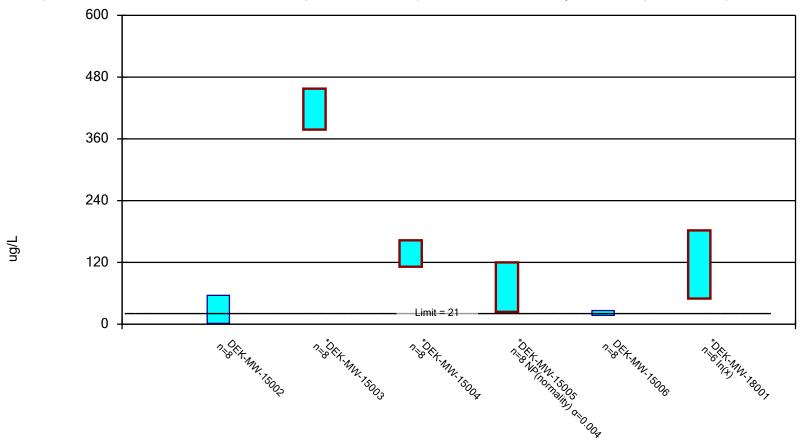

Client: Consumers Energy

Data: DEK\_CCR\_Sanitas\_20.11.18 \_KR



Sen's Slope Estimator Analysis Run 12/8/2020 4:31 PM

Client: Consumers Energy Data: DEK\_CCR\_Sanitas\_20.11.18 \_KR




Sen's Slope Estimator Analysis Run 12/8/2020 4:34 PM

Client: Consumers Energy Data: DEK\_CCR\_Sanitas\_20.11.18 \_KR

## Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.\* Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Arsenic, Total Analysis Run 12/9/2020 12:21 PM

Client: Consumers Energy Data: DEK\_CCR\_Sanitas\_20.11.18

## **Confidence Interval**

Constituent: Arsenic, Total (ug/L) Analysis Run 12/9/2020 12:22 PM

Client: Consumers Energy Data: DEK\_CCR\_Sanitas\_20.11.18

|            | DEK-MW-15002 | DEK-MW-15003 | DEK-MW-15004 | DEK-MW-15005 | DEK-MW-15006 | DEK-MW-18001 |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 8/3/2017   | 48.3         |              | 121          | 31.9         | 14.6         |              |
| 8/4/2017   |              | 437          |              |              |              |              |
| 4/11/2018  |              |              |              | 28.3         | 18.3         |              |
| 4/12/2018  | 56.4         | 478          | 134          |              |              |              |
| 5/23/2018  | 67           | 450          | 119          |              |              | 225          |
| 5/24/2018  |              |              |              | 31.7         | 25.7         |              |
| 11/5/2018  | 31.7         |              |              |              | 20.9         |              |
| 11/6/2018  |              | 420          | 123          | 35           |              | 116          |
| 4/10/2019  |              |              |              |              |              | 68           |
| 4/11/2019  | 9            | 380          | 110          | 24           | 21           |              |
| 10/15/2019 | 6.5          | 420          | 180          | 120          | 27           | 63           |
| 5/13/2020  | 3            |              |              | 34           | 21           |              |
| 5/14/2020  |              | 365          | 157          |              |              | 79           |
| 10/6/2020  | 8            | 393          |              |              |              | 85           |
| 10/7/2020  |              |              | 155          | 42           | 27           |              |
| Mean       | 28.74        | 417.9        | 137.4        | 43.36        | 21.94        | 106          |
| Std. Dev.  | 25.63        | 37.55        | 24.16        | 31.4         | 4.397        | 61.19        |
| Upper Lim. | 55.9         | 457.7        | 163          | 120          | 26.6         | 182.1        |
| Lower Lim. | 1.574        | 378.1        | 111.8        | 24           | 17.28        | 49.9         |
|            |              |              |              |              |              |              |

# Attachment C Nature and Extent Groundwater Data (2020)



## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

|                        |       |       |                               |                               |           |           |           |              | ample Leasting          | ī        | RA1       | V-01     |           | 1        | R #14     | V-03     |           |          | 8414      | V-06     | 1         |
|------------------------|-------|-------|-------------------------------|-------------------------------|-----------|-----------|-----------|--------------|-------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
|                        |       |       |                               |                               |           |           |           | 5            | ample Location:         | 0/0/0000 |           |          | 40/0/0000 | 0/0/0000 |           |          | 40/0/0000 | 0/0/0000 |           |          | 40/0/0000 |
| Constituent            | Unit  | GWPS* | MI<br>Residential**           | MI Non-<br>Residential**      | MI GSI^   | MI AMV*** | MI FAV*** | Chronic MZ^^ | Sample Date: Acute MZ^^ | 3/9/2020 | 5/12/2020 | 8/7/2020 | 10/6/2020 | 3/9/2020 | 5/12/2020 | 8/7/2020 | 10/6/2020 | 3/9/2020 | 5/12/2020 | 8/7/2020 | 10/6/2020 |
| Appendix III           |       |       |                               |                               |           |           |           |              |                         |          |           |          |           |          |           |          |           |          |           |          |           |
| Boron                  | ug/L  | NA    | 500                           | 500                           | 4,000     | 34,000    | 69,000    | 44,000       | 69,000                  | 5,930    | 5,100     | 5,800    | 5,570     | 7,180    | 7,230     | 8,390    | 8,030     | 1,180    | 1,280     | 1,240    | 1,460     |
| Calcium                | mg/L  | NA    | NC                            | NC                            | 500EE     | NC        | NC        | NC           | NC                      |          | 81.3      | 90.6     | 79.9      |          | 98.3      | 119      | 113       | 234      | 304       | 158      | 159       |
| Chloride               | mg/L  | NA    | 250 <sup>E</sup>              | 250 <sup>E</sup>              | 50        | NC        | NC        | NC           | NC                      |          | 72.9      | 76.6     | 76.6      |          | 60.9      | 70.7     | 65.9      | 19.1     | 25.8      | 17.1     | 27.2      |
| Fluoride               | ug/L  | 4,000 | NC                            | NC                            | NC        | 9,800     | 20,000    | NC           | NC                      |          |           |          |           |          |           |          |           | -        |           |          |           |
| Sulfate                | mg/L  | NA    | 250 <sup>E</sup>              | 250 <sup>E</sup>              | 500EE     | NC        | NC        | NC           | NC                      | < 2      | < 1       | < 1      | < 2       | 24       | 9.3       | 4.37     | < 2       | 394      | 632       | 215      | 233       |
| Total Dissolved Solids | mg/L  | NA    | 500 <sup>E</sup>              | 500 <sup>E</sup>              | 500       | NC        | NC        | NC           | NC                      |          |           | 504      |           |          |           | 619      |           |          |           | 884      |           |
| pH, Field              | su    | NA    | 6.5 <b>-</b> 8.5 <sup>E</sup> | 6.5 <b>-</b> 8.5 <sup>E</sup> | 6.5 - 9.0 | NC        | NC        | NC           | NC                      | 8.6      | 8.5       | 8.3      | 8.8       | 8.6      | 9.3       | 7.8      | 8.7       | 7.5      | 7.2       | 7.2      | 7.4       |
| Appendix IV            |       |       |                               |                               |           |           |           |              |                         |          |           |          |           |          |           |          |           |          |           |          |           |
| Antimony               | ug/L  | 6     | 6.0                           | 6.0                           | 2.0       | 1,100     | 2,300     | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Arsenic                | ug/L  | 21¹   | 10                            | 10                            | 10        | 340       | 680       | 100          | 680                     | 12       | 13        | 7        | 10        | 4        | 4         | 4        | 3         | 113      | 112       | 207      | 217       |
| Barium                 | ug/L  | 2,000 | 2,000                         | 2,000                         | 1,200     | 3,400     | 7,000     | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Beryllium              | ug/L  | 4     | 4.0                           | 4.0                           | 33        | 300       | 600       | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Cadmium                | ug/L  | 5     | 5.0                           | 5.0                           | 2.5       | 12        | 24        | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Chromium               | ug/L  | 100   | 100                           | 100                           | 11        | 16        | 32        | NC           | NC                      | 11       | 1         | < 1      | 1         | 1        | < 1       | 1        | 1         | < 1      | < 1       | < 1      | < 1       |
| Cobalt                 | ug/L  | 15    | 40                            | 100                           | 100       | 370       | 740       | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Fluoride               | ug/L  | 4,000 | NC                            | NC                            | NC        | 9,800     | 20,000    | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Lead                   | ug/L  | 15    | 4.0                           | 4.0                           | 14        | 250       | 500       | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Lithium                | ug/L  | 180   | 170                           | 350                           | 440       | 910       | 1,800     | NC           | NC                      | 96       | 87        | 102      | 86        | 83       | 94        | 97       | 83        | 64       | 74        | 66       | 61        |
| Mercury                | ug/L  | 2     | 2.0                           | 2.0                           | 0.20#     | 1.4       | 2.8       | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Molybdenum             | ug/L  | 100   | 73                            | 210                           | 120       | 29,000    | 58,000    | NC           | NC                      | < 5      | < 5       | < 5      | < 5       | 11       | < 5       | < 5      | < 5       | < 5      | < 5       | 9        | 10        |
| Radium-226/228         | pci/L | 5     | NC                            | NC                            | NC        | NC        | NC        | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Selenium               | ug/L  | 50    | 50                            | 50                            | 5.0       | 62        | 120       | 55           | 120                     | 1        | 2         | < 1      | 1         | < 1      | 2         | < 1      | 2         | 1        | 1         | < 1      | < 1       |
| Thallium               | ug/L  | 2     | 2.0                           | 2.0                           | 2.0       | 47        | 94        | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| MI Part 115 Parameters |       |       |                               |                               |           |           |           |              |                         |          |           |          |           |          |           |          |           |          |           |          |           |
| Iron                   | ug/L  | NA    | 300E                          | 300E                          | 500,000EE | NC        | NC        | NC           | NC                      | 152      | 113       | 119      | 145       | 52       | < 20      | 112      | < 20      | 3,100    | 5,390     | 1,770    | 1,820     |
| Copper                 | ug/L  | NA    | 1,000E                        | 1,000E                        | 20        | 33        | 66        | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Nickel                 | ug/L  | NA    | 100                           | 100                           | 120       | 1,000     | 2,100     | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Silver                 | ug/L  | NA    | 34                            | 98                            | 0.2       | 0.54      | 1.1       | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |
| Vanadium               | ug/L  | NA    | 4.5                           | 62                            | 27        | 79        | 160       | NC           | NC                      | < 2      | < 2       | < 2      | < 2       | < 2      | < 2       | < 2      | < 2       | < 2      | < 2       | < 2      | < 2       |
| Zinc                   | ua/l  | NA    | 2.400                         | 5 000E                        | 260       | 260       | 520       | NC           | NC                      |          |           |          |           |          |           |          |           |          |           |          |           |

#### Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria. -- - not analyzed.

- \* GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- \* Unconfirmed elevated detection; anomalous data.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

| Result | Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. |
|--------|-------------------------------------------------------------------------------------------------|
| Result | Indicates an exceedance of acute-based GSI criteria.                                            |

All metals were analyzed as total unless otherwise specified.

X:\WPAAMPJT2\367388\0001\BAP 20SA2\Attachments\Attch C\T367388.1-Attch C Page 1 of 5

<sup>1 -</sup> Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

|                        |       |       |                        |                          |           |           |           | 9,              | ample Location: |          | MV        | V-08     |           |           | M         | V-10     |           | 1         | MV        | V-12     |           |
|------------------------|-------|-------|------------------------|--------------------------|-----------|-----------|-----------|-----------------|-----------------|----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|-----------|
|                        |       |       |                        |                          |           |           |           | 36              | Sample Date:    | 3/9/2020 | 5/12/2020 | 8/7/2020 | 10/6/2020 | 3/11/2020 | 5/12/2020 | 8/7/2020 | 10/7/2020 | 3/11/2020 | 5/12/2020 | 8/7/2020 | 10/7/2020 |
| Constituent            | Unit  | GWPS* | MI<br>Residential**    | MI Non-<br>Residential** | MI GSI^   | MI AMV*** | MI FAV*** | Chronic<br>MZ^^ | Acute MZ^^      | 3/9/2020 | 3/12/2020 | 6/1/2020 | 10/0/2020 | 3/11/2020 | 3/12/2020 | 6/1/2020 | 10/7/2020 | 3/11/2020 | 3/12/2020 | 6///2020 | 10/7/2020 |
| Appendix III           |       |       |                        |                          |           |           |           |                 |                 |          |           |          |           |           |           |          |           |           |           |          |           |
| Boron                  | ug/L  | NA    | 500                    | 500                      | 4,000     | 34,000    | 69,000    | 44,000          | 69,000          | 5,060    | 3,840     | 4,980    | 4,560     | 2,870     | 2,370     | 4,260    | 4,580     | 3,360     | 2,750     | 3,740    | 3,750     |
| Calcium                | mg/L  | NA    | NC                     | NC                       | 500EE     | NC        | NC        | NC              | NC              | 257      | 265       | 238      | 240       | 288       | 319       | 216      | 184       | 255       | 238       | 242      | 239       |
| Chloride               | mg/L  | NA    | 250E                   | 250 <sup>E</sup>         | 50        | NC        | NC        | NC              | NC              | 48.8     | 62.1      | 60.4     | 63.8      | 38        | 49.8      | 49.5     | 62.5      | 49.8      | 60.2      | 63.4     | 60.3      |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Sulfate                | mg/L  | NA    | 250E                   | 250 <sup>E</sup>         | 500EE     | NC        | NC        | NC              | NC              | 447      | 538       | 399      | 492       | 506       | 633       | 228      | 135       | 431       | 328       | 325      | 414       |
| Total Dissolved Solids | mg/L  | NA    | 500E                   | 500 <sup>E</sup>         | 500       | NC        | NC        | NC              | NC              |          |           | 1,250    | 1,260     |           |           | 1,010    | 891       |           |           | 1,300    | 1,270     |
| pH, Field              | su    | NA    | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup>   | 6.5 - 9.0 | NC        | NC        | NC              | NC              | 7.4      | 7.6       | 7.2      | 7.3       | 7.0       | 7.6       | 7.3      | 7.4       | 7.2       | 7.7       | 7.2      | 7.3       |
| Appendix IV            |       |       |                        |                          |           |           |           |                 |                 |          |           |          |           |           |           |          |           |           |           |          |           |
| Antimony               | ug/L  | 6     | 6.0                    | 6.0                      | 2.0       | 1,100     | 2,300     | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Arsenic                | ug/L  | 21¹   | 10                     | 10                       | 10        | 340       | 680       | 100             | 680             | 97       | 77        | 92       | 88        | 707       | 730       | 911      | 888       | 152       | 216       | 247      | 257       |
| Barium                 | ug/L  | 2,000 | 2,000                  | 2,000                    | 1,200     | 3,400     | 7,000     | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Beryllium              | ug/L  | 4     | 4.0                    | 4.0                      | 33        | 300       | 600       | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Cadmium                | ug/L  | 5     | 5.0                    | 5.0                      | 2.5       | 12        | 24        | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Chromium               | ug/L  | 100   | 100                    | 100                      | 11        | 16        | 32        | NC              | NC              | < 1      | < 1       | < 1      | < 1       | < 1       | < 1       | < 1      | < 1       | 3         | < 1       | < 1      | < 1       |
| Cobalt                 | ug/L  | 15    | 40                     | 100                      | 100       | 370       | 740       | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Lead                   | ug/L  | 15    | 4.0                    | 4.0                      | 14        | 250       | 500       | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Lithium                | ug/L  | 180   | 170                    | 350                      | 440       | 910       | 1,800     | NC              | NC              | 137      | 121       | 133      | 110       | 89        | 80        | 143      | 123       | 95        | 94        | 113      | 102       |
| Mercury                | ug/L  | 2     | 2.0                    | 2.0                      | 0.20#     | 1.4       | 2.8       | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Molybdenum             | ug/L  | 100   | 73                     | 210                      | 120       | 29,000    | 58,000    | NC              | NC              | 35       | 29        | 29       | 27        | 19        | 22        | 6        | < 5       | 22        | 20        | 15       | 18        |
| Radium-226/228         | pci/L | 5     | NC                     | NC                       | NC        | NC        | NC        | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Selenium               | ug/L  | 50    | 50                     | 50                       | 5.0       | 62        | 120       | 55              | 120             | < 1      | < 1       | < 1      | < 1       | 1         | 1         | < 1      | 1         | 2         | 2         | 1        | 1         |
| Thallium               | ug/L  | 2     | 2.0                    | 2.0                      | 2.0       | 47        | 94        | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| MI Part 115 Parameters |       |       |                        |                          |           |           |           |                 |                 |          |           |          |           |           |           |          |           |           |           |          |           |
| Iron                   | ug/L  | NA    | 300E                   | 300E                     | 500,000EE | NC        | NC        | NC              | NC              | 6,300    | 6,000     | 6,300    | 6,190     | 6,310     | 6,880     | 4,890    | 3,050     | 1,200     | 1,950     | 2,120    | 1,980     |
| Copper                 | ug/L  | NA    | 1,000E                 | 1,000E                   | 20        | 33        | 66        | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Nickel                 | ug/L  | NA    | 100                    | 100                      | 120       | 1,000     | 2,100     | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Silver                 | ug/L  | NA    | 34                     | 98                       | 0.2       | 0.54      | 1.1       | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |
| Vanadium               | ug/L  | NA    | 4.5                    | 62                       | 27        | 79        | 160       | NC              | NC              | < 2      | < 2       | < 2      | < 2       | < 2       | < 2       | < 2      | < 2       | < 2       | < 2       | < 2      | < 2       |
| Zinc                   | ua/L  | NA    | 2.400                  | 5.000E                   | 260       | 260       | 520       | NC              | NC              |          |           |          |           |           |           |          |           |           |           |          |           |

#### Notes

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria. -- - not analyzed.

- \* GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- \* Unconfirmed elevated detection; anomalous data.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

| Result | Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. |
|--------|-------------------------------------------------------------------------------------------------|
| Result | Indicates an exceedance of acute-based GSI criteria.                                            |

All metals were analyzed as total unless otherwise specified.

X:\WPAAMPJT2\367388\0001\BAP 20SA2\Attachments\Attch C\T367388.1-Attch C Page 2 of 5

<sup>1 -</sup> Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

| Sample Loc             |       |       |                        |                        |           |           |           |         |                 | <del> </del> | 841       | V 4.4    |           | 1         | 5414      | 1.40     |           | MW-22     |           |           |           |  |
|------------------------|-------|-------|------------------------|------------------------|-----------|-----------|-----------|---------|-----------------|--------------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|--|
|                        |       |       |                        |                        |           |           |           | 58      | ample Location: | 0/44/0000    | MW-14 MW- |          |           |           |           |          | *****     |           |           |           |           |  |
|                        |       |       | 1                      | T                      | 1         | 1         | 1         |         | Sample Date:    | 3/11/2020    | 5/12/2020 | 8/7/2020 | 10/7/2020 | 3/11/2020 | 5/12/2020 | 8/7/2020 | 10/6/2020 | 3/11/2020 | 5/13/2020 | 8/10/2020 | 10/8/2020 |  |
| Constituent            | Unit  | GWPS* | MI                     | MI Non-                | MI GSI^   | MI AMV*** | MI FAV*** | Chronic | Acute MZ^^      |              |           |          |           |           |           |          |           |           |           |           |           |  |
| _                      | 0     | o o   | Residential**          | Residential**          | 00.       |           |           | MZ^^    | 7 10010 11.2    |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Appendix III           |       |       |                        |                        |           |           |           |         |                 |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Boron                  | ug/L  | NA    | 500                    | 500                    | 4,000     | 34,000    | 69,000    | 44,000  | 69,000          | 2,410        | 2,040     | 2,320    | 2,320     | 971       | 1,390     | 1,350    | 1,290     | 6,640     | 5,960     | 6,450     | 7,000     |  |
| Calcium                | mg/L  | NA    | NC                     | NC                     | 500EE     | NC        | NC        | NC      | NC              | 207          | 260       | 321      | 309       | 293       | 291       | 264      | 319       | 74.7      | 82.4      | 74.2      | 80.1      |  |
| Chloride               | mg/L  | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>       | 50        | NC        | NC        | NC      | NC              | 71.2         | 95.1      | 62.4     | 48.6      | 61.2      | 69.9      | 51.2     | 75.4      | 72        | 76.6      | 81.2      | 82.9      |  |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                     | NC        | 9,800     | 20,000    | NC      | NC              |              |           |          |           |           |           |          |           | 1,800     |           |           |           |  |
| Sulfate                | mg/L  | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>       | 500EE     | NC        | NC        | NC      | NC              | 363          | 657       | 663      | 703       | 848       | 895       | 720      | 921       | 180       | 193       | 181       | 176       |  |
| Total Dissolved Solids | mg/L  | NA    | 500E                   | 500E                   | 500       | NC        | NC        | NC      | NC              |              |           | 1,690    | 1,620     |           |           | 1,560    |           |           |           | 451       | 494       |  |
| pH, Field              | su    | NA    | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup> | 6.5 - 9.0 | NC        | NC        | NC      | NC              | 7.1          | 7.5       | 7.0      | 7.2       | 7.3       | 7.8       | 7.3      | 7.5       | 8.0       | 7.0       | 6.6       | 7.3       |  |
| Appendix IV            |       |       |                        |                        |           |           |           |         |                 |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Antimony               | ug/L  | 6     | 6.0                    | 6.0                    | 2.0       | 1,100     | 2,300     | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Arsenic                | ug/L  | 21¹   | 10                     | 10                     | 10        | 340       | 680       | 100     | 680             | 80           | 49        | 74       | 164       | 1         | 1         | 1        | < 1       | 536       | 491       | 487       | 517       |  |
| Barium                 | ug/L  | 2,000 | 2,000                  | 2,000                  | 1,200     | 3,400     | 7,000     | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Beryllium              | ug/L  | 4     | 4.0                    | 4.0                    | 33        | 300       | 600       | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Cadmium                | ug/L  | 5     | 5.0                    | 5.0                    | 2.5       | 12        | 24        | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Chromium               | ug/L  | 100   | 100                    | 100                    | 11        | 16        | 32        | NC      | NC              | 70×          | < 1       | < 1      | < 1       | 2         | < 1       | < 1      | < 1       | < 1       | < 1       | < 1       | < 1       |  |
| Cobalt                 | ug/L  | 15    | 40                     | 100                    | 100       | 370       | 740       | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                     | NC        | 9,800     | 20,000    | NC      | NC              |              |           |          |           |           |           |          |           | 1,800     |           |           |           |  |
| Lead                   | ug/L  | 15    | 4.0                    | 4.0                    | 14        | 250       | 500       | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Lithium                | ug/L  | 180   | 170                    | 350                    | 440       | 910       | 1,800     | NC      | NC              | 109          | 108       | 118      | 116       | 89        | 121       | 107      | 103       | 129       | 120       | 142       | 146       |  |
| Mercury                | ug/L  | 2     | 2.0                    | 2.0                    | 0.20#     | 1.4       | 2.8       | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Molybdenum             | ug/L  | 100   | 73                     | 210                    | 120       | 29,000    | 58,000    | NC      | NC              | 13           | 10        | 11       | 5         | 19        | 26        | 27       | 27        | 614       | 638       | 748       | 830       |  |
| Radium-226/228         | pci/L | 5     | NC                     | NC                     | NC        | NC        | NC        | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Selenium               | ug/L  | 50    | 50                     | 50                     | 5.0       | 62        | 120       | 55      | 120             | 5            | 9         | 2        | 2         | 3         | 3         | 2        | 2         | 1         | 1         | 2         | 2         |  |
| Thallium               | ug/L  | 2     | 2.0                    | 2.0                    | 2.0       | 47        | 94        | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| MI Part 115 Parameters |       |       |                        |                        |           |           |           |         |                 |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Iron                   | ug/L  | NA    | 300€                   | 300€                   | 500,000EE | NC        | NC        | NC      | NC              | 3,800        | 546       | 597      | 1,440     | 92        | 369       | 350      | 225       | 96        | 70        | 46        | 76        |  |
| Copper                 | ug/L  | NA    | 1,000€                 | 1,000E                 | 20        | 33        | 66        | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Nickel                 | ug/L  | NA    | 100                    | 100                    | 120       | 1,000     | 2,100     | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Silver                 | ug/L  | NA    | 34                     | 98                     | 0.2       | 0.54      | 1.1       | NC      | NC              |              |           |          |           |           |           |          |           |           |           |           |           |  |
| Vanadium               | ug/L  | NA    | 4.5                    | 62                     | 27        | 79        | 160       | NC      | NC              | < 2          | < 2       | < 2      | < 2       | < 2       | < 2       | < 2      | < 2       | < 2       | 2         | < 2       | < 2       |  |
| Zinc                   | ug/l  | NA    | 2.400                  | 5 000E                 | 260       | 260       | 520       | NC.     | NC.             |              |           |          |           |           |           |          |           |           |           |           |           |  |

#### Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

- -- not analyzed.
- \* GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- \* Unconfirmed elevated detection; anomalous data.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

| Result | Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. |
|--------|-------------------------------------------------------------------------------------------------|
| Result | Indicates an exceedance of acute-based GSI criteria.                                            |

All metals were analyzed as total unless otherwise specified.

X:\WPAAMPJT2\367388\0001\BAP 20SA2\Attachments\Attch C\T367388.1-Attch C Page 3 of 5

<sup>1 -</sup> Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

|                        |       |       |                        |                          |           |           |           | Sa              | ample Location: |           | MV     | V-23      |           |                | OV        | V-10       |           | OW-11            |           |          |           |  |
|------------------------|-------|-------|------------------------|--------------------------|-----------|-----------|-----------|-----------------|-----------------|-----------|--------|-----------|-----------|----------------|-----------|------------|-----------|------------------|-----------|----------|-----------|--|
|                        |       |       |                        |                          |           |           |           |                 | Sample Date:    | 3/11/2020 |        | 8/11/2020 | 10/8/2020 | 3/11/2020      | 5/14/2020 | 8/4/2020   | 10/8/2020 | 3/11/2020        | 5/14/2020 | 8/4/2020 | 10/8/2020 |  |
| Constituent            | Unit  | GWPS* | MI<br>Residential**    | MI Non-<br>Residential** | MI GSI^   | MI AMV*** | MI FAV*** | Chronic<br>MZ^^ | Acute MZ^^      |           |        |           |           | 0, 1, 11, 2, 2 |           | 0, 1, 2023 |           | 0, 1, 11, 20, 20 |           |          |           |  |
| Appendix III           |       |       |                        |                          |           |           |           |                 |                 |           |        |           |           |                |           |            |           |                  |           |          |           |  |
| Boron                  | ug/L  | NA    | 500                    | 500                      | 4,000     | 34,000    | 69,000    | 44,000          | 69,000          | 6,090     | 6,040  | 7,210     | 7,750     | 1,290          | 1,100     | 1,210      | 1,400     | 2,740            | 2,900     | 2,800    | 3,040     |  |
| Calcium                | mg/L  | NA    | NC                     | NC                       | 500EE     | NC        | NC        | NC              | NC              | 132       | 148    | 153       | 164       | 97.6           | 94.9      | 110        | 102       | 17.6             | 17.9      | 13.7     | 21.3      |  |
| Chloride               | mg/L  | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>         | 50        | NC        | NC        | NC              | NC              | 55        | 57.7   | 55.6      | 61.5      | 61.4           | 64.6      | 61.6       | 78.9      | 65.1             | 79.3      | 76       | 75.7      |  |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC              | 1,600     |        |           |           | < 1,000        | < 1,000   | < 1,000    | < 1,000   | 2,850            | 4,510     | 4,790    | 5,160     |  |
| Sulfate                | mg/L  | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>         | 500EE     | NC        | NC        | NC              | NC              | 180       | 185    | 189       | 201       | 20.6           | 12.4      | 46.4       | 11.9      | 24.9             | 25.7      | 24.3     | 25.9      |  |
| Total Dissolved Solids | mg/L  | NA    | 500 <sup>E</sup>       | 500 <sup>E</sup>         | 500       | NC        | NC        | NC              | NC              |           |        | 926       | 867       | 538            | 480       | 562        | 527       | 260              | 249       | 271      | 238       |  |
| pH, Field              | su    | NA    | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup>   | 6.5 - 9.0 | NC        | NC        | NC              | NC              | 7.6       | 7.6    | 7.1       | 6.9       | 7.2            | 7.3       | 7.2        | 7.4       | 8.8              | 8.5       | 9.1      | 9.4       |  |
| Appendix IV            |       |       |                        |                          |           |           |           |                 |                 |           |        |           |           |                |           |            |           |                  |           |          |           |  |
| Antimony               | ug/L  | 6     | 6.0                    | 6.0                      | 2.0       | 1,100     | 2,300     | NC              | NC              |           |        |           |           | < 1            | 1         | < 1        | < 1       | 2                | 1         | 2        | 1         |  |
| Arsenic                | ug/L  | 21¹   | 10                     | 10                       | 10        | 340       | 680       | 100             | 680             | 48        | 66     | 60        | 56        | 4              | 7         | 5          | 3         | 560              | 505       | 523      | 557       |  |
| Barium                 | ug/L  | 2,000 | 2,000                  | 2,000                    | 1,200     | 3,400     | 7,000     | NC              | NC              |           |        |           |           | 105            | 137       | 141        | 129       | 50               | 49        | 43       | 50        |  |
| Beryllium              | ug/L  | 4     | 4.0                    | 4.0                      | 33        | 300       | 600       | NC              | NC              |           |        |           |           | < 1            | < 1       | < 1        | < 1       | < 1              | < 1       | < 1      | < 1       |  |
| Cadmium                | ug/L  | 5     | 5.0                    | 5.0                      | 2.5       | 12        | 24        | NC              | NC              |           |        |           |           | < 0.2          | < 0.2     | < 0.2      | < 0.2     | < 0.5            | < 0.2     | < 0.2    | < 0.2     |  |
| Chromium               | ug/L  | 100   | 100                    | 100                      | 11        | 16        | 32        | NC              | NC              | < 1       | 1      | < 1       | < 1       | 1              | 2         | < 1        | 1         | 4                | < 1       | 2        | < 1       |  |
| Cobalt                 | ug/L  | 15    | 40                     | 100                      | 100       | 370       | 740       | NC              | NC              |           |        |           |           | < 6            | < 6       | < 6        | < 6       | < 6              | < 6       | < 6      | < 6       |  |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC              | 1,600     |        |           |           | < 1,000        | < 1,000   | < 1,000    | < 1,000   | 2,850            | 4,510     | 4,790    | 5,160     |  |
| Lead                   | ug/L  | 15    | 4.0                    | 4.0                      | 14        | 250       | 500       | NC              | NC              |           |        |           |           | < 1            | < 1       | < 1        | < 1       | < 1              | < 1       | < 1      | < 1       |  |
| Lithium                | ug/L  | 180   | 170                    | 350                      | 440       | 910       | 1,800     | NC              | NC              | 91        | 105    | 138       | 141       | 31             | 24        | 31         | 30        | 17               | 14        | 13       | 17        |  |
| Mercury                | ug/L  | 2     | 2.0                    | 2.0                      | 0.20#     | 1.4       | 2.8       | NC              | NC              |           |        |           |           | < 0.2          | < 0.2     | < 0.2      | < 0.2     | < 0.2            | < 0.2     | < 0.2    | < 0.2     |  |
| Molybdenum             | ug/L  | 100   | 73                     | 210                      | 120       | 29,000    | 58,000    | NC              | NC              | 85        | 85     | 75        | 78        | < 5            | < 5       | < 5        | < 5       | 517              | 467       | 407      | 407       |  |
| Radium-226/228         | pci/L | 5     | NC                     | NC                       | NC        | NC        | NC        | NC              | NC              |           |        |           |           |                | < 0.464   |            | 0.875     |                  | < 0.423   |          | < 0.616   |  |
| Selenium               | ug/L  | 50    | 50                     | 50                       | 5.0       | 62        | 120       | 55              | 120             | 1         | 2      | 1         | 2         | 2              | 2         | 4          | 2         | 3                | 2         | 2        | 3         |  |
| Thallium               | ug/L  | 2     | 2.0                    | 2.0                      | 2.0       | 47        | 94        | NC              | NC              |           |        |           |           | < 2            | < 2       | < 2        | < 2       | < 2              | < 2       | < 2      | < 2       |  |
| MI Part 115 Parameters |       |       |                        |                          |           |           |           |                 |                 |           |        |           |           |                |           |            |           |                  |           |          |           |  |
| Iron                   | ug/L  | NA    | 300E                   | 300E                     | 500,000EE | NC        | NC        | NC              | NC              | 13,600    | 21,600 | 21,500    | 17,400    | 982            | 950       | 1,770      | 991       | 38               | < 20      | 54       | 57        |  |
| Copper                 | ug/L  | NA    | 1,000E                 | 1,000E                   | 20        | 33        | 66        | NC              | NC              |           |        |           |           | < 1            | 4         | 2          | 1         | < 1              | < 1       | 2        | 1         |  |
| Nickel                 | ug/L  | NA    | 100                    | 100                      | 120       | 1,000     | 2,100     | NC              | NC              |           |        |           |           | < 2            | 2         | < 2        | < 2       | 4                | < 2       | 3        | < 2       |  |
| Silver                 | ug/L  | NA    | 34                     | 98                       | 0.2       | 0.54      | 1.1       | NC              | NC              |           |        |           |           | < 0.2          | < 0.2     | < 0.2      | < 0.2     | < 0.2            | < 0.2     | < 0.2    | < 0.2     |  |
| Vanadium               | ug/L  | NA    | 4.5                    | 62                       | 27        | 79        | 160       | NC              | NC              | < 2       | 6      | < 2       | < 2       | < 2            | 5         | 4          | 3         | 63               | 93        | 351      | 180       |  |
| Zinc                   | ug/L  | NA    | 2.400                  | 5.000E                   | 260       | 260       | 520       | NC              | NC              |           |        |           |           | < 10           | < 10      | < 30       | < 10      | < 10             | < 10      | < 30     | < 10      |  |

#### Notes

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria. -- - not analyzed.

- \* GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- $^{\text{E}}$  Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- \* Unconfirmed elevated detection; anomalous data.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

| Result | Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. |
|--------|-------------------------------------------------------------------------------------------------|
| Result | Indicates an exceedance of acute-based GSI criteria.                                            |

All metals were analyzed as total unless otherwise specified.

X:\WPAAMPJT2\367388\0001\BAP 20SA2\Attachments\Attch C\T367388.1-Attch C Page 4 of 5

<sup>1 -</sup> Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

|                        |       |       |                        |                          |           |           |           | Sa              | mple Location: |           | OW        | <i>I</i> -12 |           |
|------------------------|-------|-------|------------------------|--------------------------|-----------|-----------|-----------|-----------------|----------------|-----------|-----------|--------------|-----------|
|                        |       |       |                        |                          |           |           |           |                 | Sample Date:   | 3/12/2020 | 5/14/2020 | 8/3/2020     | 10/8/2020 |
| Constituent            | Unit  | GWPS* | MI<br>Residential**    | MI Non-<br>Residential** | MI GSI^   | MI AMV*** | MI FAV*** | Chronic<br>MZ^^ | Acute MZ^^     |           |           |              | <u>'</u>  |
| Appendix III           |       |       |                        |                          |           |           |           |                 |                |           |           |              |           |
| Boron                  | ug/L  | NA    | 500                    | 500                      | 4,000     | 34,000    | 69,000    | 44,000          | 69,000         | 816       | 693       | 798          | 851       |
| Calcium                | mg/L  | NA    | NC                     | NC                       | 500EE     | NC        | NC        | NC              | NC             | 108       | 84.9      | 109          | 79.6      |
| Chloride               | mg/L  | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>         | 50        | NC        | NC        | NC              | NC             | 47.1      | 53.8      | 46.3         | 50        |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC             | < 1,000   | < 1,000   | < 1,000      | < 1,000   |
| Sulfate                | mg/L  | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>         | 500EE     | NC        | NC        | NC              | NC             | 177       | 169       | 192          | 153       |
| Total Dissolved Solids | mg/L  | NA    | 500 <sup>E</sup>       | 500 <sup>E</sup>         | 500       | NC        | NC        | NC              | NC             | 669       | 557       | 696          | 492       |
| pH, Field              | su    | NA    | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup>   | 6.5 - 9.0 | NC        | NC        | NC              | NC             | 7.0       | 7.1       | 7.1          | 7.3       |
| Appendix IV            |       |       |                        |                          |           |           |           |                 |                |           |           |              |           |
| Antimony               | ug/L  | 6     | 6.0                    | 6.0                      | 2.0       | 1,100     | 2,300     | NC              | NC             | < 1       | < 1       | < 1          | < 1       |
| Arsenic                | ug/L  | 21¹   | 10                     | 10                       | 10        | 340       | 680       | 100             | 680            | 71        | 71        | 111          | 114       |
| Barium                 | ug/L  | 2,000 | 2,000                  | 2,000                    | 1,200     | 3,400     | 7,000     | NC              | NC             | 73        | 62        | 83           | 71        |
| Beryllium              | ug/L  | 4     | 4.0                    | 4.0                      | 33        | 300       | 600       | NC              | NC             | < 1       | < 1       | < 1          | < 1       |
| Cadmium                | ug/L  | 5     | 5.0                    | 5.0                      | 2.5       | 12        | 24        | NC              | NC             | < 0.2     | < 0.2     | < 0.2        | < 0.2     |
| Chromium               | ug/L  | 100   | 100                    | 100                      | 11        | 16        | 32        | NC              | NC             | 30        | < 1       | < 1          | < 1       |
| Cobalt                 | ug/L  | 15    | 40                     | 100                      | 100       | 370       | 740       | NC              | NC             | < 6       | < 6       | < 6          | < 6       |
| Fluoride               | ug/L  | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC             | < 1,000   | < 1,000   | < 1,000      | < 1,000   |
| Lead                   | ug/L  | 15    | 4.0                    | 4.0                      | 14        | 250       | 500       | NC              | NC             | < 1       | < 1       | < 1          | < 1       |
| Lithium                | ug/L  | 180   | 170                    | 350                      | 440       | 910       | 1,800     | NC              | NC             | 38        | 30        | 34           | 31        |
| Mercury                | ug/L  | 2     | 2.0                    | 2.0                      | 0.20#     | 1.4       | 2.8       | NC              | NC             | < 0.2     | < 0.2     | < 0.2        | < 0.2     |
| Molybdenum             | ug/L  | 100   | 73                     | 210                      | 120       | 29,000    | 58,000    | NC              | NC             | 16        | 20        | 16           | 24        |
| Radium-226/228         | pci/L | 5     | NC                     | NC                       | NC        | NC        | NC        | NC              | NC             |           | 0.421     |              | < 0.457   |
| Selenium               | ug/L  | 50    | 50                     | 50                       | 5.0       | 62        | 120       | 55              | 120            | < 1       | < 1       | < 1          | < 1       |
| Thallium               | ug/L  | 2     | 2.0                    | 2.0                      | 2.0       | 47        | 94        | NC              | NC             | < 2       | < 2       | < 2          | < 2       |
| MI Part 115 Parameters |       |       |                        |                          |           |           |           |                 |                |           |           |              |           |
| Iron                   | ug/L  | NA    | 300E                   | 300E                     | 500,000EE | NC        | NC        | NC              | NC             | 7,630     | 4,430     | 5,280        | 3,620     |
| Copper                 | ug/L  | NA    | 1,000E                 | 1,000E                   | 20        | 33        | 66        | NC              | NC             | 1         | < 1       | 2            | < 1       |
| Nickel                 | ug/L  | NA    | 100                    | 100                      | 120       | 1,000     | 2,100     | NC              | NC             | 16        | < 2       | < 2          | < 2       |
| Silver                 | ug/L  | NA    | 34                     | 98                       | 0.2       | 0.54      | 1.1       | NC              | NC             | < 0.2     | < 0.2     | < 0.2        | < 0.2     |
| Vanadium               | ug/L  | NA    | 4.5                    | 62                       | 27        | 79        | 160       | NC              | NC             | < 2       | < 2       | < 2          | < 2       |
| Zinc                   | ua/L  | NA    | 2,400                  | 5,000E                   | 260       | 260       | 520       | NC              | NC             | < 10      | < 10      | < 30         | < 10      |

#### Notes

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

\* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- \* Unconfirmed elevated detection; anomalous data.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

| Result | Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. |
|--------|-------------------------------------------------------------------------------------------------|
| Result | Indicates an exceedance of acute-based GSI criteria.                                            |

<sup>1 -</sup> Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent GSI Monitoring Locations Essexville, Michigan

|                        |      |       |                        |                               |           |           |           | Sá               | ample Location: |           | T1-3      | RGSI     |           | T         | T2-3      | RGSI     |           | T3-3GSI   |           |          |           |  |
|------------------------|------|-------|------------------------|-------------------------------|-----------|-----------|-----------|------------------|-----------------|-----------|-----------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|-----------|--|
|                        |      |       |                        |                               |           |           |           |                  | Sample Date:    | 3/10/2020 | 5/12/2020 | 8/6/2020 | 10/5/2020 | 3/10/2020 | 5/12/2020 | 8/6/2020 | 10/5/2020 | 3/10/2020 | 5/12/2020 | 8/6/2020 | 10/5/2020 |  |
| Constituent            | Unit | GWPS* | MI<br>Residential**    | MI Non-<br>Residential**      | MI GSI^   | MI AMV*** | MI FAV*** | Chronic<br>MZ^^  | Acute MZ^^      |           |           |          |           |           |           |          |           |           |           |          |           |  |
| Appendix III           |      |       |                        |                               |           |           |           |                  |                 |           |           |          |           |           |           |          |           |           |           |          |           |  |
| Boron                  | ug/L | NA    | 500                    | 500                           | 4,000     | 34,000    | 69,000    | 44,000           | 69,000          | 55        | 81        | 62       | 38        | 1,070     | 2,800     | 4,310    | 5,220     | 238       | 1,870     | 3,290    | 2,320     |  |
| Calcium                | mg/L | NA    | NC                     | NC                            | 500EE     | NC        | NC        | NC               | NC              | 59.5      | 51.5      | 51.1     | 48.7      | 151       | 311       | 387      | 326       | 200       | 180       | 222      | 170       |  |
| Chloride               | mg/L | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>              | 50        | NC        | NC        | NC               | NC              | 35.7      | 27.9      | 60.8     | 49        | 18        | 35.8      | 26.9     | 45        | 57        | 44.6      | 54.6     | 53.3      |  |
| Fluoride               | ug/L | 4,000 | NC                     | NC                            | NC        | 9,800     | 20,000    | NC               | NC              |           |           |          |           | 1,400     |           |          |           | < 1,000   |           |          |           |  |
| Sulfate                | mg/L | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>              | 500EE     | NC        | NC        | NC               | NC              | 21.3      | 19.5      | 25       | 24.8      | 110       | 564       | 664      | 372       | < 1       | < 1       | 1        | 3.38      |  |
| Total Dissolved Solids | mg/L | NA    | 500E                   | 500 <sup>E</sup>              | 500       | NC        | NC        | NC               | NC              |           | -         | 359      |           |           |           | 1,710    | 1,520     |           |           | 1,210    | 619       |  |
| pH, Field              | su   | NA    | 6.5 - 8.5 <sup>E</sup> | 6.5 <b>-</b> 8.5 <sup>E</sup> | 9.0       | NC        | NC        | NC               | NC              | 7.2       | 7.6       | 7.8      | 7.4       | 7.1       | 7.2       | 7.3      | 7.0       | 6.7       | 7.0       | 6.9      | 7.3       |  |
| Appendix IV            |      |       |                        |                               |           |           |           |                  |                 |           |           |          |           |           |           |          |           |           |           |          |           |  |
| Arsenic                | ug/L | 21¹   | 10                     | 10                            | 10        | 340       | 680       | 100 <sup>2</sup> | 680             | 6         | 1         | 3        | 1         | 10        | 21        | 52       | 18        | 40        | 72        | 1        | < 1       |  |
| Chromium               | ug/L | 100   | 100                    | 100                           | 11        | 16        | 32        | NC               | NC              | < 1       | < 1       | < 1      | < 1       | 2         | < 1       | 2        | 1         | 4         | 2         | 2        | 2         |  |
| Fluoride               | ug/L | 4,000 | NC                     | NC                            | NC        | 9,800     | 20,000    | NC               | NC              |           |           |          |           | 1,400     |           |          |           | < 1,000   |           |          |           |  |
| Lithium                | ug/L | 180   | 170                    | 350                           | 440       | 910       | 1,800     | NC               | NC              | < 10      | < 10      | < 10     | < 10      | 36        | 98        | 178      | 154       | 19        | 84        | 111      | 82        |  |
| Molybdenum             | ug/L | 100   | 73                     | 210                           | 120       | 1.4       | 2.8       | NC               | NC              | < 5       | < 5       | < 5      | < 5       | < 5       | < 5       | < 5      | < 5       | < 5       | < 5       | < 5      | < 5       |  |
| Selenium               | ug/L | 50    | 50                     | 50                            | 5.0       | 29,000    | 58,000    | NC               | NC              | 1         | < 1       | < 1      | < 1       | 2         | 1         | < 1      | < 1       | 2         | 2         | < 1      | < 1       |  |
| MI Part 115 Parameters |      |       |                        |                               |           |           |           |                  |                 |           |           |          |           |           |           |          |           |           |           |          |           |  |
| Iron                   | ug/L | NA    | 300€                   | 300 <sup>E</sup>              | 500,000EE | NC        | NC        | NC               | NC              | 2,950     | 36        | 104      | 35        | 13,300    | 27,600    | 40,300   | 7,860     | 59,300    | 53,100    | 2,670    | 3,650     |  |
| Vanadium               | ug/L | NA    | 4.5                    | 62                            | 27        | 260       | 520       | NC               | NC              | < 2       | < 2       | < 2      | < 2       | < 2       | < 2       | 2        | < 2       | 2         | < 2       | < 2      | < 2       |  |

#### Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable. NC - no criteria.

- -- not analyzed.
- \* GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

- 1 Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.
- <sup>2</sup> Compliance demonstrated on a flux basis.

Page 1 of 2 January 2021

## Summary of Groundwater Sampling Results (Analytical): March 2020 - October 2020 DE Karn Nature and Extent GSI Monitoring Locations Essexville, Michigan

|                        | ample Location: |       | T4-3                   | ICSI                     |           | 1         | T5_2      | 3GSI            |              | T6-3GSI   |            |          |           |            |           |          |           |           |             |          |           |
|------------------------|-----------------|-------|------------------------|--------------------------|-----------|-----------|-----------|-----------------|--------------|-----------|------------|----------|-----------|------------|-----------|----------|-----------|-----------|-------------|----------|-----------|
|                        |                 |       |                        |                          |           |           |           | 06              | Sample Date: | 3/10/2020 | 5/13/2020  | 8/5/2020 | 10/6/2020 | 3/10/2020  | 5/13/2020 | 8/5/2020 | 10/6/2020 | 3/11/2020 | 5/13/2020   | 8/5/2020 | 10/6/2020 |
| Constituent            | Unit            | GWPS* | MI<br>Residential**    | MI Non-<br>Residential** | MI GSI^   | MI AMV*** | MI FAV*** | Chronic<br>MZ^^ | Acute MZ^^   |           | 0, 10,2020 | 0,0,2020 | 10/0/2020 | 0, 10,2020 |           | 0/0/2020 | 10/0/2020 | 9,11,2020 | G. 10, 2020 | 0,0,2020 | 13/3/2323 |
| Appendix III           |                 |       |                        |                          |           |           |           |                 |              |           |            |          |           |            |           |          |           |           |             |          |           |
| Boron                  | ug/L            | NA    | 500                    | 500                      | 4,000     | 34,000    | 69,000    | 44,000          | 69,000       | NS        | 60         | 366      | 131       | 2,560      | 2,610     | 2,840    | 747       | 66        | 90          | 249      | 137       |
| Calcium                | mg/L            | NA    | NC                     | NC                       | 500EE     | NC        | NC        | NC              | NC           | NS        | 153        | 143      | 79.1      | 217        | 270       | 290      | 221       | 152       | 89.6        | 211      | 203       |
| Chloride               | mg/L            | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>         | 50        | NC        | NC        | NC              | NC           | NS        | 44.9       | 38.8     | 45.5      | 54         | 70.6      | 67.6     | 72.3      | 35.2      | 37.7        | 51.7     | 44.1      |
| Fluoride               | ug/L            | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC           | NS        |            |          |           | < 1,000    |           |          |           |           |             |          |           |
| Sulfate                | mg/L            | NA    | 250 <sup>E</sup>       | 250 <sup>E</sup>         | 500EE     | NC        | NC        | NC              | NC           | NS        | 3.45       | < 1      | < 2       | 170        | 248       | 15.2     | 146       | 2.83      | 23.3        | 1.01     | < 2       |
| Total Dissolved Solids | mg/L            | NA    | 500E                   | 500 <sup>E</sup>         | 500       | NC        | NC        | NC              | NC           | NS        |            | 608      | 427       |            |           | 515      | 1,050     |           |             | 906      |           |
| pH, Field              | su              | NA    | 6.5 - 8.5 <sup>E</sup> | 6.5 - 8.5 <sup>E</sup>   | 9.0       | NC        | NC        | NC              | NC           | NS        | 7.4        | 7.2      | 7.3       | 7.5        | 7.6       | 7.3      | 7.5       | 7.1       | 7.6         | 6.9      | 6.9       |
| Appendix IV            |                 |       |                        |                          |           |           |           |                 |              |           |            |          |           |            |           |          |           |           |             |          |           |
| Arsenic                | ug/L            | 21¹   | 10                     | 10                       | 10        | 340       | 680       | 100²            | 680          | NS        | 139        | 154      | 84        | 46         | 67        | 122      | 93        | 7         | 10          | 48       | 76        |
| Chromium               | ug/L            | 100   | 100                    | 100                      | 11        | 16        | 32        | NC              | NC           | NS        | 6          | 4        | 2         | < 1        | 2         | 2        | 2         | < 1       | < 1         | 3        | 3         |
| Fluoride               | ug/L            | 4,000 | NC                     | NC                       | NC        | 9,800     | 20,000    | NC              | NC           | NS        |            |          |           | < 1,000    |           |          |           |           |             |          |           |
| Lithium                | ug/L            | 180   | 170                    | 350                      | 440       | 910       | 1,800     | NC              | NC           | NS        | 12         | 14       | < 10      | 62         | 67        | 73       | 35        | < 10      | < 10        | 14       | 14        |
| Molybdenum             | ug/L            | 100   | 73                     | 210                      | 120       | 1.4       | 2.8       | NC              | NC           | NS        | < 5        | < 5      | < 5       | < 5        | < 5       | < 5      | < 5       | < 5       | < 5         | < 5      | < 5       |
| Selenium               | ug/L            | 50    | 50                     | 50                       | 5.0       | 29,000    | 58,000    | NC              | NC           | NS        | 2          | < 1      | < 1       | 2          | 1         | 1        | 1         | < 1       | 1           | < 1      | < 1       |
| MI Part 115 Parameters |                 |       |                        |                          |           |           |           |                 |              |           |            |          |           |            |           |          |           |           |             |          |           |
| Iron                   | ug/L            | NA    | 300€                   | 300 <sup>E</sup>         | 500,000EE | NC        | NC        | NC              | NC           | NS        | 37,100     | 24,200   | 13,000    | 7,620      | 13,100    | 13,200   | 3,530     | 9,670     | 3,560       | 23,100   | 48,900    |
| Vanadium               | ug/L            | NA    | 4.5                    | 62                       | 27        | 260       | 520       | NC              | NC           | NS        | 4          | 4        | 2         | < 2        | < 2       | 2        | < 2       | < 2       | < 2         | 2        | 2         |

#### Notes:

ug/L - micrograms per liter. mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

- -- not analyzed.
- \* GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- \*\* Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 30, 2013.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- \*\*\* Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- ^^ Mixing Zone GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- $^{\text{E}}$  Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

**BOLD** font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

- ¹ Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.
- <sup>2</sup> Compliance demonstrated on a flux basis.

Page 2 of 2 January 2021