

July 29, 2022

TRANSMITTAL VIA EMAIL 07/29/2022

Ms. Lori Babcock Michigan Department of Environment, Great Lakes, and Energy Materials Management Division Bay City District Office 401 Ketchum St, Suite B Bay City, Michigan 48708

SUBJECT:Semiannual Progress Report – Selection of Final Remedy pursuant to §257.97(a)DE Karn Bottom Ash Pond Coal Combustion Residuals (CCR) Unit

Dear Ms. Babcock,

Consumers Energy prepared and submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) a closure work plan for the Karn Bottom Ash Pond (Karn Bottom Ash Pond Work Plan) and a Response Action Plan developed in accordance with Part 115 dated November 30, 2018 and March 15, 2019, respectively. These plans were developed in anticipation of supporting the Assessment of Corrective Measures that would be necessary for evaluating and selecting a final remedy for the Karn Bottom Ash Pond after Consumers Energy provided notification of exceeding Groundwater Protection Standard (GWPS) per §257.95(g) that arsenic was present at statistically significant levels above the federal GWPS in five of six downgradient wells at the Karn Bottom Ash Pond.

EGLE approved the Karn Bottom Ash Pond Work Plan on December 20, 2019 based on expectation that a report documenting the removal activities and certifying solid waste has been removed in accordance with the work plan would be submitted at the completion of activities. Consumers Energy submitted for review and approval, <u>D.E. Karn Generating Facility</u> <u>Bottom Ash Pond CCR Removal Documentation Report</u> (Karn Bottom Ash Pond Closure Report) on October 30, 2019 to satisfy requirements for completing the removal of solid waste so that obtaining a solid waste operating license was unnecessary. The certification of solid waste removal was approved by EGLE on December 1, 2020. Subsequently, EGLE approved the Response Action Plan on May 14, 2020 based on submitted of the Assessment of Corrective Measures.

Closure by removal has been achieved pursuant to 324.11519b(9)(b) by documenting the removal of sources of contamination under the response action plan. However, concentrations of arsenic in groundwater exceeding the GWPS pursuant to 40 CFR 257.95(h) have persisted within the compliance monitoring well network after the source removal activities were completed. EGLE has approved a remedy consistent with R 299.4444 and R 299.4445 of the Part 115 rules through the approval of the DE Karn Hydrogeological Monitoring Plan, Rev. 03 that includes the determination of Groundwater Not in an Aquifer 0 and groundwater mixing zone authorization. Additional steps needed to address residual groundwater contamination are discussed in the observations and results sections below.

Consumers Energy

Parnall Office Building /Jackson 1945 W Parnall Road, Jackson MI **Environmental Services**

This Semiannual Progress Report, prepared as a requirement of §257.97(a) of the Federal Coal Combustion Residual (CCR) Rule, describes progress towards selecting and implementing the final remedy for the Karn Bottom Ash Pond after the completion of the <u>Assessment of Corrective</u> <u>Measures, DE Karn Bottom Ash Pond Coal Combustion Residual Unit</u>, dated September 11, 2019 (Karn Bottom Ash Pond ACM) (TRC, 2019). Groundwater management alternatives considered to be technically feasible following source removal activities that could potentially address the residual arsenic under <u>known</u> groundwater conditions were identified in the report as: 1) Source removal with post-remedy monitoring, 2) Source removal with groundwater capture/control, 3) Source removal with impermeable barrier, 4) Source removal with active geochemical sequestration, and 5) Source removal with passive geochemical sequestration.

Karn Bottom Ash Pond Assessment Activities for this Period

Consumers Energy completed installation of six monitoring wells within the former Karn Bottom Ash Pond area during the first week of March 2022 and collected groundwater samples and gauged water elevations in March 2022 and May 2022. These data will be summarized in the 2022 Annual Groundwater Monitoring and Corrective Action Report to be submitted in January 2032. Based on the evaluation of data from the May 2022 sampling event, the following general observations were noted:

- Groundwater flow and direction was found to confirm the lack of radial flow within the former bottom ash pond area and helped to refine the extent of the new potentiometric high;
- Lithology collected from the boring logs indicated that at least nine feet of compacted clay backfill was placed within the excavated portion of the former Karn Bottom Ash Pond;
- Laboratory permeability tests were conducted on Shelby Tube samples collected at three of the six location where new monitoring wells were installed indicating hydraulic conductivity ranging from 1.3 x 10(-07) cm/sec to 1.8 x 10(-08) cm/sec.
- Underlying native soils were consistent with characterizations and descriptions from previous investigations, including notable presence of organics in part of the lithologic profile; and
- The distribution of arsenic was confirmed to be below the site-specific chronic concentration of 100 ug/L at all six locations; however, several monitoring wells had arsenic observed at concentrations above the site-specific GWPS of 21 ug/L.

Results of May 2022 Sampling Event

Statistical analysis from the May 2022 semiannual groundwater monitoring event verified that the only constituent of concern that is present at statistically significant levels above the established GWPS is arsenic. Results are presented in <u>May 2022 Assessment Monitoring Data Summary and Statistical</u> <u>Evaluation Consumers Energy, DE Karn Site, Bottom Ash Pond CCR Unit</u> (May 2022 Event Summary) (TRC,

2022a). Additionally, monitoring performed under the Karn Groundwater Surface-Water Interface (GSI) Compliance Plan demonstrates protection of human health and the environment with criteria determined to be protective at the point of exposure. These results are presented in the <u>First</u> <u>Semiannual 2022 Nature and Extent Data Summary, DE Karn Bottom Ash Pond, Consumers Energy</u> (N&E Summary) (TRC, 2022b).

Significant observations from the event summaries are as follows:

- Groundwater potentiometric surface within the area of the former Karn Bottom Ash Pond exhibits flow primarily moving west towards the intake channel, or south towards the Karn Generating Plant rather than radially from within the pond area;
- Regionally, radial flow is observed with a new "high" point shifted to the east of the former Karn Bottom Ash Pond geographically centered between monitoring wells DEK-MW-15003 and OW-12;
- Based on changes in the groundwater potentiometric surface, Monitoring Wells DEK-MW-15003 and DEK-MW-15004 are no longer downgradient from the CCR unit and indicative of determining attainment of GWPS for arsenic or detecting new releases from the former Karn Bottom Ash Pond;
- The Karn Bottom Ash Pond groundwater monitoring system was recertified with downgradient monitoring wells DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001;
- No additional Appendix IV constituents have been observed at statistically significant levels above GWPS for the Karn Bottom Ash Pond groundwater monitoring system;
- Redox conditions continue to demonstrate that groundwater redox chemistry equilibrium is continuing to shift back to pre-source removal conditions as reflected in the trends for dissolved oxygen reverting back to primarily anoxic concentrations (e.g. less than 0.5 mg/L) and electrical potential primarily returning to negative potential; and
- Arsenic concentrations at DEK-MW-15002 has a statistically significant decreasing trend based on the previous eight events and arsenic concentrations have been below the GWPS since April 2019.

Conclusions

Source removal activities for the Karn Bottom Ash Pond have been completed and documented in the Karn Bottom Ash Pond Closure Report submitted to EGLE on October 30, 2019. Improvements in groundwater quality have been observed in the groundwater monitoring system, but observations of ongoing changes in groundwater potentiometric surface that may influence groundwater flow characteristics and/or alter groundwater redox conditions at monitoring locations that could influence constituent concentrations, still require further evaluation before a final remedy can be selected. To aid in the further evaluation,

Consumers Energy installed six additional monitoring wells within the former Karn Bottom Ash Pond area that were integrated into the 2022 sampling schedule. Subsequent sampling events to include the additional monitoring wells will inform the on-going improvements and retention of monitoring-only, passive, or active remedial options following the source removal. As conditions continue to be evaluated post-source removal, the drinking water and groundwater-surface water interface (GSI) pathway are protected by quarterly monitoring performed under the Michigan-approved hydrogeological monitoring plan that includes a GSI Compliance Monitoring Program.

The final remedy for the Karn Bottom Ash Pond will be formally selected per §257.97 and Michigan Solid Waste requirements once the selected option is reviewed and commented on by EGLE and a public meeting is conducted at least 30-days prior to the final selection as required under §257.96(e).

The next semiannual progress report will be submitted in six months by January 31, 2023. Please feel free to contact me with any questions or clarifications.

Sincerely,

Harold D. Register, Jr., P.E. Principal Engineer Landfill Operations Compliance Phone: (517) 788-2982 Email: harold.registerir@cmsenergy.com

cc: Mr. Phil Roycraft, EGLE Bay City District Office Mr. Mike Quigg, EGLE Bay City District Office Ms. Margie Ring, EGLE Lansing Office Mr. Jim Arduin, EGLE Lansing Office Mr. Caleb Batts, Consumers Energy Ms. Darby Litz, TRC

Enclosure: <u>May 2022 Assessment Monitoring Data Summary and Statistical Evaluation Consumers</u> <u>Energy, DE Karn Site, Bottom Ash Pond CCR Unit</u>. (TRC, July 29, 2022a).

> *First Semiannual 2022 Nature and Extent Data Summary, DE Karn Bottom Ash Pond,* <u>Consumers Energy</u>. (TRC, July 29, 2022b).

May 2022 Assessment Monitoring Data Summary and Statistical Evaluation

DE Karn, Bottom Ash Pond CCR Unit

Essexville, Michigan

July 2022

Darby Litz / Hydrogeologist/Project Manager

Prepared For: Consumers Energy Company

Prepared By:

TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

m

Kristin Lowery, E.I.T. Project Engineer

TABLE OF CONTENTS

1.0	Intro	oduction	1
	1.1	Program Summary	1
	1.2	Site Overview	3
	1.3	Geology/Hydrogeology	4
2.0	Grou	undwater Monitoring	6
	2.1	Monitoring Well Network	6
	2.2	May 2022 Assessment Monitoring	6
		2.2.1 Groundwater Flow Rate and Direction	
		2.2.2 Data Quality	8
3.0	Asse	essment Monitoring Statistical Evaluation	9
	3.1	Establishing Groundwater Protection Standards	9
	3.2	Data Comparison to Groundwater Protection Standards	9
4.0	Con	clusions and Recommendations1	1
5.0	Refe	erences1	2

TABLES

Table 1	Summary of Groundwater Elevation Data
Table 2	Summary of Field Parameter Results
Table 3	Summary of Background Wells Groundwater Sampling Results (Analytical)
Table 4	Summary of Groundwater Sampling Results (Analytical)
Table 5	Summary of Groundwater Protection Standard Exceedances – May 2022

FIGURES

Figure 1	Site Location Map
Figure 2	Karn and Weadock Complex Map
Figure 3	Shallow Groundwater Contour Map – May 2022

APPENDICES

- Appendix A Data Quality Reviews
- Appendix B Statistical Evaluation of May 2022 Assessment Monitoring Sampling Event
- Appendix C Laboratory Analytical Reports

1.0 Introduction

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90 – 257.98) apply to the DE Karn Bottom Ash Pond CCR Unit (Karn Bottom Ash Pond).

Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule for the Karn Bottom Ash Pond located in Essexville, Michigan. This report has been prepared to provide the summary of the May 2022 assessment groundwater monitoring results, data quality review, and statistical data evaluation for the Karn Bottom Ash Pond groundwater monitoring system.

1.1 Program Summary

Groundwater monitoring for the Karn Bottom Ash Pond commenced after the installation of the monitoring well network in December 2015 to establish background conditions. Detection monitoring was initiated on October 17, 2017 in conformance with the self-implementing schedule in the CCR Rule.

Consumers Energy first reported the potential for statistically significant increases (SSIs) for Appendix III constituents in the *Annual Groundwater Monitoring Report DE Karn Power Plant Bottom Ash Pond CCR Unit* (TRC, January 2018). The statistical evaluation of the Appendix III indicator parameters confirming statistically significant increases (SSIs) over background were as follows:

- Boron at DEK-MW-15001, DEK-MW-15002, DEK-MW-15003, DEK-MW-15004, DEK-MW-15005, DEK-MW-15006;
- Fluoride at DEK-MW-15001;
- Field pH at DEK-MW-15001, DEK-MW-15002, DEK-MW-15003, DEK-MW-15005, DEK-MW-15006; and
- Sulfate at DEK-MW-15006.

On April 25, 2018, Consumers Energy entered assessment monitoring upon determining that an Alternate Source Demonstration for the Appendix III constituents was not successful. After subsequent sampling for Appendix IV constituents, Consumers Energy provided notification that arsenic was present at statistically significant levels above the Ground Water Protection Standards (GWPS) established at 21 ug/L (Consumers Energy, January 2019) in five of the six downgradient monitoring wells at the Karn Bottom Ash Pond as follows:

 Arsenic at DEK-MW-15001, DEK-MW-15002, DEK-MW-15003, DEK-MW-15004, and DEK-MW-15005.

The notification of the GWPS exceedance on January 14, 2019 was followed up with a Response Action Plan submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on March 15, 2019 laying out the preliminary understanding of water quality and

actions that were underway to mitigate or eliminate unacceptable risk associated with the identified release from the CCR unit. The *Assessment of Corrective Measures* (ACM) (TRC, September 2019) was initiated on April 14, 2019 and submitted on September 11, 2019 in accordance with the schedule in §257.96 and the requirements of the Response Action Plan.

The ACM documents that the groundwater nature and extent has been defined, as required in §257.95(g)(1). Although arsenic concentrations exceed the GWPS in on-site groundwater monitoring locations, arsenic is delineated within the limits of the property owned by Consumers Energy and there are **currently no adverse effects on human health or the environment** from either surface water or groundwater due to CCR management at the Karn Bottom Ash Pond. Per §257.96(b), Consumers Energy is continuing to monitor groundwater in accordance with the assessment monitoring program as specified in §257.95.

Evaluation of groundwater under the CCR Rule focused on the following constituents that were collected *unfiltered* in the field:

CCR Rule Monitoring Constituents							
Appendix III	Apper	ndix IV					
Boron	Antimony	Mercury					
Calcium	Arsenic	Molybdenum					
Chloride	Barium	Radium 226/228					
Fluoride	Beryllium	Selenium					
рН	Cadmium	Thallium					
Sulfate	Chromium						
Total Dissolved Solids (TDS)	Cobalt						
	Fluoride						
	Lead						
	Lithium						

Prior to remedy selection, Consumers Energy will also collect a sufficient number of samples to evaluate Michigan state-specific constituents as follows:

Additional Monitoring Constituents (Michigan Part 115/PA 6401)
Detection Monitoring	Assessment Monitoring
Iron	Copper
	Nickel
	Silver
	Vanadium
	Zinc

Consumers Energy will continue to evaluate corrective measures for the Karn Bottom Ash Pond per §257.96 and §257.97 and is continuing semiannual assessment monitoring in accordance with §257.95.

1.2 Site Overview

The Karn Bottom Ash Pond is located within the DE Karn Power Plant site, which is located north of the JC Weadock Power Plant, east of the Saginaw River, south and west of Saginaw Bay (Figure 1). Two coal-fired power generating units (Karn Units 1 & 2) began generating electricity in 1958 and 1959, respectively. Karn Units 3 & 4, co-located with the coal-fired generating units, are oil- and natural gas-fueled. Two other areas of coal ash management within the Karn site are the Karn Landfill and the Karn Lined Impoundment. The Karn Landfill has been certified closed and is now in post-closure care and is being monitored in accordance with the EGLE-approved *Hydrogeological Monitoring Plan, Rev. 3, DE Karn Solid Waste Disposal Area* (December 19, 2017). The Karn Lined Impoundment has been licensed to operate by the EGLE under Part 115 (License Number 9629) and is being monitored in accordance with the EGLE-approved *Karn Lined Impoundment Hydrogeological Monitoring Plan* (November 13, 2020). The locations of the Karn Landfill, the Karn Lined Impoundment, and the Karn Bottom Ash Pond are shown on Figure 2.

Previously, the Karn Bottom Ash Pond was used for wet ash dewatering and was the primary settling/detention structure for the National Pollutant Discharge Elimination System (NPDES) treatment system prior to discharge. Consumers Energy provided notification of initiation of closure on October 12, 2018 to implement the certified closure plan by removal of CCR under the self-implementing requirements and schedule of the CCR Rule. In preparation for removal of the Karn Bottom Ash Pond, a new lined impoundment (Karn Lined Impoundment) was constructed meeting the requirements of the CCR Rule and the operational needs at the Karn

¹ On December 28, 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (a.k.a., Michigan Part 115 Solid Waste Management). The December 2018 amendments to Part 115 were developed to provide the State of Michigan oversight of CCR impoundments and landfills and to better align existing state solid waste management rules and statutes with the CCR Rule.

Power Plant. The Karn Lined Impoundment began receipt of CCR and non-CCR on June 7, 2018 when it replaced the Karn Bottom Ash Pond operations.

Consumers Energy has completed the removal of CCR consistent with the timeline for closure of the Karn Bottom Ash Pond under the DE Karn Bottom Ash Pond Closure Plan (Golder, January 2018; Revised April 2018) and the CCR Rule's closure by removal provisions in §257.102(c). Consumers Energy ceased hydraulic loading to the Karn Bottom Ash Pond in June 2018 and allowed the area to dewater by gravity. Consumers Energy then operated a construction dewatering system to allow for excavation of the vertical and lateral extent of CCR that commenced on March 20, 2019 and has operated through the construction and restoration period. The excavation extended to six inches below known CCR elevations established from previous investigations. Excavated CCR has been placed in the neighboring Weadock Landfill that is constructed with of a fully encapsulation soil-bentonite slurry wall keyed into a competently confining clay unit. The Karn Bottom Ash Pond has been restored by backfilling and grading the surface with clean fill in accordance with the plan to promote stormwater drainage, minimize ponding of surface water, and to reduce the potential of infiltration and migration of residual arsenic and any future constituents of concern (COCs). With the CCR removal complete, Consumers Energy submitted the DE Karn Generating Facility Bottom Ash Pond CCR Removal Documentation Report (Golder, October 2019) on October 30, 2019. EGLE approved the documentation removal report on December 1, 2020. Groundwater conditions post-CCR removal continue to be monitored.

1.3 Geology/Hydrogeology

The majority of the Karn Bottom Ash Pond area is comprised of surficial CCR and sand fill. USGS topographic maps and aerial photographs dating back to 1938, in addition to field descriptions of subsurface soil at the site, indicate that the site was largely developed by reclaiming low-lands through construction of perimeter dikes and subsequent ash filling (AECOM, 2009).

The surficial fill consists of a mixture of varying percentages of ash, sand, and clay-rich fill ranging from 5 to 15 feet thick. Below the surficial fill, native alluvium and lacustrine soils are present at varying depths. Generally, there is a well graded sand unit present to depths of 10 to 30 feet below ground surface (ft bgs) overlying a clay till which is observed at depths ranging from 25 to 75 ft bgs. In general, the alluvium soils (sands) are deeper along the Saginaw River and there are shallower lacustrine deposits (clays, silts and sands deposited in or on the shores of glacial lakes) at other areas. The clay till acts as a hydraulic barrier that separates the shallow groundwater from the underlying sandstone. A sandstone unit, which is part of the Saginaw formation, was generally encountered at 80 to 90 ft bgs.

The DE Karn Power Plant site is bounded by several surface water features (Figure 1): the Saginaw River to the west, Saginaw Bay (Lake Huron) to the north and east, and a discharge channel to the south. In general, shallow groundwater is encountered at a similar or slightly higher elevation relative to the surrounding surface water features. Groundwater flow in the upper aquifer is largely controlled by the surface water elevations of Saginaw River and Saginaw Bay. In the vicinity of the Karn Bottom Ash Pond, the shallow groundwater flow is

generally to the west, toward the intake channel.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

In accordance with 40 CFR 257.91, Consumers Energy established a groundwater monitoring system for the Karn Bottom Ash Pond, which consists of 10 monitoring wells (four background monitoring wells and six downgradient monitoring wells) that are screened in the uppermost aquifer. The monitoring well locations are shown on Figure 2.

Groundwater around the Karn Bottom Ash Pond was initially characterized as radial based on the eight initial background sampling events prior to commencing detection monitoring; therefore, the six downgradient wells (DEK-MW-15001 through DEK-MW-15006) that were installed and spaced along the circumference of the Karn Bottom Ash Pond continued to accurately represent the quality of groundwater passing the waste boundary that ensures detection of groundwater contamination such that all potential contaminant pathways are monitored. Monitoring well DEK-MW-15001 was decommissioned on April 18, 2018 due to the installation of the new Karn Lined Impoundment, which is a new double composite lined CCR unit constructed as a replacement to the Karn Bottom Ash Pond. Monitoring well DEK-MW-18001 was installed on May 21, 2018 approximately 80 feet southeast of DEK-MW-15001 to maintain the perimeter downgradient monitoring well network.

Groundwater flow direction near the former pond has changed as a result of the pond decommissioning and monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer located downgradient of the unit (Figure 3). These two wells were removed from the certified downgradient monitoring well network. The recertification was included in Appendix D of the *October 2021 Assessment Monitoring Data Summary and Statistical Evaluation* (TRC, January 2022).

Four monitoring wells located south of the Karn Bottom Ash Pond on the JC Weadock Power Plant site provide data on background groundwater quality that has not been affected by the CCR unit (MW-15002, MW-15008, MW-15016, and MW-15019). Analysis for the establishment of these wells as background is detailed in the *Groundwater Statistical Evaluation Plan* for the Karn Bottom Ash Pond, dated October 17, 2017.

2.2 May 2022 Assessment Monitoring

Per §257.95, all wells in the CCR unit groundwater monitoring program must be sampled semiannually. TRC conducted the first semiannual assessment monitoring event of 2022 for Appendix III and IV constituents at the Karn Bottom Ash Pond CCR Unit in accordance with the *DE Karn Monitoring Program Sample Analysis Plan* (ARCADIS, May 2016) (SAP). The semiannual assessment monitoring event was performed on May 2 through 4, 2022.

The May 2022 sampling event included collection of static water level measurements from the Karn Bottom Ash Pond groundwater monitoring system and other site wells to support preparation of a groundwater contour map. Static water elevation data are summarized in Table 1 and groundwater elevation data are shown on Figure 3. The Karn Bottom Ash Pond monitoring wells (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006 and DEK-MW-18001) and

background monitoring wells (MW-15002, MW-15008, MW-15016, and MW-15019) were purged with peristaltic pumps utilizing low-flow sampling methodology. Field parameters were stabilized at each monitoring well prior to collecting groundwater samples. Stabilized field parameters for each monitoring well are summarized in Table 2.

The groundwater samples were analyzed by the Consumers Energy Trail Street Laboratory for Appendix III and IV constituents in accordance with the SAP. Radium analyses were completed by Eurofins TestAmerica Inc. (TestAmerica). The analytical results for the background wells are summarized in Table 3, and the analytical results for the downgradient monitoring wells are summarized in Table 4. Analytical results from the May 2022 monitoring event are included in the attached laboratory reports (Appendix C).

2.2.1 Groundwater Flow Rate and Direction

Groundwater elevation data collected during the May 2022 assessment monitoring event are provided in Table 1. These data were used to construct the groundwater contour map (Figure 3). Groundwater elevations measured at the site in May 2022 are generally within the range of 580 to 585 feet above mean sea level (ft NAVD88) and groundwater is typically encountered at equal elevation relative to the surrounding surface water features measured by the NOAA gauging station or within approximately 6 feet higher, flowing toward the bounding surface water features.

Although historically the point source discharge of sluiced bottom ash into the Karn Bottom Ash Pond created localized mounding of the potentiometric surface, the new Karn Lined Impoundment went into service on June 7, 2018 and has been continuously collecting the process water and bottom ash that went into the former bottom ash pond. Since the former bottom ash pond is no longer being hydraulically loaded with sluiced ash and has been dewatered by gravity, the characteristic groundwater mound centered within the pooled area is no longer present. The groundwater elevation data collected from the groundwater monitoring system of the former bottom ash pond in May 2022 demonstrate a reduction in groundwater elevation measurements by several feet when compared to groundwater elevations measured prior to June 2018. Due to the operational changes of the bottom ash pond and the completion of the landfill capping activities, the gradient between the bottom ash pond area and the surrounding surface water bodies is flattening out as compared to previous quarters as the groundwater elevations are reaching a new equilibrium, as expected. Groundwater at the facility is locally influenced by incidental infiltration from precipitation over the uncovered acreage. Monitoring Wells OW-11, OW-12, and DEK-MW-15003 delineate the newly established groundwater elevation high point with porewater flow generally flowing radially towards the adjacent surface water features from this newly established potentiometric "high", as illustrated in Figure 3. As such, the groundwater flow across the footprint of the former bottom ash pond is generally to the west.

The average hydraulic gradient observed on May 2, 2022 in the Karn Bottom Ash Pond area during these events is estimated at 0.0051 ft/ft. The gradient was calculated using the monitoring well pairs DEK-MW-15004/DEK-MW-15005 and DEK-MW-15003/DEK-MW-15006. Using the mean hydraulic conductivity of 15 ft/day (ARCADIS, 2016) and an assumed effective

porosity of 0.3, the estimated average seepage velocity was 0.25 ft/day or 92 ft/year.

2.2.2 Data Quality

Analytical data were found to be usable for assessment monitoring and were generally consistent with previous sampling events. The Data Quality Reviews are included as Appendix A.

3.0 Assessment Monitoring Statistical Evaluation

Assessment monitoring is continuing at the Karn Bottom Ash Pond while Consumers Energy further evaluates corrective measures in accordance with §257.96 and §257.97 as outlined in the ACM. The following section summarizes the statistical approach applied to assess the October 2021 groundwater data in accordance with the assessment monitoring program.

3.1 Establishing Groundwater Protection Standards

The GWPSs are used to assess whether Appendix IV constituent concentrations are present in groundwater at unacceptable levels as a result of CCR Unit operations by statistically comparing concentrations in the downgradient wells to the GWPSs for each Appendix IV constituent. In accordance with §257.95(h) and the Stats Plan, GWPSs were established for the Appendix IV constituents following the preliminary assessment monitoring event as documented in the Groundwater Protection Standards technical memorandum (Appendix C of the *2018 Annual Groundwater Monitoring Report*, TRC, January 2019). The GWPS is established as the higher of the EPA Maximum Contaminant Level (MCL) or statistically derived background level for constituents with MCLs and the higher of the EPA Regional Screening Levels (RSLs) or background level for constituents without an established MCL.

3.2 Data Comparison to Groundwater Protection Standards

The compliance well groundwater concentrations for Appendix IV constituents were compared to the GWPSs to determine if a statistically significant exceedance had occurred in accordance with §257.95. Consistent with the *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (Unified Guidance) (USEPA, 2009), the preferred method for comparisons to a fixed standard are confidence limits. An exceedance of the standard occurs when the 99 percent lower confidence level of the downgradient monitoring well data exceeds the GWPS of any Appendix IV constituent. As documented in the January 14, 2019 *Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g)*, arsenic was present at statistically significant levels above the federal GWPS in five of the six downgradient wells at the Karn Bottom Ash Pond.

Confidence intervals were established per the statistical methods detailed in the *Statistical Evaluation of May 2022 Assessment Monitoring Sampling Event* technical memorandum provided in Appendix B. For each Appendix IV constituent, the concentrations were first compared directly to their respective GWPS. Constituent-well combinations that included a direct exceedance of the GWPSs were retained for further statistical analysis using confidence limits.

Due to changes in groundwater flow direction on site, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer located downgradient of the unit and were determined to be no longer indicative of groundwater conditions influenced by the Karn Bottom Ash Pond. Therefore, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer included for assessment monitoring statistical analysis. The monitoring well network for statistical evaluation consists of the four monitoring wells located downgradient of the bottom ash pond (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001). Overall, the assessment

9

monitoring statistical evaluations have confirmed that arsenic is the only Appendix IV constituent present at statistically significant levels above the GWPS. The statistical evaluation of the May 2022 semiannual assessment monitoring event data indicate that arsenic is present at statistically significant levels exceeding the GWPS in downgradient monitoring wells at the Karn Bottom Ash Pond:

<u>Constituent</u>	GWPS	#Downgradient Wells Observed
Arsenic	21 ug/L	2 of 4

Previously, arsenic was present in downgradient well DEK-MW-15002 at a statistically significant level; however, the statistical evaluations of the October 2020 through October 2021 data show that the lower confidence limit for arsenic is below the GWPS. A summary of the confidence intervals for May 2022 is provided in Table 5.

Arsenic concentrations at DEK-MW-15002 appear to exhibit a downward trend on the timeseries chart (Appendix B: Attachment 1). This data set was tested further in Sanitas[™] utilizing Sen's Slope to estimate the average rate of change in concentration over time and utilizing the Mann-Kendall trend test to test for significance of the trend at the 98% confidence level. The trend test showed that arsenic concentrations are generally decreasing with time, as evidenced by the negative Sen's Slope, and that the downward trend of arsenic at DEK-MW-15002 is statistically significant.

4.0 Conclusions and Recommendations

Corrective action has been triggered and assessment monitoring is ongoing at the Karn Bottom Ash Pond CCR unit. A summary of the May 2022 assessment monitoring event is presented in this report.

Overall, the statistical assessments have confirmed that arsenic is the only Appendix IV constituent present at statistically significant levels above the GWPS. Consumers Energy has completed the removal of CCR consistent with the timeline for closure of the Karn Bottom Ash Pond under the *DE Karn Bottom Ash Pond Closure Plan* (Golder, January 2018; Revised April 2018) and the CCR Rule's closure by removal provisions in §257.102(c).

The ACM Report provided a high-level assessment of groundwater remediation technologies that could potentially address site-specific COCs (i.e., arsenic) under known groundwater conditions. Groundwater chemistry already appears to be improving as a result of discontinuing the hydraulic loading to the Karn Bottom Ash Pond and the completed source removal of CCR, as shown by the decreasing concentration of arsenic at DEK-MW-15002 ; however, attainment of the GWPS at all of the Bottom Ash Pond compliance wells may not be feasible due to influences other than the former pond, such as the presence and former operation of the nearby Karn Landfill. Redox conditions, which affect contaminant transport, are still stabilizing following pond removal and will continue to be evaluated further.

Consumers Energy will continue assessment monitoring and evaluate corrective measures in accordance with §257.96 and §257.97 as outlined in the Karn Bottom Ash Pond ACM. The groundwater management remedy for the Karn Bottom Ash Pond will be selected as soon as feasible to meet the federal standards of §257.96(b) of the CCR Rule. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98. The next semiannual monitoring event is tentatively scheduled for the fourth calendar quarter of 2022.

5.0 References

- AECOM. October 30, 2009. Potential Failure Mode Analysis (PFMA) Report. DE Karn Electric Generation Facility Ash Dike Risk Assessment Essexville, Michigan. Prepared for Consumers Energy Company
- ARCADIS. May 13, 2016. Summary of Monitoring Well Design, Installation, and Development. DE Karn Electric Generation Facility – Essexville, Michigan. Prepared for Consumers Energy Company.
- ARCADIS. May 18, 2016. Electric Generation Facilities RCRA CCR Detection Monitoring Program. DE Karn Monitoring Program Sample Analysis Plan, Essexville, Michigan. Prepared for Consumers Energy Company.
- Consumers Energy Company. December 19, 2017. Hydrogeological Monitoring Plan Rev. 3: DE Karn Solid Waste Disposal Area.
- Consumers Energy Company. January 2019. Notification of Appendix IV Constituent Exceeding Groundwater Protection Standards per §257.95(g).
- Golder Associates Inc. January 2018. D.E. Karn Generating Facility Bottom Ash Pond Closure Plan, Essexville, Michigan. Prepared for Consumers Energy Company.
- Golder Associates Inc. April 2018. D.E. Karn Generating Facility Revised Bottom Ash Pond Closure Work Plan, Essexville, Michigan. Prepared for Consumers Energy Company.
- Golder Associates Inc. October 2019. D.E. Karn Generating Facility Bottom Ash Pond CCR Removal Documentation Report. Prepared for Consumers Energy Company.
- TRC. October 2017. Groundwater Statistical Evaluation Plan DE Karn Power Plant, Bottom Ash Pond, Essexville, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2018. Annual Groundwater Monitoring Report DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.
- TRC. January 2019. 2018 Annual Groundwater Monitoring Report DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.
- TRC. September 2019. Assessment of Corrective Measures DE Karn Bottom Ash Pond Coal Combustion Residual Unit. Prepared for Consumers Energy Company.
- TRC. November 2020. Karn Lined Impoundment Hydrogeological Monitoring Plan for the DE Karn Power Plant Lined Impoundment, Essexville, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2022. October 2021 Assessment Monitoring Data Summary and Statistical Evaluation – DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1 Summary of Groundwater Elevation Data DE Karn – RCRA CCR Monitoring Program Essexville, Michigan

	тос		Screen Interval	May 2, 2022		
Well Location	Elevation (ft)	Geologic Unit of Screen Interval	Elevation (ft)	Depth to Water (ft BTOC)	Groundwater Elevation (ft)	
Background			<u> </u>	()		
MW-15002	587.71	Sand	580.9 to 570.9	6.61	581.10	
MW-15008	585.36	Sand with clay	578.7 to 568.7	4.38	580.98	
MW-15016	586.49	Sand	581.2 to 578.2	3.66	582.83	
MW-15019	586.17	Sand and Sand/Clay	579.5 to 569.5	5.31	580.86	
DEK Bottom Ash Pon	d		<u>, </u>			
DEK-MW-15002	590.87	Sand	578.3 to 575.3	6.50	584.37	
DEK-MW-15005	589.72	Sand	572.3 to 567.3	9.64	580.08	
DEK-MW-15006	589.24	Sand	573.0 to 568.0	9.12	580.12	
DEK Bottom Ash Pon		poundment	11			
DEK-MW-18001	593.47	Sand	579.2 to 574.2	8.10	585.37	
Karn Lined Impoundn	nent	•	+ +			
DEK-MW-15003	602.74	Sand	578.8 to 574.8	16.80	585.94	
OW-10	591.58	Silty Sand and Silty Clay	576.0 to 571.0	6.43	585.15	
OW-11	607.90	Silt/Fly Ash	587.5 to 582.5	22.06	585.84	
OW-12	603.10	Silty Sand	584.2 to 579.2	17.05	586.05	
DEK Nature and Exter	nt		11			
DEK-MW-15004	611.04	Sand	576.6 to 571.6	28.22	582.82	
MW-01	597.02	Sand	573.0 to 570.0	17.08	579.94	
MW-03	597.30	Sand	569.8 to 566.8	17.37	579.93	
MW-06	589.44	Sand and Silty Sand	578.5 to 563.5	9.26	580.18	
MW-08	598.78	Sand and Silty Clay	580.9 to 570.9	17.79	580.99	
MW-10	596.97	Sand	582.5 to 572.5	16.90	580.07	
MW-12	598.60	Sand	583.9 to 573.9	18.61	579.99	
MW-14	594.37	Sand and Silty Clay	584.7 to 574.7	14.43	579.94	
MW-16	595.80	Sand and Sand/Bottom Ash	584.1 to 574.1	15.84	579.96	
MW-22	598.99	Ash/Sand	571.4 to 568.4	16.78	582.21	
MW-23	595.57	Ash/Sand	576.9 to 571.9	13.92	581.65	
DEK Static Water Leve						
MW-02	597.34	Sand and Silty Clay	572.5 to 567.5	17.38	579.96	
MW-04	598.01	NR	569.5 to 564.5	18.17	579.84	
MW-17	597.91	Sand	577.0 to 574.0	12.91	585.00	
MW-18	609.22	Silty Sand and Silty Clay	575.8 to 573.8	25.86	583.36	
MW-19	597.28	NR	572.1 to 567.1	16.90	580.38	
MW-20	632.75	Sand	582.3 to 579.3	52.70	580.05	
MW-21	632.91	Sand	587.1 to 584.1	51.20	581.71	
OW-01	631.33	NR	572.5 to 567.5	51.22	580.11	
OW-02	598.01	Fly Ash	579.4 to 576.4	15.55	582.46	
OW-03	597.94	Fly Ash and Sand	573.6 to 568.6	17.53	580.41	
OW-04	590.21	Sand and Bottom/Fly Ash	579.1 to 574.1	10.25	579.96	
OW-05	593.53	Sand	576.9 to 571.9	13.49	580.04	
OW-06	603.95	NR	580.9 to 575.9	22.00	581.95	
OW-07	596.41	Ash	583.3 to 580.3	14.84	581.57	
OW-08	593.93	NR	581.0 to 576.0	10.78	583.15	
OW-09	593.45	NR	585.5 to 580.5	10.25	583.20	
OW-13	588.52	NR	579.5 to 574.5	4.08	584.44	
OW-15	587.75	NR	572.8 to 567.8	4.40	583.35	

Notes:

Survey data from: Rowe Professional Services Company (Nov. 2015) and Consumers Energy Company drawings: SG-21733, Sheet 1, Rev. G (Karn, 11/27/18); and SG=21733, Sheet 2, Rev. C (Weadock, 11/27/18).

Elevation in feet relative to North American Vertical Datum 1988 (NAVD 88).

TOC: Top of well casing.

ft BTOC: Feet below top of well casing.

NR: Not Recorded

Table 2Summary of Field Parameters: May 2022DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program
Essexville, Michigan

Sample Location	Sample Date	Dissolved Oxygen	Oxidation Reduction Potential	рН	Specific Conductivity	Temperature	Turbidity			
		(mg/L)	(mV)	(SU)	(umhos/cm)	(°C)	(NTU)			
Background	3ackground									
MW-15002	5/2/2022	0.00	-49.7	6.5	5,911	9.2	10.0			
MW-15008	5/2/2022	0.05	-73.2	6.4	1,347	8.5	9.5			
MW-15016	5/3/2022	0.01	-84.0	6.7	1,390	8.1	10.0			
MW-15019	5/2/2022	0.01	-71.1	6.5	1,414	7.3	4.0			
Karn Bottom Ash Po	ond									
DEK-MW-15002	5/3/2022	0.01	-95.3	7.0	884	8.9	3.8			
DEK-MW-15003	5/3/2022	0.15	-198.2	7.9	379	15.6	2.2			
DEK-MW-15004	5/4/2022		-99.0	7.3	1,068	12.6	6.0			
DEK-MW-15005	5/3/2022	0.02	-101.0	7.1	1,036	9.6	4.4			
DEK-MW-15006	5/3/2022	0.12	-75.5	7.4	713	10.2	2.1			
DEK-MW-18001	5/3/2022		-76.3	7.6	983	9.6	4.9			

Notes:

mg/L - Milligrams per Liter.

mV - Millivolts.

SU - Standard units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius

NTU - Nephelometric Turbidity Unit.

-- = Parameter Not Measured

Table 3 Summary of Groundwater Sampling Results (Analytical): May 2022 DE Karn & JC Weadock Background – RCRA CCR Monitoring Program Essexville, Michigan

					Sample Location:	MW-15002	MW-15008	MW-15016	Γ
					Sample Date:	5/2/2022	5/2/2022	5/3/2022	1
				MI Non-					
Constituent	Unit	EPA MCL	MI Residential*	Residential*	MI GSI^		Backg	ground	
Appendix III ⁽¹⁾									
Boron	ug/L	NC	500	500	4,000	103	112	329	
Calcium	mg/L	NC	NC	NC	500 ^{EE}	238	89.5	216	
Chloride	mg/L	250**	250 ^E	250 ^E	50	2,210	197	243	
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	
Sulfate	mg/L	250**	250 ^E	250 ^E	500 ^{EE}	6	4.99	267	
Total Dissolved Solids	mg/L	500**	500 ^E	500 ^E	500	4,240	783	1,390	
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 [⊑]	6.5 - 9.0	6.5	6.4	6.7	
Appendix IV ⁽¹⁾									
Antimony	ug/L	6	6.0	6.0	2.0	< 1	< 1	< 1	
Arsenic	ug/L	10	10	10	10	14	2	8	
Barium	ug/L	2,000	2,000	2,000	1,200	682	52	72	
Beryllium	ug/L	4	4.0	4.0	33	< 1	< 1	< 1	
Cadmium	ug/L	5	5.0	5.0	2.5	< 0.2	< 0.2	< 0.2	
Chromium	ug/L	100	100	100	11	3	1	1	
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	
Lead	ug/L	NC	4.0	4.0	14	< 1	< 1	< 1	
Lithium	ug/L	NC	170	350	440	16	16	80	
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	
Molybdenum	ug/L	NC	73	210	120	< 5	< 5	< 5	
Radium-226	pCi/L	NC	NC	NC	NC	1.37	< 0.447	< 0.368	
Radium-228	pCi/L	NC	NC	NC	NC	3.30	< 0.588	< 0.611	
Radium-226/228	pCi/L	5	NC	NC	NC	4.68	0.826	0.624	
Selenium	ug/L	50	50	50	5	54	< 1	2	
Thallium	ug/L	2	2.0	2.0	2.0	< 2	< 2	< 2	
Additional MI Part 115 ⁽²⁾									
Iron	ug/L	300**	300 ^E	300 ^E	500,000EE	16,100	15,500	8,020	
Copper	ug/L	1,000**	1,000 ^E	1,000 ^E	20	3	< 1	5	
Nickel	ug/L	NC	100	100	120	14	5	13	
Silver	ug/L	100**	34	98	0.2	< 0.2	< 0.2	< 0.2	
Vanadium	ug/L	NC	4.5	62	27	15	6	3	
Zinc	ug/L	5,000**	2,400	5,000E	260	23	< 10	< 10	

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria.

* - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

** - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.

- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- $^{\mathsf{E}}$ Criterion is the aesthetic drinking water value per footnote {E}.
- $^{\text{EE}}$ Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- (1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

(2) Per Michigan Part 115 Amendments - Public Act No. 640 of 2018 Section 11511a(3)(c) and 11519b(2) additional detection

monitoring constituents (iron) and assessment monitoring constituents (copper, nickel, silver, vanadium, and zinc) are reported.

 $\ensuremath{\textbf{BOLD}}$ value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

MW-15019
5/2/2022
236
236 139
324
< 1,000
62.5
1,200
6.5
< 1
2
308
< 1
< 0.2
1
< 6
< 1,000
< 1
< 1 12
< 0.2
< 5 < 0.579
< 0.579
1.83
2.11
2
< 2
21,000
< 1
8
< 0.2
<u>< 0.2</u> 3
< 10

Table 4 Summary of Groundwater Sampling Results (Analytical): May 2022 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

					Sample Location:	DEK-MW-15002	DEK-MW-15005	DEK-MW-15006	DEK-MW-18001
					Sample Date:	5/3/2022	5/3/2022	5/3/2022	5/3/2022
				MI Non-			downo	radient	
Constituent	Unit	EPA MCL	MI Residential*	Residential*	MI GSI^		downg	Jiadient	
Appendix III ⁽¹⁾									
Boron	ug/L	NC	500	500	4,000	1,100	787	893	869
Calcium	mg/L	NC	NC	NC	500 ^{EE}	105	127	65	63.7
Chloride	mg/L	250**	250 ^E	250 ^E	50	99.3	141	68.6	65.9
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500 ^{EE}	172	151	173	187
Total Dissolved Solids	mg/L	500**	500 ^E	500 ^E	500	779	909	597	555
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	7.0	7.1	7.4	7.6
Appendix IV ⁽¹⁾									
Antimony	ug/L	6	6.0	6.0	2.0	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	10	10	10	2	54	25	113
Barium	ug/L	2,000	2,000	2,000	1,200	134	305	68	164
Beryllium	ug/L	4	4.0	4.0	33	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	2.5	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	1	< 1	1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	14	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	28	36	16	22
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	120	< 5	12	6	< 5
Radium-226	pCi/L	NC	NC	NC	NC	< 0.423	0.620	< 0.449	0.294
Radium-228	pCi/L	NC	NC	NC	NC	< 0.530	1.08	0.870	0.592
Radium-226/228	pCi/L	5	NC	NC	NC	0.636	1.70	1.29	0.885
Selenium	ug/L	50	50	50	5.0	1	1	< 1	2
Thallium	ug/L	2	2.0	2.0	2.0	< 2	< 2	< 2	< 2
Additional MI Part 11									
Iron	ug/L	300**	300 ^E	300 ^E	500,000 ^{EE}	1,910	1,570	715	1,360
Copper	ug/L	1,000**	1,000 ^E	1,000 ^E	20	1	2	< 1	< 1
Nickel	ug/L	NC	100	100	120	6	7	4	3
Silver	ug/L	100**	34	98	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Vanadium	ug/L	NC	4.5	62	27	< 2	< 2	< 2	< 2
Zinc	ug/L	5,000**	2,400	5,000 ^E	260	< 10	< 10	< 10	< 10

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyzed.

* - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

** - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}

- If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.

E - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

(1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.

(2) Per Michigan Part 115 Amendment - Public Act No. 640 of 2018 Section 11511a(3)(c) and 11519b(2) additional detection

monitoring constituent (iron) and assessment monitoring constituents (copper, nickel, silver, vanadium, and zinc) are reported.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

Table 5 Summary of Groundwater Protection Standard Exceedances – May 2022 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

Constituent	Units	s GWPS	DEW-MW-15002		DEK-MW-15005		DEK-MW-15006		DEK-MW-18001	
			LCL	UCL	LCL	UCL	LCL	UCL	LCL	UCL
Arsenic	ug/L	21	1.7	14	26	82	21	26	67	110

Notes:

ug/L - micrograms per Liter.

GWPS - Groundwater Protection Standard as established in TRC's Technical Memorandum dated October 15, 2018.

UCL - Upper Confidence Limit ($\alpha = 0.01$) of the downgradient data set.

LCL - Lower Confidence Limit ($\alpha = 0.01$) of the downgradient data set.

Indicates a statistically significant exceedance of the GWPS. An exceedance occurs when the LCL is greater than the GWPS.

Figures

S:\1-PROJECTS\Consumers_Energy_Company\Michigan\CCR_GW\2017_269767\367388-001-004.mxd -- Saved By: SMAJOR on 7/15/2020, 14:00:57 PM

LEGEND

- \Rightarrow BACKGROUND MONITORING WELL
- DEK BOTTOM ASH POND & LINED + IMPOUNDMENT MONITORING WELL
- DEK BOTTOM ASH POND MONITORING WELL ÷
- DEK LINED IMPOUNDMENT MONITORING WELL
- Ø DECOMMISSIONED MONITORING WELL
- ÷ JCW BOTTOM ASH POND MONITORING WELL
- -JCW LANDFILL CCR WELL
- MONITORING WELL (STATIC WATER LEVEL ONLY)
- LEACHATE HEADWELL **-**
- SURFACE WATER GAUGING STATION Ξ
- NATURE AND EXTENT WELL -**þ**-

SLURRY WALL (APPROXIMATE)

LINED IMPOUNDMENT (COVENANT BOUNDARY)

NOTES

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO. 2018.
- 2. WELL LOCATIONS SURVEYED BY ROWE PROFESSIONAL SERVICES COMPANY ON 11/4/2015.
- NOAA/NATIONAL OCEANIC SERVICE GREAT LAKES 3. GAUGING STATION, ESSEXVILLE, MI (ID: 9075035).
- A SINGLE WELL SYMBOL IS SHOWN FOR WELL PAIRS MW-01/MW-02, MW-03/MW-04, OW-02/MW-22, AND OW-07/MW-23 AS THE WELLS ARE LOCATED WITHIN 15-FT OF EACH OTHER.

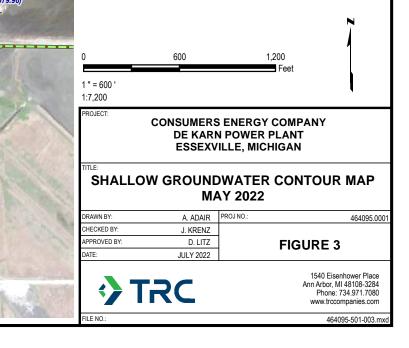
0 1 " = 1,000 ' 1:12,000	1,000	2	2,000 Feet			
PROJECT: CONSUMERS ENERGY COMPANY DE KARN AND JC WEADOCK POWER PLANTS ESSEXVILLE, MICHIGAN						
DRAWN BY:	A. ADAIR	PROJ NO.:		464095.000		
CHECKED BY:	K. LOWERY					
APPROVED BY:	D. LITZ	1	FIGURI	= 2		
DATE:	JULY 2022	1	11001.			
? T	RC		Ann Arl Ph	Eisenhower Place bor, MI 48108-3284 ione: 734.971.7080 .trccompanies.com		
FILE NO.:				464095-001-003.m		

464095-001-003.mx

LEGEND

- DEK BOTTOM ASH POND & LINED IMPOUNDMENT MONITORING WELL
- DEK BOTTOM ASH POND MONITORING
- + DEK LINED IMPOUNDMENT MONITORING WELL
- DECOMMISSIONED WELL
- ✤ MONITORING WELL (STATIC WATER LEVEL ONLY)
- SURFACE WATER GAUGING STATION

SLURRY WALL (APPROXIMATE)


LINED IMPOUNDMENT (COVENANT BOUNDARY)

(580.50) GROUNDWATER ELEVATION (FEET)

(NU) NOT USED

<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, 2018.
- 2. WELL LOCATIONS SURVEYED BY ROWE PROFESSIONAL SERVICES COMPANY ON 11/4/2015.
- 3. NOAA/NATIONAL OCEANIC SERVICE GREAT LAKES GAUGING STATION, ESSEXVILLE, MI (ID: 9075035).
- 4. GROUNDWATER ELEVATIONS DISPLAYED IN FEET RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM OF 1988.

Appendix A Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event May 2022 DE Karn Bottom Ash Pond

Groundwater samples were collected by TRC for the May 2022 sampling event. Samples were analyzed for total metals, anions, total dissolved solids, ammonia, and alkalinity by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The sulfide analyses were subcontracted to Merit Laboratories, Inc. (Merit) in East Lansing, Michigan and the total and dissolved organic carbon analyses were subcontracted to Brighton Analytical LLC (BAL) in Brighton, Michigan. The laboratory analytical results were reported in laboratory sample delivery group (SDGs) 22-0436, S35620.01(01), and 81649.

During the May 2022 sampling event, a groundwater sample was collected from each of the following wells:

DEK-MW-15002
 DEK-MW-15005
 DEK-MW-15006

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate, Nitrate, Nitrite)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW-846 6020B/7470A
Alkalinity (Bicarbonate, Carbonate, and Total)	SM 2320B
Ammonia	SM 4500 NH3(h)
Sulfide	SM 4500 S2D
Total and Dissolved Organic Carbon (TOC, DOC)	SM 5310B

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;

- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services and Merit. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total metals, anions, alkalinity, TDS, ammonia, and sulfide analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, optional Piper diagram analyses, and additional Part 115 constituents will be utilized for the purposes of the detection monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary:

- TOC and DOC were not detected in the method blank.
- One field blank (FB-DEK-BAP) and one equipment blank (EB-DEK-BAP) were collected with this data set. Total metals, nitrate, nitrite, ammonia, sulfide, and TOC/DOC were not detected in the blanks with the following exception.
 - DOC was detected at 1,300 ug/L in FB-DEK-BAP. The positive results for DOC in all groundwater samples are potential false positive results as summarized in the attached table, Attachment A.

- MS and MSD analyses were performed on sample DUP-DEK-BAP-01 for TOC/DOC. All criteria were met.
- The field duplicate pair samples were DUP-DEK-BAP-01 with DEK-MW-15006; relative percent differences (RPDs) between the parent and duplicate sample were within the QC limits.
- Laboratory duplicate analyses were not performed on a sample from this data set.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data DE Karn Bottom Ash Pond – CCR Monitoring Program Essexville, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
DEK-MW-15002 DEK-MW-15005 DEK-MW-15006 DUP-DEK-BAP-01	5/3/2022 5/3/2022 5/3/2022 5/3/2022	DOC	Potential false positive results due to field blank contamination.

Laboratory Data Quality Review Groundwater Monitoring Event May 2022 DE Karn Bottom Ash Pond

Groundwater samples were collected by TRC for the May 2022 sampling event. Samples were analyzed for radium by Eurofins-TestAmerica in St. Louis, Missouri (Eurofins TA – St. Louis). The laboratory analytical results were reported in laboratory sample delivery group (SDG) 240-166154-1.

During the May 2022 sampling event, a groundwater sample was collected from each of the following wells:

DEK-MW-15002
 DEK-MW-15005
 DEK-MW-15006

Each sample was analyzed for one or more of the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0, EPA 904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;

- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary:

- Target analytes were not detected in the method blanks.
- One equipment blank (DEK-MW-EB) was collected. Target analytes were not detected in the equipment blank sample.
- LCS/LCSD recoveries and relative percent differences or relative error ratios (RER) for all target analytes were within laboratory control limits with the following exception.
 - The RER (1.12) for radium 228 was outside of the laboratory control limit (1.0) in the LCS/LCSD associated with all samples. Positive detections of radium 228 in select samples should be considered estimated as summarized in the attached table, Attachment A.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this SDG.
- The field duplicate pair samples were DUP-DEK-BAP/DEK-MW-15006. All criteria were met.
- Carrier recoveries were within 40-110%.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data DE Karn Bottom Ash Pond – CCR Monitoring Program Essexville, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue					
DEK-MW-15005	5/3/2022	Radium 228	Detected results are estimated due to Relative Error Ratio (RER) for LCS/LCDS outside of criteria					
DEK-MW-15006	5/3/2022	Raululli 220	Detected results are estimated due to Relative Error Ratio (RER) for LCS/LCDS outside of criteria					

Laboratory Data Quality Review Groundwater Monitoring Event May 2022 DE Karn Bottom Ash Pond and Lined Impoundment

A groundwater sample was collected by TRC for the May 2022 sampling event. The sample was analyzed for total metals, anions, total dissolved solids, ammonia, and alkalinity by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The sulfide analysis was subcontracted to Merit Laboratories, Inc. (Merit) in East Lansing, Michigan and the total and dissolved organic carbon analyses were subcontracted to Brighton Analytical LLC (BAL) in Brighton, Michigan. The laboratory analytical results were reported in laboratory sample delivery group (SDGs) 22-0437, S35622.01(01), and 81646.

During the May 2022 sampling event, a groundwater sample was collected from the following well:

DEK-MW-18001

The sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW-846 6020B/7470A
Alkalinity (Bicarbonate, Carbonate, and Total)	SM 2320B
Ammonia	SM 4500 NH3(h)
Sulfide	SM 4500 S2D
Total and Dissolved Organic Carbon (TOC, DOC)	SM 5310B

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;

- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates, when collected. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the metals, anions, TDS, and alkalinity analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, optional Piper Diagram analyses, and additional Part 115 constituents will be utilized for the purposes of a detection or assessment monitoring program.
- Data are usable for the purposes of the detection or assessment monitoring program.
- When the data are evaluated through a detection or assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- TOC and DOC were not detected in the method blank.
- A field blank was not collected with this data set.
- An equipment blank was not collected with this data set.

- MS and MSD analyses were performed on sample DEK-MW-18001 for total metals, anions, ammonia, alkalinity, sulfide, TOC, and DOC. The recoveries were within the acceptance limits. Relative percent differences (RPDs) were not provided by the laboratory and therefore were not evaluated; further, MS/MSD concentrations were not provided by the laboratory with the exception of the sulfide analysis which met RPD criteria. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.
- A field duplicate pair was not collected with this data set.
- Laboratory duplicate analyses were not performed on a sample from this data set.

Laboratory Data Quality Review Groundwater Monitoring Event May 2022 DE Karn Bottom Ash Pond and Lined Impoundment

A groundwater sample was collected by TRC for the May 2022 sampling event. The sample was analyzed for radium by Eurofins-TestAmerica in St. Louis, Missouri (Eurofins TA – St. Louis). The laboratory analytical results were reported in laboratory sample delivery group (SDG) 240-166148-1.

During the May 2022 sampling event, a groundwater sample was collected from the following well:

DEK-MW-18001

The sample was analyzed for the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0, EPA 904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;

- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary:

- Target analytes were not detected in the method blanks.
- No equipment or field blank were collected.
- LCS/LCSD recoveries and relative percent differences or relative error ratios (RER) for all target analytes were within laboratory control limits with the following exception.
 - The RER (1.12) for radium 228 was outside of the laboratory control limit (1.0) in the LCS/LCSD associated with the sample. The positive detection of radium 228 in sample DEK-MW-18001 should be considered estimated as summarized in the attached table, Attachment A.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this SDG.
- A field duplicate pair was not collected.
- Carrier recoveries were within 40-110%.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data DE Karn Lined Impoundment – CCR Monitoring Program Essexville, Michigan

Date	Non-Conformance/Issue		
DEK-MW-18001	5/3/2022	Radium 228	Detected result should be considered estimated due to LCS/LCSD Relative Error Ratio (RER) outside of criteria.

Laboratory Data Quality Review Groundwater Monitoring Event May 2022 JC Weadock/DE Karn Background

Groundwater samples were collected by TRC for the May 2022 sampling event. Samples were analyzed for total metals, anions, and total dissolved solids by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The laboratory analytical results were reported in laboratory sample delivery group (SDG) 22-0443.

During the May 2022 sampling event, a groundwater sample was collected from each of the following wells:

MW-15002

MW-15008

MW-15016

MW-15019

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW-846 6020B/7470A

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and laboratory control samples were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the metals, anions, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, and additional Part 115 constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary:

- One field blank (FB-Background) was collected. Total metals were not detected in this blank sample.
- MS and MSD analyses were not performed on a sample from this data set.
- The field duplicate pair samples were DUP-Background and MW-15008; all criteria were met.
- Laboratory duplicate analyses were not performed on a sample from this data set.

Laboratory Data Quality Review Groundwater Monitoring Event May 2022 JC Weadock/Karn DEK Background

Groundwater samples were collected by TRC for the May 2022 sampling event. Samples were analyzed for radium by Eurofins-TestAmerica in St. Louis, Missouri (Eurofins TA – St. Louis). The laboratory analytical results were reported in laboratory sample delivery group (SDG) 240-166150-1.

During the May 2022 sampling event, a groundwater sample was collected from each of the following wells:

- MW-15002 MW-15008 MW-15016
- MW-15019

Each sample was analyzed for the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0, EPA 904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
 - Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
 - Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
 - Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary:

- Target analytes were not detected in the method blanks.
- One equipment blank (EB-04) was collected. Target analytes were not detected in the equipment blank sample.
- LCS/LCSD recoveries and relative percent differences or relative error ratios (RER) for all target analytes were within laboratory control limits with the following exception.
 - The RER (1.12) for radium 228 was outside of the laboratory control limit (1.0) in the LCS/LCSD associated with all samples. Positive detections of radium 228 in select samples should be considered estimated as summarized in the attached table, Attachment A.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this SDG.
- The field duplicate pair samples were DUP-04/MW-15008. All criteria were met.
- Carrier recoveries were within 40-110%.

Attachment A Summary of Data Non-Conformances for Groundwater Analytical Data JC Weadock and DE Karn Background Wells – CCR Monitoring Program Essexville, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
MW-15002	5/2/2022		
MW-15019	5/2/2022	Radium 228	Detected results should be considered estimated due to LCS/LCSD Relative Error Ratio (RER) outside of criteria.
DUP-04	5/2/2022		

Appendix B Statistical Evaluation of May 2022 Assessment Monitoring Sampling Event

Technical Memorandum

Date:	June 29, 2022
То:	J.R. Register, Consumers Energy
From:	Darby Litz, TRC Alex Eklund, TRC
Project No.:	464095.0001.0000 Phase 002, Task 002
Subject:	Statistical Evaluation of May 2022 Assessment Monitoring Sampling Event DE Karn Bottom Ash Pond, Consumers Energy Company, Essexville, Michigan

During the statistical evaluation of the initial assessment monitoring event (May 2018), arsenic was present in one or more downgradient monitoring wells at statistically significant levels exceeding the Groundwater Protection Standards (GWPSs). Therefore, Consumers Energy Company (Consumers Energy) initiated an Assessment of Corrective Measures (ACM) within 90 days from when the Appendix IV exceedance was determined. The ACM was completed on September 11, 2019. Currently, Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule ¹ at the DE Karn Power Plant Bottom Ash Pond (Karn Bottom Ash Pond).

An assessment monitoring event was conducted on May 2 through 4, 2022. In accordance with §257.95, the assessment monitoring data must be compared to GWPSs to determine whether or not Appendix IV constituents are detected at statistically significant levels above the GWPSs. GWPSs were established in accordance with §257.95(h), as detailed in the October 15, 2018 Groundwater Protection Standards technical memorandum, which was also included in the 2018 Annual Groundwater Monitoring Report (TRC, January 2019).

The statistical evaluation of the assessment monitoring event data indicates the following constituent is present at statistically significant levels exceeding the GWPS in downgradient monitoring wells at the Karn Bottom Ash Pond:

Constituent	GWPS	#Downgradient Wells Observed
Arsenic	21 ug/L	2 of 4

The results of the assessment monitoring statistical evaluation for the downgradient wells are consistent with the results of the previous assessment monitoring data statistical evaluations, indicating that arsenic is the only constituent present at concentrations above the GWPS. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue

¹ USEPA final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) published April 17, 2015, as amended per Phase One, Part One of the CCR Rule (83 FR 36435).

executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

Assessment Monitoring Statistical Evaluation

When the initial assessment monitoring event was completed in May 2018, the compliance well network at the Karn Bottom Ash Pond included six wells encircling the unit (DEK-MW-15002 through DEK-MW-15006 and DEK-MW-18001). Starting with the May 2021 statistical evaluation, the compliance well network includes DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001. Due to changes in groundwater flow direction on site, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer located downgradient of the unit and were determined to be no longer indicative of groundwater conditions influenced by the Karn Bottom Ash Pond. Therefore, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer included for statistical analysis.

Following the assessment monitoring sampling event, compliance well data for the DEK BAP were evaluated in accordance with the Groundwater Statistical Evaluation Plan (Stats Plan) (TRC, October 2017). An assessment monitoring program was developed to evaluate concentrations of CCR constituents present in the uppermost aquifer relative to acceptable levels (i.e., GWPSs). To evaluate whether or not a GWPS exceedance is statistically significant, the difference in concentration observed at the downgradient wells during a given assessment monitoring event compared to the GWPS must be large enough, after accounting for variability in the sample data, that the result is unlikely to have occurred merely by chance. Consistent with the Unified Guidance ², the preferred method for comparisons to a fixed standard is confidence limits. Based on the number of historical observations in the representative sample population, the sample mean, the sample standard deviation, and a selected confidence level (i.e., 99 percent), an upper and lower confidence limit is calculated. The true mean concentration, with 99 percent confidence, will fall between the lower and upper confidence limits.

The concentrations observed in the downgradient wells are deemed to be a statistically significant exceedance when the 99 percent lower confidence limit of the downgradient data exceeds the GWPS. If the confidence interval straddles the GWPS (i.e., the lower confidence level is below the GWPS, but the upper confidence level is above), the statistical test result indicates that there is insufficient confidence that the measured concentrations are different from the GWPS and thus no compelling evidence that the measured concentration is a result of a release from the CCR unit versus the inherent variability of the sample data. This statistical approach is consistent with the statistical methods for assessment monitoring presented in §257.93(f) and (g). Statistical evaluation methodologies built into the CCR Rule, and numerous other federal rules, are key in determining whether or not individually measured data points represent a concentration increase over the baseline or a fixed standard (such as a GWPS in an assessment monitoring program).

For each detected Appendix IV constituent, the concentrations from each well were first compared directly to the GWPS, as shown on Table 1. Parameter-well combinations that included a direct exceedance of the GWPS within the past eight sampling events (November 2018 through May 2022) were retained for further analysis. Arsenic in each of the downgradient monitoring wells at the Karn

² USEPA. 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance*. Office of Conservation and Recovery. EPA 530/R-09-007.

Technical Memorandum

Bottom Ash Pond had individual results exceeding the GWPS.

Groundwater data were then evaluated utilizing SanitasTM statistical software. SanitasTM is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in the Unified Guidance. Within the SanitasTM statistical program, confidence limits were selected to perform the statistical comparison of compliance data to a fixed standard. Parametric and non-parametric confidence intervals were calculated for each of the CCR Appendix IV constituents using a using a per test³ 99 percent confidence level, i.e., a significance level (α) of 0.01. The following narrative describes the methods employed, the results obtained and the SanitasTM output files are included as an attachment.

The statistical data evaluation included the following steps:

- Review of data quality checklists for the data sets;
- Graphical representation of the monitoring data as time versus concentration by well/constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of visual trends apparent in the graphical representations for statistical significance;
- Evaluation of percentage of non-detects for each well/constituent pair;
- Distribution of the data; and
- Calculation of the confidence intervals for each cumulative dataset.

The results of these evaluations are presented and discussed below.

Data from each round were evaluated for completeness, overall quality, and usability and were deemed appropriate for the purposes of the CCR assessment monitoring program. Initially, the assessment monitoring results (November 2018 through May 2022) were visually assessed for potential trends. No outliers were identified. Arsenic concentrations at DEK-MW-15002 appear to exhibit a downward trend on the time-series chart (Attachment 1). This data set was tested further in Sanitas™ utilizing Sen's Slope to estimate the average rate of change in concentration over time and utilizing the Mann-Kendall trend test to test for significance of the trend at the 98% confidence level. The trend test showed that arsenic concentration at DEK-MW-15002 is generally decreasing with time, as evidenced by the negative Sen's Slope. Additionally, the decrease in concentration at DEK-MW-15002 was shown to be statistically significant and arsenic concentration have been below the GWPS for the seven most recent sampling events (Attachment 1). The decrease in arsenic concentrations at DEK-MW-15002 is causing the confidence interval to widen. Calculating a confidence interval around a trending data set incorporates not only variability present naturally in the underlying dataset, but also incorporates variability due to the trend itself. Arsenic concentrations have already triggered assessment monitoring (e.g., not a newly identified GWPS exceedance) and an interim measure has been initiated through the removal of CCR from the bottom ash pond in 2019; therefore, traditional confidence interval calculations are presented in this statistical evaluation until more post-CCR removal data are available. If trends continued to be observed as additional post-CCR removal data are collected, confidence

³ Confidence level is assessed for each individual comparison (i.e. per well and per constituent).

Technical Memorandum

bands may be a more appropriate assessment to determine compliance with the CCR Rule. Confidence bands are selected by the UG as the appropriate method for calculating confidence intervals on trending data. A confidence band calculates upper and lower confidence limits at each point along the trend to reduce variability and create a narrower confidence interval. At least 8 to 10 measurements should be available when computing a confidence band around a linear regression, and as of the May 2022 event, six semi-annual sampling events have been completed post-CCR removal.

The SanitasTM software was used to test compliance at the downgradient monitoring wells using the confidence interval method for the most recent 8 sampling events. Eight independent sampling events provide the appropriate density of data as recommended per the UG yet are collected recently enough to provide an indication of current condition. The tests were run with a per-test significance of $\alpha = 0.01$. The software outputs are included in Attachment 1 along with data reports showing the values used for the evaluation. The percentage of non-detect observations for well/constituent pairs with a direct GWPS exceedance are also included in Attachment 1. Non-detect data was handled in accordance with the Stats Plan for the purposes of calculating the confidence intervals.

The Sanitas[™] software generates an output graph for the confidence intervals of each well. The arsenic data set at DEK-MW-15006 and DEK-MW-18001 were found to be normally distributed, DEK-MW-15005 was normalized using a square root transformation, and DEK-MW-15002 was normalized using a natural log transformation, . The confidence interval test compares the lower confidence limit to the GWPS. The statistical evaluation of the Appendix IV parameters shows exceedances for arsenic at two of the four monitoring locations (DEK-MW-15005 and DEK-MW-18001). The results of the assessment monitoring statistical evaluation for the other downgradient wells are consistent with the results of the previous assessment monitoring data statistical evaluations, indicating that arsenic is the only constituent present at concentrations above the GWPS. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

Attachments

 Table 1
 Comparison of Groundwater Sampling Results to Groundwater Protection Standards – November 2018 to May 2022

Attachment 1 Sanitas[™] Output Files

Table

				S	Sample Location:											
			1		Sample Date:	11/5/2018	4/11/2019	10/15/2019	5/13/2020	10/6/2020	10/6/2020	5/3/2021	10/4/2021	5/3/2022		
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS	downgradient										
Appendix III											Field Dup					
Boron	ug/L	NC	NA	619	NA	894	860	1,600	1,390	1,580	1,600	1,420	1,530	1,100		
Calcium	mg/L	NC	NA	302	NA	67.8	72	130	170	126	122	148	73.1	105		
Chloride	mg/L	250*	NA	2,440	NA	83.5	80	410	130	106	102	148	102	99.3		
Fluoride	ug/L	4,000	NA	1,000	NA	< 1,000	< 1,000	< 1,000	< 1,000	1,300	< 1,000	< 1,000	< 1,000	< 1,000		
Sulfate	mg/L	250*	NA	407	NA	77.2	45	150	367	142	139	216	58.3	172		
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	536	560	1,300	1,100	791	776	926	599	779		
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.3	7.5	7.3	7.1	7.1		7.4	7.1	7.0		
Appendix IV																
Antimony	ug/L	6	NA	1	6	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1		
Arsenic	ug/L	10	NA	21	21	31.7	9.0	6.5	3	8	8	2	2	2		
Barium	ug/L	2,000	NA	1,300	2,000	71.6	71	140	196	133	131	211	102	134		
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1		
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Chromium	ug/L	100	NA	3	100	1.4	1.3	< 1.0	< 1	1	1	< 1	1	1		
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6.0	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6		
Fluoride	ug/L	4,000	NA	1,000	4,000	< 1,000	< 1,000	<1,000	< 1,000	1,300	< 1,000	< 1,000	< 1,000	< 1,000		
Lead	ug/L	NC	15	1	15	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1		
Lithium	ug/L	NC	40	180	180	32	26	35	48	35	36	36	29	28		
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Molybdenum	ug/L	NC	100	6	100	< 5.0	< 5.0	< 5.0	< 5	< 5	< 5	< 5	< 5	< 5		
Radium-226	pCi/L	NC	NA	NA	NA	< 0.850	< 0.376	0.334	0.673	< 0.430	< 0.577	0.582	1.47	< 0.423		
Radium-228	pCi/L	5	NA	3.32	5	< 1.39	0.846	0.987	0.899	1.06	< 0.577	0.811	2.29	< 0.530		
Radium-226/228	pCi/L	NC	NA	NA	NA	0.730	0.684	0.654	< 0.763	0.642	< 0.460	< 0.537	0.827	0.636		
Selenium	ug/L	50	NA	2	50	< 1.0	< 1.0	< 1.0	< 1	< 1	1	< 1	3	1		
Thallium	ug/L	2	NA	2	2	< 2.0	< 2.0	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2		

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

All metals were analyzed as total unless otherwise specified.

				Sa	ample Location:												
	-		1		Sample Date:	11/6/2018	4/11/2019	4/11/2019	10/15/2019	10/15/2019	5/13/2020	5/13/2020	10/7/2020	5/3/2021	5/3/2021	10/4/2021	5/3/2022
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS	downgradient											
Appendix III								Field Dup		Field Dup		Field Dup			Field Dup		
Boron	ug/L	NC	NA	619	NA	947	910	910	700	650	863	858	847	926	948	991	787
Calcium	mg/L	NC	NA	302	NA	32.9	31	31	60	59	71.0	72.1	155.0	95.6	97.6	102	127
Chloride	mg/L	250*	NA	2,440	NA	69.1	60	60	64	64	48.0	47.5	52.7	65.2	65.1	82.3	141
Fluoride	ug/L	4,000	NA	1,000	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250*	NA	407	NA	160	140	140	5.2	5.0	18.9	18.9	102	50.8	50.2	57.2	151
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	474	470	470	390	400	419	425	687	534	561	546	909
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.9	7.7		7.6		8.1		7.7	7.6		7.1	7.1
Appendix IV																	
Antimony	ug/L	6	NA	1	6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	NA	21	21	35.0	24	24	120	120	34	34	42	45	44	68	54
Barium	ug/L	2,000	NA	1,300	2,000	56.7	46	45	110	100	127	127	248	173	170	192	305
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	NA	3	100	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NA	1,000	4,000	< 1,000	< 1,000	< 1,000	<1,000	<1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	15	1	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	40	180	180	17	15	14	16	15	20	20	45	38	39	41	36
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	100	6	100	45.3	39	38	< 5.0	< 5.0	< 5	< 5	< 5	8	8	7	12
Radium-226	pCi/L	NC	NA	NA	NA	< 0.865	< 0.379	< 0.406	0.165	0.185	< 0.469	< 0.335	0.621	0.291	< 0.187	1.12	0.620
Radium-228	pCi/L	5	NA	3.32	5	< 1.46	< 0.754	< 0.586	0.524	0.682	1.34	0.662	0.875	0.722	0.650	2.06	1.08
Radium-226/228	pCi/L	NC	NA	NA	NA	< 0.598	< 0.754	< 0.586	< 0.456	0.497	1.14	< 0.554	< 0.502	< 0.459	0.479	0.940	1.70
Selenium	ug/L	50	NA	2	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	1	1	2	1
Thallium	ug/L	2	NA	2	2	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations

(SDWR) April 2012.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the

GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

				S	ample Location:												
					Sample Date:	11/5/2018	11/5/2018	4/11/2019	10/14/2019	5/13/2020	10/7/2020	5/3/2021	10/4/2021	10/4/2021	5/3/2022	5/3/2022	
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS	downgradient											
Appendix III							Field Dup							Field Dup		Field Dup	
Boron	ug/L	NC	NA	619	NA	1,340	1,270	1,700	1,200	1,090	1,220	938	1,050	1,080	893	888	
Calcium	mg/L	NC	NA	302	NA	29.4	29.6	35	34	70.4	106	115	117	117	65.0	65.5	
Chloride	mg/L	250*	NA	2,440	NA	87.9	88.3	75	45	71.5	102	63.5	78.9	74.7	68.6	67.9	
Fluoride	ug/L	4,000	NA	1,000	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	1,060	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	
Sulfate	mg/L	250*	NA	407	NA	341	344	320	74	316	296	324	209	196	173	168	
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	792	784	780	450	833	1,010	790	712	708	597	609	
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.9		7.8	7.8	8.1	7.7	7.5	7.3		7.4		
Appendix IV																	
Antimony	ug/L	6	NA	1	6	< 1.0	< 1.0	< 1.0	< 1.0	3	< 1	< 1	< 1	< 1	< 1	< 1	
Arsenic	ug/L	10	NA	21	21	20.9	19.6	21	27	21	27	24	23	24	25	24	
Barium	ug/L	2,000	NA	1,300	2,000	38.5	38.3	43	51	86	141	139	125	126	68	67	
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium	ug/L	100	NA	3	100	< 1.0	< 1.0	< 1.0	1.1	2	6	< 1	< 1	< 1	1	< 1	
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6.0	< 6.0	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6	< 6	
Fluoride	ug/L	4,000	NA	1,000	4,000	< 1,000	< 1,000	< 1,000	<1,000	< 1,000	1,060	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	
Lead	ug/L	NC	15	1	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
Lithium	ug/L	NC	40	180	180	< 10	10	< 10	11	15	22	21	19	19	16	15	
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Molybdenum	ug/L	NC	100	6	100	50.3	48.0	59	11	18	11	9	7	7	6	6	
Radium-226	pCi/L	NC	NA	NA	NA	< 0.885	< 1.06	< 0.459	< 0.159	< 0.370	0.629	0.353	0.797	0.832	< 0.449	0.395	
Radium-228	pCi/L	5	NA	3.32	5	< 1.53	< 1.96	< 0.677	< 0.581	1.01	1.12	1.16	1.50	1.35	0.870	< 0.502	
Radium-226/228	pCi/L	NC	NA	NA	NA	< 0.649	< 0.897	< 0.677	< 0.581	0.780	0.492	0.804	0.704	0.518	1.29	0.742	
Selenium	ug/L	50	NA	2	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	2	2	< 1	1	
Thallium	ug/L	2	NA	2	2	< 2.0	< 2.0	< 2.0	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2	

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

All metals were analyzed as total unless otherwise specified.

Sample Location:				DEK-MW-18001									
					Sample Date:	11/6/2018	4/10/2019	10/15/2019	5/14/2020	10/6/2020	5/3/2021	10/7/2021	5/3/2022
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS				downg	radient			
Appendix III													
Boron	ug/L	NC	NA	619	NA	1,020	970	2,200	1,670	1,740	1,180	1,370	869
Calcium	mg/L	NC	NA	302	NA	51.1	48	84	72.1	71.7	65.2	71.0	63.7
Chloride	mg/L	250*	NA	2,440	NA	76.6	69	81	64.7	60.7	51.6	55.2	65.9
Fluoride	ug/L	4,000	NA	1,000	NA	1,300	1,200	1,000	1,090	1,240	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250*	NA	407	NA	< 2.0	< 2.0	31	51.1	91.9	121	118	187
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	340	360	500	484	476	486	494	555
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.5	7.2	7.3	7.7	7.6	7.3	7.4	7.6
Appendix IV													
Antimony	ug/L	6	NA	1	6	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	NA	21	21	116	68	63	79	85	92	85	113
Barium	ug/L	2,000	NA	1,300	2,000	79.5	75	160	130	136	135	135	164
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	NA	3	100	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6.0	< 6.0	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NA	1,000	4,000	1,300	1,200	1,000	1,090	1,240	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	15	1	15	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	40	180	180	24	24	36	27	26	25	24	22
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	100	6	100	< 5.0	< 5.0	< 5.0	< 5	< 5	< 5	< 5	< 5
Radium-226	pCi/L	NC	NA	NA	NA	< 0.813	0.173	0.206	< 0.608	< 0.473	0.189	0.873	0.294
Radium-228	pCi/L	5	NA	3.32	5	1.56	0.867	0.952	< 0.676	0.591	0.828	1.85	0.592
Radium-226/228	pCi/L	NC	NA	NA	NA	0.811	0.694	0.746	< 0.676	0.463	0.639	0.979	0.885
Selenium	ug/L	50	NA	2	50	< 1.0	< 1.0	< 1.0	< 1	1	< 1	2	2
Thallium	ug/L	2	NA	2	2	< 2.0	< 2.0	< 2.0	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

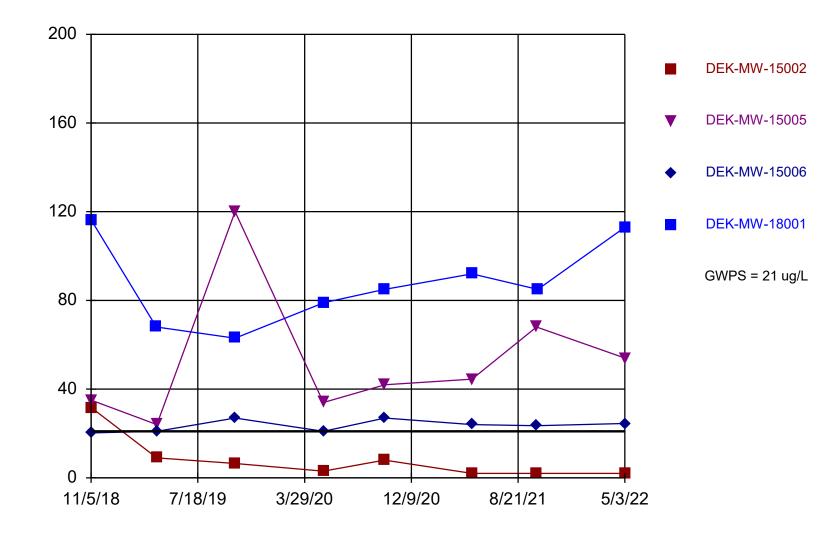
MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

 GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.


* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

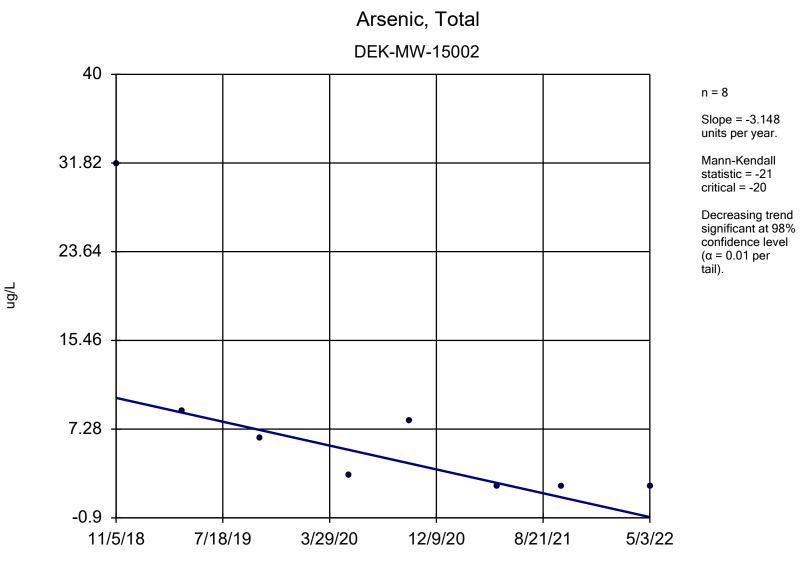
Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

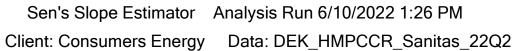
All metals were analyzed as total unless otherwise specified.

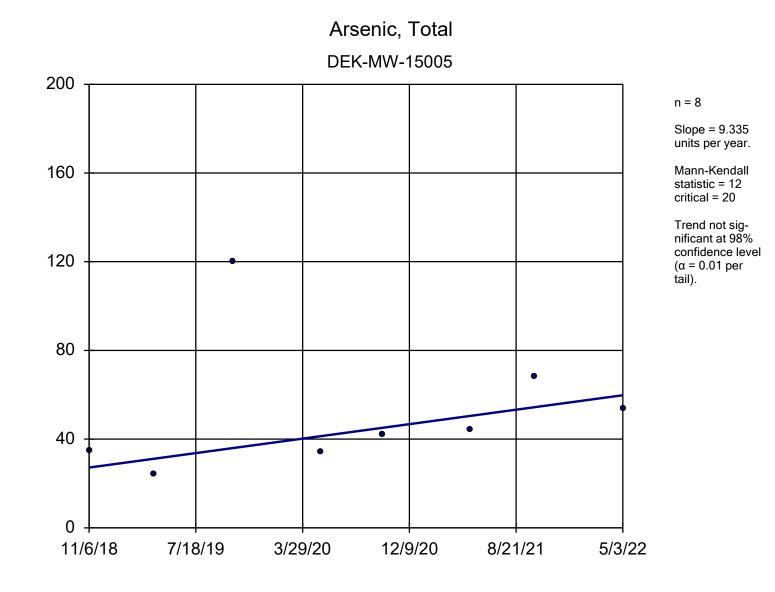
Attachment 1 Sanitas™ Output Files

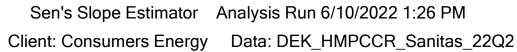
Arsenic Comparison to GWPS

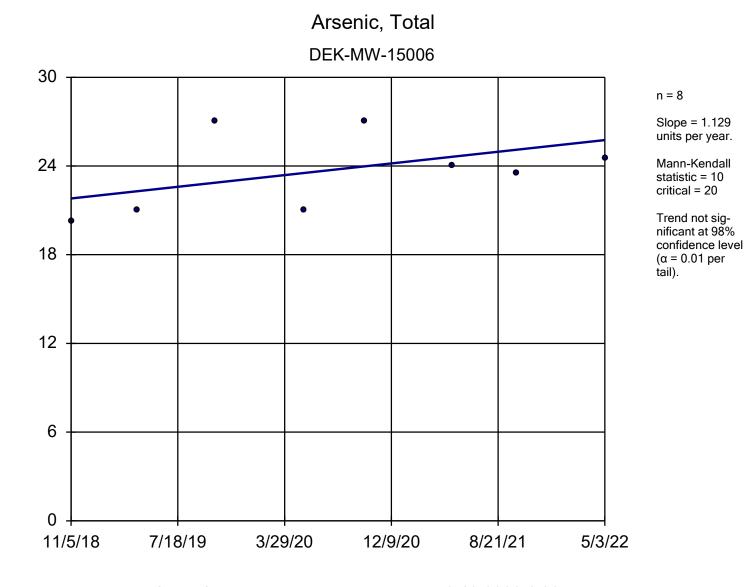
Time Series Analysis Run 6/9/2022 2:46 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

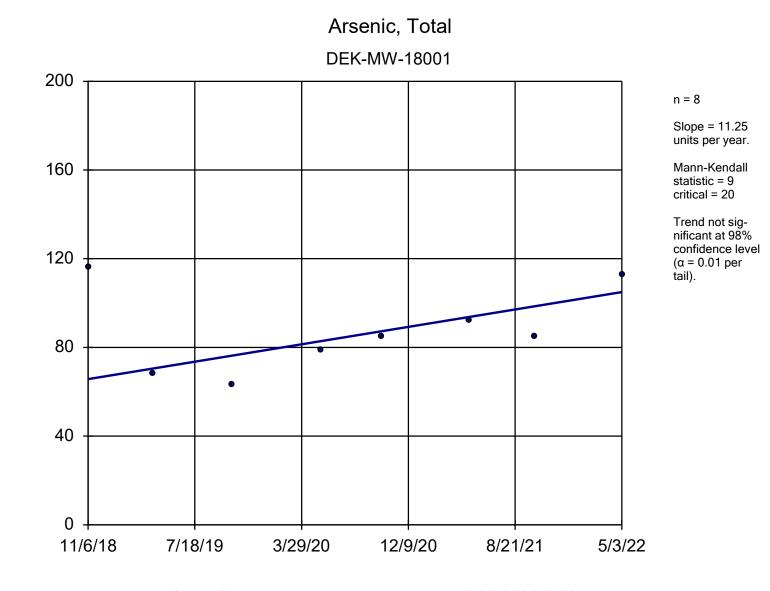

Summary Report


Constituent: Arsenic, Total Analysis Run 6/9/2022 2:45 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

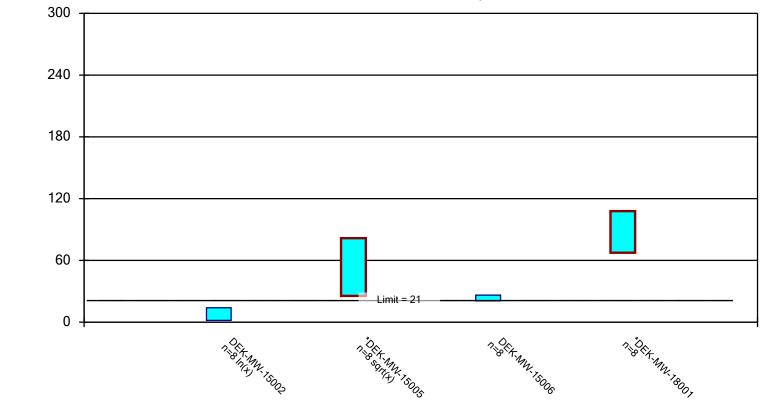

For observations made between 11/5/2018 and 5/3/2022, a summary of the selected data set:


Observations = 32 ND/Trace = 0 Wells = 4 Minimum Value = 2 Maximum Value = 120 Mean Value = 42.97 Median Value = 29.35 Standard Deviation = 35.57 Coefficient of Variation = 0.8279 Skewness = 0.7809


Well	<u>#Obs.</u>	ND/Trace	Min	Max	Mean	Median	Std.Dev.	CV	Skewness
DEK-MW-15002	8	0	2	31.7	8.025	4.75	9.985	1.244	1.915
DEK-MW-15005	8	0	24	120	52.69	43.25	30.32	0.5754	1.486
DEK-MW-15006	8	0	20.25	27	23.53	23.75	2.64	0.1122	0.1387
DEK-MW-18001	8	0	63	116	87.63	85	19.08	0.2177	0.3541



Sen's Slope Estimator Analysis Run 6/10/2022 1:26 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2



Sen's Slope Estimator Analysis Run 6/10/2022 1:26 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

ng/L

Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic, Total Analysis Run 6/9/2022 3:05 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

Confidence Interval

Constituent: Arsenic, Total (ug/L) Analysis Run 6/9/2022 3:07 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

	DEK-MW-15002	DEK-MW-15005	DEK-MW-15006	DEK-MW-18001
11/5/2018	31.7		20.25 (D)	
11/6/2018		35		116
4/10/2019				68
4/11/2019	9	24 (D)	21	
10/15/2019	6.5	120 (D)	27	63
5/13/2020	3	34 (D)	21	
5/14/2020				79
10/6/2020	8 (D)			85
10/7/2020		42	27	
5/3/2021	2	44.5 (D)	24	92
10/4/2021	2	68	23.5 (D)	
10/7/2021				85
5/3/2022	2	54	24.5 (D)	113
Mean	8.025	52.69	23.53	87.63
Std. Dev.	9.985	30.32	2.64	19.08
Upper Lim.	14.08	81.57	26.33	107.8
Lower Lim.	1.735	25.55	20.73	67.4

Appendix C Laboratory Analytical Reports

To: CDBatts, Karn/Weadock

From: EBlaj, T-258

Date: May 22, 2022

Subject: RCRA GROUNDWATER MONITORING – DEK BOTTOM ASH POND WELLS – 2022 Q2

CC: HDRegister, P22-521 BLSwanberg, P22-119 Darby Litz, Project Manager TRC Companies, Inc. 1540 Eisenhower Place Ann Arbor, MI 48108

135 W. Trail St.

Jackson, MI 49201

Chemistry Project: 22-0436

phone 517-788-1251

fax 517-788-2533

TRC Environmental, Inc. conducted groundwater monitoring at the DEKarn Bottom Ash Pond Wells area on 05/03/2022 for the 2nd Quarter requirement, as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 05/04/2022.

Samples for Total Sulfide have been subcontracted to Merit Laboratories, Inc. and the results are listed under the analyst initials "Merit". Samples for Total & Dissolved Organic Carbon have been subcontracted to Brighton Analytical LLC and the results are listed under the analyst initials "BAL". The original reports from both labs are attached. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

With the exception noted above, the report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

22-0436 Page 1 of 46

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

<u>Qualifier</u>	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
Μ	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:Karn/Weadock ComplexWork Order ID:Q2-2022 DEK Bottom Ash Pond WellsDate Received:5/4/2022Chemistry Project:22-0436

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
22-0436-01	DEK-MW-15002	Groundwater	05/03/2022 02:21 PM	DEK Bottom Ash Pond
22-0436-02	DEK-MW-15005	Groundwater	05/03/2022 12:56 PM	DEK Bottom Ash Pond
22-0436-03	DEK-MW-15006	Groundwater	05/03/2022 10:42 AM	DEK Bottom Ash Pond
22-0436-04	DUP-DEK-BAP-01	Groundwater	05/03/2022 12:00 AM	DEK Bottom Ash Pond
22-0436-05	FB-DEK-BAP	Water	05/03/2022 10:42 AM	DEK Bottom Ash Pond
22-0436-06	EB-DEK-BAP	Water	05/03/2022 10:42 AM	DEK Bottom Ash Pond

Analyst: EB

Sample Site:	DEK Bottom Ash Pond
Field Sample ID:	DEK-MW-15002
Lab Sample ID:	22-0436-01
Matrix:	Groundwater

Laboratory Project:	22-0436
Collect Date:	05/03/2022
Collect Time:	02:21 PM

Aliquot #: 22-0436-01-C01-A01

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

				Allquot #. 22-0	430-01-C01-A01	Analyst. LD
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic	2		ug/L	1.0	05/05/2022	AB22-0505-08
Barium	134		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron	1100		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium	105000		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium	1		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt	ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper	1		ug/L	1.0	05/05/2022	AB22-0505-08
Iron	1910		ug/L	20.0	05/05/2022	AB22-0505-08
Lead	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium	28		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium	28800		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese	410		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum	ND		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel	6		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium	8460		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium	1		ug/L	1.0	05/05/2022	AB22-0505-08
Silver	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium	106000		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, Total, A	Aqueous			Aliquot #: 22-0	436-01-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aqueous,	NO2, NO3			Aliquot #: 22-0	436-01-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Anions by EPA 300.0 CCR Rule	Analyte List, Cl, F,	SO4, Aqı	leous	Aliquot #: 22-0	436-01-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	99300		ug/L	1000.0	05/06/2022	AB22-0505-07

22-0436 Page 5 of 46

05/22/22

Sample Site:	DEK Bottom Ash Pond	Laboratory Project:	22-0436
Field Sample ID:	DEK-MW-15002	Collect Date:	05/03/2022
Lab Sample ID:	22-0436-01	Collect Time:	02:21 PM
Matrix:	Groundwater		

Analytical Report

Anions by EPA 300.0 CCR Rule Analyt	e List, Cl, F, S	Ο4, Α qι	leous	Aliquot #: 22-0	436-01-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/04/2022	AB22-0505-07
Sulfate	172000		ug/L	1000.0	05/06/2022	AB22-0505-07
Nitrogen-Ammonia by SM4500NH3(h),	Groundwater	HL		Aliquot #: 22-0	436-01-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	6170		ug/L	25.0	05/09/2022	AB22-0509-03
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	436-01-C04-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	779		mg/L	10.0	05/05/2022	AB22-0505-01
Alkalinity by SM 2320B				Aliquot #: 22-0	436-01-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	302000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Bicarbonate	302000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Carbonate	ND		ug/L	10000.0	05/09/2022	AB22-0509-10
Sulfide, Total by SM 4500 S2D				Aliquot #: 22-0	436-01-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	ND		ug/L	20.0	05/05/2022	AB22-0509-14
Total Organic Carbon by SM 5310B, Ad	queous			Aliquot #: 22-0	436-01-C08-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	4800		ug/L	1000.0	05/11/2022	AB22-0519-12
Dissolved Organic Carbon by SM 5310	B, Aqueous			Aliquot #: 22-0	436-01-C09-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Dissolved Organic Carbon	4800		ug/L	1000.0	05/11/2022	AB22-0519-13

Analyst: EB

Sample Site:	DEK Bottom Ash Pond
Field Sample ID:	DEK-MW-15005
Lab Sample ID:	22-0436-02
Matrix:	Groundwater

Laboratory Project:	22-0436
Collect Date:	05/03/2022
Collect Time:	12:56 PM

Aliquot #: 22-0436-02-C01-A01

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

			-	Allquot #. 22-0	430-02-C01-A01	Alialysi. ED
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic	54		ug/L	1.0	05/05/2022	AB22-0505-08
Barium	305		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron	787		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium	127000		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt	ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper	2		ug/L	1.0	05/05/2022	AB22-0505-08
Iron	1570		ug/L	20.0	05/05/2022	AB22-0505-08
Lead	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium	36		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium	21700		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese	347		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum	12		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel	7		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium	8830		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium	1		ug/L	1.0	05/05/2022	AB22-0505-08
Silver	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium	138000		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, To	otal, Aqueous			Aliquot #: 22-0	436-02-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aque	eous, NO2, NO3			Aliquot #: 22-0	436-02-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Anions by EPA 300.0 CCR	Rule Analyte List, CI, F, S	04, Aqı	leous	Aliquot #: 22-0	436-02-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	141000		ug/L	1000.0	05/06/2022	AB22-0505-07

22-0436 Page 7 of 46

Sample Site:	DEK Bottom Ash Pond	Laboratory Project:	22-0436
Field Sample ID:	DEK-MW-15005	Collect Date:	05/03/2022
Lab Sample ID:	22-0436-02	Collect Time:	12:56 PM
Matrix:	Groundwater		

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous			Aliquot #: 22-0436-02-C02-A02		Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/04/2022	AB22-0505-07
Sulfate	151000		ug/L	1000.0	05/06/2022	AB22-0505-07
Nitrogen-Ammonia by SM4500NH3(h),	Groundwater I	HL		Aliquot #: 22-0	436-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	2100		ug/L	25.0	05/09/2022	AB22-0509-03
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	436-02-C04-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	909		mg/L	10.0	05/05/2022	AB22-0505-01
Alkalinity by SM 2320B				Aliquot #: 22-0	436-02-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	403000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Bicarbonate	403000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Carbonate	ND		ug/L	10000.0	05/09/2022	AB22-0509-10
Sulfide, Total by SM 4500 S2D				Aliquot #: 22-0	436-02-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	ND		ug/L	20.0	05/05/2022	AB22-0509-14
Total Organic Carbon by SM 5310B, Ac	queous			Aliquot #: 22-0	436-02-C08-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	5000		ug/L	1000.0	05/11/2022	AB22-0519-12
Dissolved Organic Carbon by SM 5310	Dissolved Organic Carbon by SM 5310B, Aqueous			Aliquot #: 22-0	436-02-C09-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Dissolved Organic Carbon	5600		ug/L	1000.0	05/11/2022	AB22-0519-13

Sample Site:	DEK Bottom Ash Pond
Field Sample ID:	DEK-MW-15006
Lab Sample ID:	22-0436-03
Matrix:	Groundwater

Laboratory Project:	22-0436
Collect Date:	05/03/2022
Collect Time:	10:42 AM

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

Metals by EPA 6020B: CCR Rule Appen	ndix III-IV Tota	al Metals	s Exp	Aliquot #: 22-0	436-03-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic	25		ug/L	1.0	05/05/2022	AB22-0505-08
Barium	68		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron	893		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium	65000		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium	1		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt	ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Iron	715		ug/L	20.0	05/05/2022	AB22-0505-08
Lead	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium	16		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium	7450		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese	202		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum	6		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel	4		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium	7890		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Silver	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium	127000		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 22-0	436-03-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aqueous, NO2, N	03			Aliquot #: 22-0	436-03-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Anions by EPA 300.0 CCR Rule Analyte	e List, Cl, F, S	04 <u>,</u> Aqı	ieous	Aliquot #: 22-0	436-03-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	68600		ug/L	1000.0	05/06/2022	AB22-0505-07

22-0436 Page 9 of 46

Sample Site:	DEK Bottom Ash Pond	Laboratory Project:	22-0436
Field Sample ID:	DEK-MW-15006	Collect Date:	05/03/2022
Lab Sample ID:	22-0436-03	Collect Time:	10:42 AM
Matrix:	Groundwater		

Analytical Report

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aque			leous	Aliquot #: 22-0436-03-C02-A02		Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/04/2022	AB22-0505-07
Sulfate	173000		ug/L	1000.0	05/06/2022	AB22-0505-07
Nitrogen-Ammonia by SM4500NH3(h),	Groundwate	r HL		Aliquot #: 22-0	436-03-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	2920		ug/L	25.0	05/09/2022	AB22-0509-03
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	436-03-C04-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	597		mg/L	10.0	05/05/2022	AB22-0505-01
Alkalinity by SM 2320B				Aliquot #: 22-0	436-03-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	224000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Bicarbonate	224000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Carbonate	ND		ug/L	10000.0	05/09/2022	AB22-0509-10
Sulfide, Total by SM 4500 S2D				Aliquot #: 22-0	436-03-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	ND		ug/L	20.0	05/05/2022	AB22-0509-14
Total Organic Carbon by SM 5310B, A	queous			Aliquot #: 22-0	436-03-C08-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	3000		ug/L	1000.0	05/11/2022	AB22-0519-12
Dissolved Organic Carbon by SM 5310	B, Aqueous			Aliquot #: 22-0	436-03-C09-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Dissolved Organic Carbon	3500		ug/L	1000.0	05/11/2022	AB22-0519-13

Sample Site:	DEK Bottom Ash Pond
Field Sample ID:	DUP-DEK-BAP-01
Lab Sample ID:	22-0436-04
Matrix:	Groundwater

Laboratory Project:	22-0436
Collect Date:	05/03/2022
Collect Time:	12:00 AM

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

Metals by EPA 6020B: CCR Rule App	endix III-IV To	tal Metals	s Exp	Aliquot #: 22-0	436-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic	24		ug/L	1.0	05/05/2022	AB22-0505-08
Barium	67		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron	888		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium	65500		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt	ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Iron	696		ug/L	20.0	05/05/2022	AB22-0505-08
Lead	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium	15		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium	7520		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese	206		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum	6		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel	4		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium	8090		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium	1		ug/L	1.0	05/05/2022	AB22-0505-08
Silver	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium	125000		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, Total, Aqueo	us			Aliquot #: 22-0	436-04-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aqueous, NO2,	NO3			Aliquot #: 22-0	436-04-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Anions by EPA 300.0 CCR Rule Analy	yte List, CI, F,	<u>SO</u> 4, Aqւ	leous	Aliquot #: 22-0	436-04-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	67900		ug/L	1000.0	05/06/2022	AB22-0505-07

22-0436 Page 11 of 46

Sample Site:	DEK Bottom Ash Pond	Laboratory Project:	22-0436
Field Sample ID:	DUP-DEK-BAP-01	Collect Date:	05/03/2022
Lab Sample ID:	22-0436-04	Collect Time:	12:00 AM
Matrix:	Groundwater		

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous			Aliquot #: 22-0436-04-C02-A02		Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/04/2022	AB22-0505-07
Sulfate	168000		ug/L	1000.0	05/06/2022	AB22-0505-07
Nitrogen-Ammonia by SM4500NH3(h),	Groundwate	r HL		Aliquot #: 22-0	436-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	2960		ug/L	25.0	05/09/2022	AB22-0509-03
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	436-04-C04-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	609		mg/L	10.0	05/05/2022	AB22-0505-01
Alkalinity by SM 2320B				Aliquot #: 22-0	436-04-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	225000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Bicarbonate	225000		ug/L	10000.0	05/09/2022	AB22-0509-10
Alkalinity Carbonate	ND		ug/L	10000.0	05/09/2022	AB22-0509-10
Sulfide, Total by SM 4500 S2D				Aliquot #: 22-0	436-04-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	ND		ug/L	20.0	05/05/2022	AB22-0509-14
Total Organic Carbon by SM 5310B, A	queous			Aliquot #: 22-0	436-04-C08-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	3100		ug/L	1000.0	05/11/2022	AB22-0519-12
Dissolved Organic Carbon by SM 5310B, Aqueous				Aliquot #: 22-0	436-04-C09-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Dissolved Organic Carbon	3800		ug/L	1000.0	05/11/2022	AB22-0519-13

Sample Site:	DEK Bottom Ash Pond
Field Sample ID:	FB-DEK-BAP
Lab Sample ID:	22-0436-05
Matrix:	Water

Laboratory Project:	22-0436
Collect Date:	05/03/2022
Collect Time:	10:42 AM

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

Metals by EPA 6020B: CCR F	Rule Appendix III-IV To	tal Metals	s Exp	Aliquot #: 22-0	436-05-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Barium	ND		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron	ND		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium	ND		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt	ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Iron	ND		ug/L	20.0	05/05/2022	AB22-0505-08
Lead	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium	ND		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese	ND		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum	ND		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium	ND		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Silver	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium	ND		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, Tota	I, Aqueous			Aliquot #: 22-0	436-05-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aqueo	us, NO2, NO3			Aliquot #: 22-0	436-05-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrogen-Ammonia by SM45	00NH3(h), Groundwate	r HL		Aliquot #: 22-0	436-05-C03-A01	Analyst: LMO

	,,	••••	7.119400171122	0100 00 000 /101	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Ammonia	ND	ug/L	25.0	05/09/2022	AB22-0509-09

22-0436 Page 13 of 46

Sample Site:	DEK Bottom Ash Pond	Laboratory Project:	22-0436
Field Sample ID:	FB-DEK-BAP	Collect Date:	05/03/2022
Lab Sample ID:	22-0436-05	Collect Time:	10:42 AM
Matrix:	Water		

Sulfide, Total by SM 4500 S2D		Aliquot #: 22-0	0436-05-C04-A01	Analyst: Merit					
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			
Sulfide	ND		ug/L	20.0	05/05/2022	AB22-0509-14			
Total Organic Carbon by SM 531	0B, Aqueous			Aliquot #: 22-0	0436-05-C05-A01	Analyst: BAL			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			
Total Organic Carbon	ND		ug/L	1000.0	05/11/2022	AB22-0519-12			
Dissolved Organic Carbon by SM	/ 5310B, Aqueous			Aliquot #: 22-0	liquot #: 22-0436-05-C06-A01				
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking			
Dissolved Organic Carbon	1300		ug/L	1000.0	05/11/2022	AB22-0519-13			

Ammonia

Sample Site:	DEK Bottom Ash Pond
Field Sample ID:	EB-DEK-BAP
Lab Sample ID:	22-0436-06
Matrix:	Water

Laboratory Project:	22-0436
Collect Date:	05/03/2022
Collect Time:	10:42 AM

05/09/2022

25.0

AB22-0509-09

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

	-lag	Units	RL	America Dist	
				Analysis Date	Tracking
Antimony ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic ND		ug/L	1.0	05/05/2022	AB22-0505-08
Barium ND		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron ND		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium ND		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium ND		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper ND		ug/L	1.0	05/05/2022	AB22-0505-08
Iron ND		ug/L	20.0	05/10/2022	AB22-0505-08
Lead ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium ND		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium ND		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese ND		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum ND		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel ND		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium ND		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium ND		ug/L	1.0	05/05/2022	AB22-0505-08
Silver ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium ND		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, Total, Aqueous			Aliquot #: 22-0	436-06-C01-A02	Analyst: CLH
Parameter(s) Result F	Flag	Units	RL	Analysis Date	Tracking
Mercury ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aqueous, NO2, NO3			Aliquot #: 22-0	436-06-C02-A01	Analyst: DMW
Parameter(s) Result F	Flag	Units	RL	Analysis Date	Tracking
Nitrate ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL			Aliquot #: 22-0	436-06-C03-A01	Analyst: LMO
Parameter(s) Result F	Flag	Units	RL	Analysis Date	Tracking

ug/L

ND

Sample Site:	DEK Bottom Ash Pond	Laboratory Project:	22-0436
Field Sample ID:	EB-DEK-BAP	Collect Date:	05/03/2022
Lab Sample ID:	22-0436-06	Collect Time:	10:42 AM
Matrix:	Water		

Sulfide, Total by SM 4500 S2D		Aliquot #: 22-0	0436-06-C04-A01	Analyst: Merit			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Sulfide	ND		ug/L	20.0	05/05/2022	AB22-0509-14	
Total Organic Carbon by SM 531	0B, Aqueous			Aliquot #: 22-0	0436-06-C05-A01	Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Total Organic Carbon	ND		ug/L	1000.0	05/11/2022	AB22-0519-12	
Dissolved Organic Carbon by SI	M 5310B, Aqueous			Aliquot #: 22-0	0436-06-C06-A01	Analyst: BAL	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Dissolved Organic Carbon	ND		ug/L	1000.0	05/11/2022	AB22-0519-13	

Data	Qualifiers	

Exception Summary

No exceptions occurred.

CONSUMERS ENERGY Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 2 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Р	roject Log-In Number:	22.043	þ		
Ī	spection Date: 5-4.22		Inspection By:	dmn	
	ample Origin/Project Name:	Q2.2022		and the second sec	
S	Other/Hand Carry (who	edEx <u>/</u>	UPS US		0
S	hipping Containers: Enter th Cooler <u> </u>	ardboard Box _	Custom Case	ived. Envelope/Maile	
С	ondition of Shipment: Enter		1	tainer.	
	Damaged Shipment Ob Other			Leaking	_
SI	hipment Security: Enter if an Shipping Containers Re		Children in the second state of the	re receipt.	
E	nclosed Documents: Enter the CoC Work	12.	ents enclosed with the shipme Air Data Sheet		_
	emperature of Containers: M As-Received Temperatu MをTを体を、EKの・ umber and Type of Containe				
at anos	Container Type	Water S	oil Other	Broken La	eaking
per pape	VOA (40mL or 60mL)				_
PSI CULO ENR	Quart/Liter (g/p)				_
A NO: 13-640-508	9-oz (amber glass jar)		÷ 1.		
6.0-143	2-oz (amber glass)	-			
ot: 222420 10: 8.1.23	125 mL (plastic)				
07. 444	24 mL vial (glass)				
10: 8 1.23	500 mL (plastic) Other	L	-		

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page 1 of 1

SAMPLING SITE / CUSTOMER: Q2-2022 DEK Bottom Ash Pond Wells		PROJECT NUMBER:	SAP CC or WO#:						ANALYSIS REQUESTED															
		22-0436	REQUESTER	REQUESTER: Harold Register					(Attach List if More Space is Needed)										QA REQUIREMENT:					
SAMP	LING TEAM:	Henry J 12 Janis	sh word	lr J	TURNAROUND TIME REQUIRED:							1								noc		□ NPDES ⊠ TNI		
	O REPORT TO:				email:	phone:														uo	Carl		□ ISO 17025	
	COPY TO:	Harold Regist	er		MATRIX CODES: GW = Groundwater OX = Other WW = Wastewater SL = Sludge		CONTAINERS				CONTAINERS PRESERVATIVE			8							Total Organic Carbon	Dissolved Organic Carbon		□ 10 CFR 50 APP. B □ INTERNAL INFO
1	LAB	SAMPLE COLL	ECTION	XIX	W = Water / Aqueous Liquid A = Air S = Soil / General Solid WP = Wipe O = Oil WT = General	al Waste	TOTAL #	T						I MICIA	suo	Ammonia		Alkalinity	de	l Orgai	olved (OTHER	
SA	MPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / LOC	CATION	TOT	None	None HNO3		NaOF	MeOH	Total Metals	Total	Anions	Amn	TDS	Alka	Sulfide	Tota	Diss		REMARKS	
4	22-0436-01	5/3/22	142/	GW	DEK-MW-15002		9	4	1	1	1 2	2		¢ 3	x	x	x	x	x	x	x			
	-02	1	1256	GW	DEK-MW-15005		9	4	1	1	1 2	2			x	x	x	x	x	x	x			
	-03		1042	GW	DEK-MW-15006		9	4	1	1	1 2	2	,	¢ ;	x	x	x	x	x	x	x		1	
	-04		-	GW	DUP-DEK-BAP-01		9	4	1	1	1 2	2		c :	x	x	x	x	x	x	x			
_	-05		1042	w	FB-DEK-BAP		6	2	1	1	1 2	2	1	•	x	x			x	x	x			
	-06	V	1042	W	EB-DEK-BAP		6	2	1	1	1 2	2		c :	x	x			x	x	x			
-																-								
	_					_				_					_									
_			-			_							-	-	-									
	_						-	-		-			-		-	_		-		_		+		
RELIN	QUISHED BY:	rug Sol	mazelt	DATE/	6060	ECEIVED BY:							(СОМ	MEN	TS:	-				-	_		
RELIN	QUISHED BY: Fed			DATE/	7 TIME: RI 04-22 10:25	ECEIVED BY:	46		_										s □ 8 °C				015402 Date: 6-3-22	

Report ID: S35620.01(01) Generated on 05/06/2022

Report to

Attention: Emil Blaj Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 C:517-684-9467 FAX: Email: emil.blaj@cmsenergy.com

Report produced by

Analytical Laboratory Report

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: John Laverty (johnlaverty@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Summary

Lab Sample ID(s): S35620.01-S35620.06 Project: 22-0436 PR#22050489 Collected Date(s): 05/03/2022 Submitted Date/Time: 05/05/2022 08:15 Sampled by: Unknown P.O. #: 4400106050

Table of Contents

Cover Page (Page 1) General Report Notes (Page 2) Report Narrative (Page 2) Laboratory Certifications (Page 3) Qualifier Descriptions (Page 3) Glossary of Abbreviations (Page 3) Method Summary (Page 4) Sample Summary (Page 5)

Naya Mushah

Maya Murshak Technical Director

General Report Notes

Analytical results relate only to the samples tested, in the condition received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

When MDL results are provided, then 'Not detected' indicates that parameter was not found at a level equal to or greater than the MDL.

40 CFR Part 136 Table II Required Containers, Preservation Techniques and Holding Times for the Clean Water Act specify that samples

for acrolein, acrylonitrile, and 2-chlorovinylethyl ether need to be preserved at a pH in the range of 4 to 5 or if not preserved, analyzed within 3 days of sampling.

QA/QC corresponding to this analytical report is a separate document with the same Merit ID reference and is available upon request.

Full accreditation certificates are available upon request. Starred (*) analytes are not NELAP accredited.

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc.

Limits for drinking water samples, are listed as the MCL Limits (Maximum Contaminant Level Concentrations)

PFAS requirement: Section 9.3.8 of U.S. EPA Method 537.1 states "If the method analyte(s) found in the Field Sample is present in the

FRB at a concentration greater than 1/3 the MRL, then all samples collected with that FRB are invalid and must be recollected and reanalyzed."

Samples submitted without an accompanying FRB may not be acceptable for compliance purposes.

Wisconsin PFAs analysis: MDL = LOD; RL = LOQ. LOD and LOQ are adjusted for dilution.

Report Narrative

There is no additional narrative for this analytical report

Laboratory Certifications

Authority	Certification ID
Michigan DEQ	#9956
DOD ELAP/ISO 17025	#69699
WBENC	#2005110032
Ohio VAP	#CL0002
Indiana DOH	#C-MI-07
New York NELAC	#11814
North Carolina DENR	#680
North Carolina DOH	#26702
Alaska CSLAP	#17-001
Pennsylvania DEP	#68-05884
Wisconsin DNR	FID# 399147320

Qualifier Descriptions

Qualifier	Description
!	Result is outside of stated limit criteria
В	Compound also found in associated method blank
E	Concentration exceeds calibration range
F	Analysis run outside of holding time
G	Estimated result due to extraction run outside of holding time
н	Sample submitted and run outside of holding time
1 I	Matrix interference with internal standard
J	Estimated value less than reporting limit, but greater than MDL
L	Elevated reporting limit due to low sample amount
Μ	Result reported to MDL not RDL
0	Analysis performed by outside laboratory. See attached report.
R	Preliminary result
S	Surrogate recovery outside of control limits
т	No correction for total solids
Х	Elevated reporting limit due to matrix interference
Y	Elevated reporting limit due to high target concentration
b	Value detected less than reporting limit, but greater than MDL
е	Reported value estimated due to interference
j	Analyte also found in associated method blank
р	Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.
х	Preserved from bulk sample

Glossary of Abbreviations

Abbreviation	Description
RL/RDL	Reporting Limit
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
SW	EPA SW 846 (Soil and Wastewater) Methods
E	EPA Methods
SM	Standard Methods
LN	Linear
BR	Branched
4	

Method Summary

Method

SM4500-S2 D

Version Standard Method 4450 S2 D 2011

Sample Summary (6 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S35620.01	22-0436-01 (DEK-MW-15002)	Groundwater	05/03/22 14:21
S35620.02	22-0436-02 (DEK-MW-15005)	Groundwater	05/03/22 12:56
S35620.03	22-0436-03 (DEK-MW-15006)	Groundwater	05/03/22 10:42
S35620.04	22-0436-04 (DUP-DEK-BAP-01)	Groundwater	05/03/22 00:01
S35620.05	22-0436-05 (FB-DEK-BAP)	Groundwater	05/03/22 10:42
S35620.06	22-0436-06 (EB-DEK-BAP)	Groundwater	05/03/22 10:42

Lab Sample ID: S35620.01

Sample Tag: 22-0436-01 (DEK-MW-15002) Collected Date/Time: 05/03/2022 14:21 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/22 13:54, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S35620.02

Sample Tag: 22-0436-02 (DEK-MW-15005) Collected Date/Time: 05/03/2022 12:56 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/22 13:56, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S35620.03

Sample Tag: 22-0436-03 (DEK-MW-15006) Collected Date/Time: 05/03/2022 10:42 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/22 13:58, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S35620.04

Sample Tag: 22-0436-04 (DUP-DEK-BAP-01) Collected Date/Time: 05/03/2022 00:01 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/22 14:00, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S35620.05

Sample Tag: 22-0436-05 (FB-DEK-BAP) Collected Date/Time: 05/03/2022 10:42 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/22 14:04, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S35620.06

Sample Tag: 22-0436-06 (EB-DEK-BAP) Collected Date/Time: 05/03/2022 10:42 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/22 14:06, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Merit Laboratories Login Checklist

Lab Set ID:S35620

Client: CONSUMERS (Consumers Energy)

Project: 22-0436 PR#22050489

Submitted:05/05/2022 08:15 Login User: MMC

Attention: Emil Blaj Address: Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Selection	Description	Note								
Sample Receiving										
01. X Yes No N/A	Samples are received at 4C +/- 2C Thermometer #	IR 3.2								
02. X Yes No N/A	Received on ice/ cooling process begun									
03. Yes X No N/A	Samples shipped									
04. X Yes No N/A	Samples left in 24 hr. drop box									
05. X Yes No N/A	Are there custody seals/tape or is the drop box locked									
Chain of Custody										
06. X Yes No N/A	COC adequately filled out									
07. X Yes No N/A	COC signed and relinquished to the lab									
08. XYes No N/A	Sample tag on bottles match COC									
09. Yes X No N/A	Subcontracting needed? Subcontacted to:									
Preservation										
10. 🕱 Yes 🗌 No 🗌 N/A	Do sample have correct chemical preservation									
11. X Yes No N/A	Completed pH checks on preserved samples? (no VOAs)									
11. X Yes No N/A 12. Yes X No N/A	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab?									
12. Yes X No N/A										
12. Yes X No N/A Bottle Conditions	Did any samples need to be preserved in the lab?									
12. Yes X No N/A Bottle Conditions 13. X Yes No N/A	Did any samples need to be preserved in the lab?									
12. Yes X No N/A Bottle Conditions 13. Yes No N/A 14. Yes No N/A	Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used									
12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A 15. Yes X No N/A	Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used Merit bottles used									
12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A 15. Yes X No N/A 16. X Yes No N/A	Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used Merit bottles used Sufficient sample volume received									

Corrective action for all exceptions is to call the client and to notify the project manager.

____ Date:___

Merit Laboratories Bottle Preservation Check

Lab Set ID: S35620 Submitted: 05/05/2022 08:15 Client: CONSUMERS (Consumers Energy) Project: 22-0436 PR#22050489 Attention: Emil Blaj Address: Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Initial Preservation Check: 05/05/2022 08:52 MMC Preservation Recheck (E200.8): N/A

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Sample ID	Bottle / Preservation	pH (Orig)	Add ml	pH (New)	Notes
S35620.01	125ml Plastic NaOH	>12			
S35620.02	125ml Plastic NaOH	>12			
S35620.03	125ml Plastic NaOH	>12			
S35620.04	125ml Plastic NaOH	>12			
S35620.05	125ml Plastic NaOH	>12			
S35620.06	125ml Plastic NaOH	>12			

1	1
11	Merit \
-(IVICITC /
/	Laboratories, Inc.

2680 East Lansing Dr., East Lansing, MI 48823 Phone (517) 332-0167 Fax (517) 332-4034 www.meritlabs.com

C.O.C. PAGE #____OF___1

CHAIN OF CUSTODY RECORD

INV	101	CE	TO
	~ .	• • • •	

REPOR				CHAIN	OF	CL	JST	101	Y F	REC	col	RD							INVO	ICE	TO
CONTACT NAME	Emil Blaj							CONT	ACTIN	AME								×S/	AME		
COMPANY Con	sumers E	Energy	-					COMPANY													
ADDRESS 135	W. Trail S	Street						ADDRESS													
спу Jackson				STATE MI ZIP	CODE 2	1920	01	CITY STATE ZIP CODE													
PHONE NO. 517-	788-5888		FAX NO. 517-788-2533	P.O. NO. 4400106050				PHONE NO. E-MAIL ADDRESS										_			
E-MAIL ADDRESS	emil.blaj@	a)cmsen	ergy.com	QUOTE NO.				ANALYSIS (ATTACH LIST IF MORE SPACE IS REQUIRED									IRED)				
PROJECT NO./NA				SAMPLER(S) - PLEASE F	PRINT/SK	GN NA	ME	-										Certific			
		1000000	1 DAY 2 DAYS 3 D		Ποτ	HER		-	-	1	N/A							ОНО		Drinking	g Water
							_	_	_									DoD		NPDES	
	GW=GROUN		WW=WASTEWATER S=S		D=SOLI	-	1	# Containers & Preservatives						Project Locations							
CODE:	SL=SLUDG	E DW=	DRINKING WATER O=OIL		W=WAS	STE			serva			l Su						Detroi	t 🗆	New Yo	rk
MERIT LAB NO.	NO IDENTIFICATION-DE			MATRIX	# OF	NONE	IDH ON	H,SO.	HORN	OTHER	Total				Other Special Instruction						
FOR LAB USE ONLY 35620.01	DATE 05/03/22	TIME 1421	22-0436-01 (DEK-MW-	15002)	GW	1	2	Ŧ	T	1	> 0	1				++	-	1	d with Na		Acatata
	05/03/22		22-0436-02 (DEK-MW-		GW	1	H	+	+	1	Η	× /				++	-	"	a with Nac	JII/ZII	rectate
	05/03/22	1042	22-0436-02 (DEK-MW-	3. 12 . 12 m	GW	1	H	+	+	1	+	V /		-		++	-				
ot	05/03/22	1012	22-0436-04 (DUP-DEK-		GW	1	H	+	+	1	+	V					-	"			
	05/03/22	1042	22-0436-05 (FB-DEK-B		GW	1	H	+					++								
	05/03/22		22-0436-06 (EB-DEK-B		GW	1	H	-	+	1	+	1		-		++	-				_
.00	05/05/22	1012	22-0450-00 (EB-DER-B	M)	-	-		+	++	1	Η	*	+	-		++	-		_		
	-				+	-	H	+	+	-	H	-		-		++	-				
		-			+		H	-	H	+	Η	-				++	-				
		-			+	-	H	+	+	+	Η	-	+	-		+		-			
					+	-	H	+	++	+	H	-		-		++					
					+	-	H	+	H	+	+	-		-		+	+				
RELINQUISHED B	Y:]Sampler DATE	-	IME		RELIN	OUISH	IED BY	1										TIME
SIGNATURE/ORG RECEIVED BY:		To	NUMERS ENERGY	05-04-23 DATE	- 11	8 20 IME		SIGNA	TURE/	ORGA		TION		m	erit	Dro	o Boj	٢	5/5/22	2 (11ME
SIGNATURE/ORG		0					44	SIGN/	TURE		ANIZA	and the local division in which the				ww	n -		5/5/22	0	315
RELINQUISHED B SIGNATURE/ORG				DATE	-	IME		SEAL			_	Y		NOD	NITIALS	N	OTES:	TEMP. C	ON ARRIVAL	3.Z	-
RECEIVED BY: SIGNATURE/ORG	ANIZATION			DATE	1	IME	·	SEAL	NQ.						VITIALS					0.2	

PLEASE NOTE: SIGNING ACKNOWLEDGES ADHERENCE TO MERIT'S SAMPLE ACCEPTANCE POLICY ON REVERSE SIDE

2105 Pless Drive Brighton, Michigan 48114 Phone (810)229-7575 Fax (810)229-8650 E-mail bai-brighton@sbcglobal.net

May 13, 2022

Consumers Energy Company 135 W. Trail St. Jackson, MI 49201

Subject: Q2-2022 DEK Bottom Ash Pond Wells 22-0436

Dear Mr. Blaj :

Thank you for making Brighton Analytical, L.L.C. your laboratory of choice. Attached are the results for the samples submitted on 05/06/2022 for the above mentioned project. NELAP/TNI Accredited Analysis and EGLE Drinking Water Certified Analysis will be identified in their respective reporting formats. Hard copies can be supplied at your request for a fee of \$20.00 per copy.

The invoice for this project will be emailed separately. If you have any questions concerning the data or invoice, please don't hesitate to contact our office. We welcome your comments and suggestions to improve our quality systems. Please reference Brighton Analytical, L.L.C. Project ID 81649 when calling or emailing. We thank you for this opportunity to partner with you on this project and hope to work with you again in the future.

Sincerely, Brighton Analytical, L.L.C.

22-0436 Page 34 of 46

Total Organic Carbon

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/13/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81649 Project Name: Q2-2022 DEK Bottom Ash Pond Wells BA Sample ID: Project Number: 22-0436 **CR00156** Sample ID: 22-0436-01 DEK-MW-15002 Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon 4800 ug/L 1000 SM5310B RG

ug/L

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

4800

Released by

RG

SM5310B

Analysis

Date

05/11/2022

05/11/2022

Date

1000

5/13/2022

Page 1 of 1

Total Organic Carbon

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/13/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81649 Project Name: Q2-2022 DEK Bottom Ash Pond Wells BA Sample ID: Project Number: 22-0436 **CR00157** Sample ID: 22-0436-02 DEK-MW-15005 Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon 5600 ug/L 1000 SM5310B RG

ug/L

1000

Date

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

5000

000 Released by 5/13/2022

RG

SM5310B

Analysis

Date

05/12/2022

05/12/2022

Page 1 of 1

22-0436 Page 36 of 46

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/13/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81649 Project Name: Q2-2022 DEK Bottom Ash Pond Wells BA Sample ID: Project Number: 22-0436 **CR00158** Sample ID: 22-0436-03 DEK-MW-15006 Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon 3500 ug/L 1000 SM5310B RG Total Organic Carbon 3000 1000 SM5310B RG

ug/L

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

> 000 Released by

Analysis

Date

05/12/2022

05/12/2022

Date

5/13/2022

Page 1 of 1

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/13/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81649 Project Name: Q2-2022 DEK Bottom Ash Pond Wells BA Sample ID: Project Number: 22-0436 **CR00159** Sample ID: 22-0436-04 DUP-DEK-BAP-01 Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon 3800 ug/L 1000 SM5310B RG Total Organic Carbon 3100 1000 SM5310B RG ug/L

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

000 Released by

Date

5/13/2022

Analysis

Date

05/12/2022

05/12/2022

Total Organic Carbon

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/13/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81649 Project Name: Q2-2022 DEK Bottom Ash Pond Wells BA Sample ID: Project Number: 22-0436 **CR00160** Sample ID: 22-0436-05 FB-DEK-BAP Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon 1300 ug/L 1000 SM5310B RG

ug/L

DL=Reported detection limit for analytical method requested. Some compounds require special

Not detected

analytical methods to achieve EGLE designated target detection limits (TDL).

Released by

SM5310B

Date

1000

5/13/2022

RG

Analysis

Date

05/12/2022

05/12/2022

Page 1 of 1

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/13/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81649 Project Name: Q2-2022 DEK Bottom Ash Pond Wells BA Sample ID: Project Number: 22-0436 **CR00161** Sample ID: 22-0436-06 EB-DEK-BAP Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon Not detected ug/L 1000 SM5310B RG Total Organic Carbon 1000 SM5310B RG Not detected ug/L

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

000 Released by

Analysis

Date

05/12/2022

05/12/2022

Date

5/13/2022

Page 1 of 1

MILE CONSUMERS ENERGY COMPANY -LABORATORY SERVICES 13 VEST TRAIL ST. JACKSON, MI 4201 (317) 788-1331 SUSTORE III VIENT ANALYSIS REQUESTED OASH Pool Wells 2-0436 REQUESTED: AND FOR OASH Pool Wells CONTAINED ANALYSIS REQUESTED AMALYSIS REQUESTED: AND FOR TRADUCTION 2-0436 REQUESTED: AND FOR TRADUCTION AMALYSIS REQUESTED: AND FOR TRADUCTION ANALYSIS REQUESTED AMALYSIS REQUESTED: AND FOR TRADUCTION ANALYSIS REQUESTED </th <th></th> <th></th> <th></th> <th></th> <th>CHAIN (</th> <th>N OF CUSTODY</th> <th>ST</th> <th>QC</th> <th>X</th> <th>81649</th> <th>55</th> <th></th>					CHAIN (N OF CUSTODY	ST	QC	X	81649	55	
CUSTONER: REQUESTER: MALTYSIS REQUESTER: MALTYSIS REQUESTER: Inn Ash Pool Wells 23.0436 REQUESTER: AMALTYSIS REQUESTER: Inn Ash Pool Wells 23.0436 REQUESTER: AMALTYSIS REQUESTER: Inn Ash Pool Wells 23.0436 REQUESTER: AMALTYSIS REQUESTER: Inne REQUESTER: Ennil Bluj AMALTYSIS REQUESTER: AMALTYSIS REQUESTER: Inne REQUESTER: Inne Inne Inne Inne Inne REQUESTER: Inne Inne Inne Inne Inne REQUESTER: Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Inne Innere Inne Inne I	Consumers	Energy Count on Us*		CO	\sim .	I 4	LABO 201 •	RAT (517) 78		SERVICES	Page	of
Image: constraint of the	AMPLING SITE / CU	JSTOMER:			PROJECT NUMBER:	SAP CC or WO#			_	ANAL YSIS REQUESTE		
IURA-MEOUND THAE REQUIRED. Emil Bili Emil	2-2022 DEK Botto	m Ash Pond W€	ells		22-0436	REQUESTER: H	mil Blaj			(Attach List if More Space is Ne		REQUINEMENT I
Entil Bij entil: Entil Bij@cmstengey.com phone: ANARUE CONTANTES MATRIX.COMST MATRIX.COMST WARK Angreent (and a strategy common and strategy common and a strategy common and a strategy common an	AMPLING TEAM:				1		~			uo		PDES NI
MATRIX Conductor (a) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	SEND REPORT TO:	Emil Blaj			email: Emil.Blaj@cmsenergy.com	phone:			uoq			SO 17025
MATHE WESTERVATIVE SAMPLE COLLECTION WESTERVATIVE SET and Set SAMPLE COLLECTION Restervation Set Address SAMPLE COLLECTION Restervation SAMPLE COLLECTION <	COPY TO:				MATRIX CODES: GW = Groundwater OX = Other		CON	TAINER				0 CFR 50 APP. B
SAMPLE COLLECTON IN X SamPle and Solid Was and Solid Was and Solid MAT DATE TME FIELD SAMPLE ID / LOCATION FIEL SAMPLE ID / LOCATION					WW = Wastewater SL = Sludge W = Water / Aqueous Liquid A = Air			SERVAT				NTERNAL INFO
Data 2 Attach and a strate and and a strat and a strate and a strat and a s	LAB SAMPLE ID	SAMPLE COLL	TIME			ll Waste	anoN	HOPN *OS ^z H	Other MeOH			THER
0005/02/2 14/1 0/m Disk-offwr-13005 2 2 2 2 2 2 1 1 6/03/2022 1042 GW Disk-MW-15005 2 2 2 2 2 1 1 1 6/03/2022 1042 GW Disk-MW-15005 2 2 2 2 2 1 1 1 6/03/2022 1042 GW Disk-MM-15005 2 2 2 2 2 1 1 1 05/03/2022 1042 GW EB-Disk-BAP 2 2 2 2 1 1 1 05/03/2022 1042 GW EB-Disk-BAP 2 2 2 2 2 2 1 1 05/03/2022 1042 GW EB-Disk-BAP 2 2 2 2 2 2 1 1 05/03/2022 1042 GW EB-Disk-BAP 2 2 2 2 2 2 1 1 05/03/2023 1042 GW EB-Disk-BAP 2 2 2 2 2 2 1 1 1041 GW EB-Disk-BAP 2		DALE	TIMIC	M			Į 📃	I I	1)	-	3	KEMAKKS
UNDADAL Law UN-DAME Law Un-DAME Law Un-DAME Law Un-DAME Law Un-DAME Law Un-DAME Law Law <thlaw< th=""> Law Law L</thlaw<>	22-0430-01	7707/00/00	1241	MD /MO	20001-WW/ 15005		1 C	1 0		-		9-1
05/03/2022 - GW DUP-DEK-BAP-01 2 2 X </td <td>-07</td> <td>7707/20/20</td> <td>1042</td> <td>m MB</td> <td>DEK-MW-15006</td> <td></td> <td></td> <td>7</td> <td>. ×</td> <td>-</td> <td></td> <td></td>	-07	7707/20/20	1042	m MB	DEK-MW-15006			7	. ×	-		
05/03/2022 - GW DUP-DEK-BAPOI 2 2 X X N I <td>6</td> <td></td> <td></td> <td>;</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>00</td>	6			;						+		00
05/03/202 1042 GW FB-DEK-BAP 2 2 X X I I 05/03/202 1042 GW EB-DEK-BAP 2 2 X X I I I 05/03/202 1042 GW EB-DEK-BAP 2 2 X X I I I 05/03/202 1042 GW EB-DEK-BAP 2 2 X X X I I I 05/03/202 1042 GW EB-DEK-BAP 2 2 X <t< td=""><td>-04</td><td>05/03/2022</td><td>4</td><td>GW</td><td>DUP-DEK-BAP-01</td><td></td><td>5</td><td>5</td><td>×</td><td>-</td><td></td><td>134</td></t<>	-04	05/03/2022	4	GW	DUP-DEK-BAP-01		5	5	×	-		134
05/03/2022 1042 GW EB-DEK-BAP 2 2 X <td>-05</td> <td>05/03/2022</td> <td>1042</td> <td>GW</td> <td>FB-DEK-BAP</td> <td></td> <td>2</td> <td>2</td> <td>×</td> <td>-</td> <td></td> <td>0</td>	-05	05/03/2022	1042	GW	FB-DEK-BAP		2	2	×	-		0
DateTIME: BateTIME: RECEIVED BY: DateTIME: RECEIVED BY:	-0e	05/03/2022	1042	GW	EB-DEK-BAP		2	3	×			191
DATE/TIME: BATE/TIME: RECEIVED BY: DATE/TIME: RECEIVED BY:												
DATE/TIME: RECEIVED BY: DATE/TIME: RECEIVED BY: COMMENTS: R. LL 35 DATE/TIME: RECEIVED BY: DATE/TIME: RECEIVED BY: DATE/TIME: RECEIVED BY:												
DATE/TIME: RECEIVED BY: COMMENTS: R. 22-Set Comments Sold. 22 1555 Comments Received on Ice? Mes DATE/TIME: RECEIVED BY: Received on Ice? Mes DATE/TIME: RECEIVED BY: Received on Ice? Mes DATE/TIME: Received on Ice? Mes DAT												
DATE/TIME: RECEIVED BY: COMMENTS: R. 22-Set COMMENTS: COMMENTS: R. 22-Set DATE/TIME: RECEIVED BY: Received on Ice? Wes □ No												
DATE/TIME: RECEIVED BY: Received on Ice? PYes DIO	ELINQUISHED BY:			DATE/	1	CEIVED BY:			0	à	-oSo ¹	
DATE/TIME: Received on Ice? PYES UNO	feaug	Clease		N N	1555	y y			1	i X		
ç° J	ELINQUISHED BY:			DATE/		CEIVED BY:			× F	Received on Ice? The s D No	Cal. Due Date:	

BRIGHTON ANALYTICAL, LLC

QUALITY ASSURANCE/QUALITY CONTROL

22-0436 Page 42 of 46

Analyst: RG

Parameter: TOC

Analysis Date: 5/11/2022

Method Reference: EPA 415.1/SM5310B/9060

		SPIKE - ACC	URACY		
Laboratory ID	Spike level PPB	Background PPB	Recoveries (%)	Acceptable Range (%)	Method Blank Concentration
CR00151	TV=10000	2500	107/109	80 - 120	ND
Laboratory ID	Observed A PPB	Observed B PPB	RPD (%)	Acceptable Range(%)	
CR00151	13200	13300	0.75	<u><</u> 20	
		MISCELLA	NEOUS		_I
		Standard ID #	%Recoveries		
Independent Secondar	y Reference Material:	#4295.1	109		
Method Standard (Lat	o. Control Spike):	#3046.6	106		

Analyst: RG

Parameter: DOC

Analysis Date: _____ 5/11/2022

Method Reference: EPA 415.1/SM5310B/9060

		SPIKE - ACC	URACY		
Laboratory ID	Spike level PPB	Background PPB	Recoveries (%)	Acceptable Range (%)	Method Blank Concentration
CR00151	TV=10000	3300	105/107	80 - 120	ND
Laboratory ID	Observed A PPB	Observed B PPB	RPD (%)	Acceptable Range(%)	
CR00151	13800	14000	1.40	<u><</u> 20]
		MISCELLA	NEOUS		
		Standard ID #	%Recoveries		
Independent Secondar	y Reference Material:	#4295.1	109		
Method Standard (Lab	o. Control Spike):	#3046.6	106		

Analyst: RG

Parameter: TOC

Analysis Date: 5/12/2022 Method Reference: EPA 415.1/SM5310B/9060

		SPIKE - ACC	URACY			
Laboratory ID	Spike level PPB	Background PPB	Recoveries (%)	Acceptable Range (%)	Method Blank Concentration	
CR00159	TV=10000	3100	117/112	80 - 120	ND	
Laboratory ID	Observed A PPB	Observed B PPB	RPD (%)	Acceptable Range(%)		
CR00159	14800	14400	2.70	<u><</u> 20		
		MISCELLA	NEOUS			
		Standard ID #	%Recoveries			
Independent Secondar	ry Reference Material:	#4295.1	106			
Method Standard (Lal	b. Control Spike):	#3046.6	104			

Analyst: RG

Parameter: DOC

Analysis Date: 5/12/2022

Method Reference: EPA 415.1/SM5310B/9060

		SPIKE - ACC	URACY		
Laboratory ID	Spike level PPB	Background PPB	Recoveries (%)	Acceptable Range (%)	Method Blank Concentration
CR00159	TV=10000	3800	105/106	80 - 120	ND
Laboratory ID	Observed A PPB	Observed B PPB	RPD (%)	Acceptable Range(%)	
CR00159	14300	14400	0.70	<u><</u> 20	
		MISCELLA	NEOUS		
		Standard ID #	%Recoveries		
Independent Secondar	y Reference Material:	#4295.1	106		
Method Standard (Lab	. Control Spike):	#3046.6	104		

To: CDBatts, Karn/Weadock

From: EBlaj, T-258

Date: May 22, 2022

Subject: RCRA GROUNDWATER MONITORING - KARN BAP & LINED IMP. WELLS - 2022 Q2

CC: HDRegister, P22-521 BLSwanberg, P22-119 Darby Litz, Project Manager TRC Companies, Inc. 1540 Eisenhower Place Ann Arbor, MI 48108

135 W. Trail St.

Jackson, MI 49201

Chemistry Project: 22-0437

phone 517-788-1251

fax 517-788-2533

TRC Environmental, Inc. conducted groundwater monitoring at the DEKarn Bottom Ash Pond and Lined Impoundment Wells area on 05/03/2022, for the 2nd Quarter requirement, as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 05/04/2022.

Samples for Total Sulfide have been subcontracted to Merit Laboratories, Inc. and the results are listed under the analyst initials "Merit". Samples for Total & Dissolved Organic Carbon have been subcontracted to Brighton Analytical LLC and the results are listed under the analyst initials "BAL". The original reports from both labs are attached. Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

With the exception noted above, the report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

22-0437 Page 1 of 32

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. <u>Results/Quality Control</u>

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

<u>Qualifier</u>	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
Μ	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:Karn/Weadock ComplexWork Order ID:Q2-2022 DEK Bottom Ash Pond & Lined ImpoundmentDate Received:5/4/2022Chemistry Project:22-0437

Field Sample ID	<u>Matrix</u>	Sample Date	Site
DEK-MW-18001	Groundwater	05/03/2022 01:44 PM	DEK Bottom Ash Pond & Lined Impoundment
DEK-MW-18001 MS	Groundwater	05/03/2022 01:44 PM	DEK Bottom Ash Pond & Lined Impoundment
DEK-MW-18001 MSD	Groundwater	05/03/2022 01:44 PM	DEK Bottom Ash Pond & Lined Impoundment
	DEK-MW-18001 DEK-MW-18001 MS	DEK-MW-18001 Groundwater DEK-MW-18001 MS Groundwater	DEK-MW-18001 Groundwater 05/03/2022 01:44 PM DEK-MW-18001 MS Groundwater 05/03/2022 01:44 PM

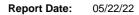
Sample Site:	DEK Bottom Ash Pond & Lined Impoundment	Laboratory Project:	22-0437
Field Sample ID:	DEK-MW-18001	Collect Date:	05/03/2022
Lab Sample ID:	22-0437-01	Collect Time:	01:44 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	tal Metals	s Exp	Aliquot #: 22-0	437-01-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Arsenic	113		ug/L	1.0	05/05/2022	AB22-0505-08
Barium	164		ug/L	5.0	05/05/2022	AB22-0505-08
Beryllium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Boron	869		ug/L	20.0	05/05/2022	AB22-0505-08
Cadmium	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Calcium	63700		ug/L	1000.0	05/10/2022	AB22-0505-08
Chromium	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Cobalt	ND		ug/L	6.0	05/05/2022	AB22-0505-08
Copper	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Iron	1360		ug/L	20.0	05/05/2022	AB22-0505-08
Lead	ND		ug/L	1.0	05/05/2022	AB22-0505-08
Lithium	22		ug/L	10.0	05/05/2022	AB22-0505-08
Magnesium	13300		ug/L	1000.0	05/10/2022	AB22-0505-08
Manganese	200		ug/L	5.0	05/05/2022	AB22-0505-08
Molybdenum	ND		ug/L	5.0	05/05/2022	AB22-0505-08
Nickel	3		ug/L	2.0	05/05/2022	AB22-0505-08
Potassium	4270		ug/L	100.0	05/10/2022	AB22-0505-08
Selenium	2		ug/L	1.0	05/05/2022	AB22-0505-08
Silver	ND		ug/L	0.2	05/05/2022	AB22-0505-08
Sodium	97400		ug/L	1000.0	05/10/2022	AB22-0505-08
Thallium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Vanadium	ND		ug/L	2.0	05/05/2022	AB22-0505-08
Zinc	ND		ug/L	10.0	05/05/2022	AB22-0505-08
Mercury by EPA 7470A, Total, Aqueou	IS			Aliquot #: 22-0	437-01-C01-A02	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/09/2022	AB22-0509-01
Anions by EPA 300.0 Aqueous, NO2, N	NO3			Aliquot #: 22-0	437-01-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Nitrite	ND		ug/L	100.0	05/04/2022	AB22-0504-08
Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F,	SO4, Aqı	ieous	Aliquot #: 22-0	437-01-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

22-0437 Page 5 of 32

ug/L


05/06/2022

1000.0

AB22-0505-07

65900

Chloride

Sample Site:	DEK Bottom Ash Pond & Lined Impoundment	Laboratory Project:	22-0437
Field Sample ID:	DEK-MW-18001	Collect Date:	05/03/2022
Lab Sample ID:	22-0437-01	Collect Time:	01:44 PM
Matrix:	Groundwater		

Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F, S	604, Aqı	ieous	Aliquot #: 22-0	437-01-C02-A02	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/04/2022	AB22-0505-07
Sulfate	187000		ug/L	1000.0	05/06/2022	AB22-0505-07
Nitrogen-Ammonia by SM4500NH3(h),	Groundwater	HL		Aliquot #: 22-0	437-01-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	2040		ug/L	25.0	05/09/2022	AB22-0509-09
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	437-01-C04-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	555		mg/L	10.0	05/05/2022	AB22-0505-01
Alkalinity by SM 2320B				Aliquot #: 22-0	437-01-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	174000		ug/L	10000.0	05/09/2022	AB22-0509-08
Alkalinity Bicarbonate	174000		ug/L	10000.0	05/09/2022	AB22-0509-08
Alkalinity Carbonate	ND		ug/L	10000.0	05/09/2022	AB22-0509-08
Sulfide, Total by SM 4500 S2D	Aliquot #: 22-0	437-01-C07-A01	Analyst: Merit			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	ND		ug/L	20.0	05/06/2022	AB22-0509-15
Total Organic Carbon by SM 5310B, A	queous			Aliquot #: 22-0	437-01-C08-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	4400		ug/L	1000.0	05/10/2022	AB22-0519-08
Dissolved Organic Carbon by SM 5310	0B, Aqueous			Aliquot #: 22-0	437-01-C09-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Dissolved Organic Carbon	4800		ug/L	1000.0	05/10/2022	AB22-0519-09

Sample Site:	DEK Bottom Ash Pond & Lined Impoundment	Laboratory Project:	22-0437
Field Sample ID:	DEK-MW-18001 MS	Collect Date:	05/03/2022
Lab Sample ID:	22-0437-02	Collect Time:	01:44 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

Metals by EPA 6020B: CCR Rule Appen	dix III-IV Tot	al Metals	s Exp	Aliquot #: 22-0	437-02-C01-A01	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Antimony	110		%	1.0	05/05/2022	AB22-0505-08	
Arsenic	94	%		1.0	05/05/2022	AB22-0505-08	
Barium	104		%	5.0	05/05/2022	AB22-0505-08	
Beryllium	100		%	1.0	05/05/2022	AB22-0505-08	
Boron	107		%	20.0	05/05/2022	AB22-0505-08	
Cadmium	104		%	0.2	05/05/2022	AB22-0505-08	
Calcium	102		%	1000.0	05/10/2022	AB22-0505-08	
Chromium	97		%	1.0	05/05/2022	AB22-0505-08	
Cobalt	98		%	6.0	05/05/2022	AB22-0505-08	
Copper	92		%	1.0	05/05/2022	AB22-0505-08	
Iron	114		%	20.0	05/05/2022	AB22-0505-08	
Lead	99		%	1.0	05/05/2022	AB22-0505-08	
Lithium	101		%	10.0	05/05/2022	AB22-0505-08	
Magnesium	111		%	1000.0	05/10/2022	AB22-0505-08	
Manganese	97		%	5.0	05/05/2022	AB22-0505-08	
Molybdenum	111		%	5.0	05/05/2022	AB22-0505-08	
Nickel	92		%	2.0	05/05/2022	AB22-0505-08	
Potassium	109		%	100.0	05/10/2022	AB22-0505-08	
Selenium	97		%	1.0	05/05/2022	AB22-0505-08	
Silver	115		%	0.2	05/05/2022	AB22-0505-08	
Sodium	114		%	1000.0	05/10/2022	AB22-0505-08	
Thallium	98		%	2.0	05/05/2022	AB22-0505-08	
Vanadium	101		%	2.0	05/05/2022	AB22-0505-08	
Zinc	93		%	10.0	05/05/2022	AB22-0505-08	
Mercury by EPA 7470A, Total, Aqueous	i -			Aliquot #: 22-0	437-02-C01-A02	Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Mercury	101		%	0.2	05/09/2022	AB22-0509-01	
Anions by EPA 300.0 Aqueous, NO2, No	D 3			Aliquot #: 22-0	437-02-C02-A01	Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Nitrate	93	%		100.0	05/04/2022	AB22-0504-08	
Nitrite	93	%		100.0	05/04/2022	AB22-0504-08	
Anions by EPA 300.0 CCR Rule Analyte	List, CI, F, S	604, Aqı	ieous	Aliquot #: 22-0	437-02-C02-A02	Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Chloride	108	-	%	1000.0	05/06/2022	AB22-0505-07	

Sample Site:	DEK Bottom Ash Pond & Lined Impoundment	Laboratory Project:	22-0437
Field Sample ID:	DEK-MW-18001 MS	Collect Date:	05/03/2022
Lab Sample ID:	22-0437-02	Collect Time:	01:44 PM
Matrix:	Groundwater		

Anions by EPA 300.0 CCR Rule Analyte	Aliquot #: 22-0	437-02-C02-A02	2 Analyst: DMW			
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	83		%	1000.0	05/04/2022	AB22-0505-07
Sulfate	108		%	1000.0	05/06/2022	AB22-0505-07
Nitrogen-Ammonia by SM4500NH3(h), C	Groundwater H	L		Aliquot #: 22-0	437-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	99		%	25.0	05/09/2022	AB22-0509-09
Alkalinity by SM 2320B				Aliquot #: 22-0	437-02-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	96.2		%	10000.0	05/09/2022	AB22-0509-08
Sulfide, Total by SM 4500 S2D				Aliquot #: 22-0	437-02-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	92		%	20.0	05/06/2022	AB22-0509-15
Total Organic Carbon by SM 5310B, Aq	ueous			Aliquot #: 22-0	437-02-C08-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Organic Carbon	114		%	1000.0	05/10/2022	AB22-0519-08
Dissolved Organic Carbon by SM 5310E	3, Aqueous			Aliquot #: 22-0	437-02-C09-A01	Analyst: BAL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Dissolved Organic Carbon	106		%	1000.0	05/10/2022	AB22-0519-09

Sample Site:	DEK Bottom Ash Pond & Lined Impoundment	Laboratory Project:	22-0437
Field Sample ID:	DEK-MW-18001 MSD	Collect Date:	05/03/2022
Lab Sample ID:	22-0437-03	Collect Time:	01:44 PM
Matrix:	Groundwater		

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp

Metals by EPA 6020B: CCR Rule Apper	dix III-IV Tot	al Metals	s Exp	Aliquot #: 22-0	437-03-C01-A01	Analyst: EB	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Antimony	108		%	1.0	05/05/2022	AB22-0505-08	
Arsenic	91	%		1.0	05/05/2022	AB22-0505-08	
Barium	101		%	5.0	05/05/2022	AB22-0505-08	
Beryllium	101		%	1.0	05/05/2022	AB22-0505-08	
Boron	111		%	20.0	05/05/2022	AB22-0505-08	
Cadmium	103		%	0.2	05/05/2022	AB22-0505-08	
Calcium	102		%	1000.0	05/10/2022	AB22-0505-08	
Chromium	97		%	1.0	05/05/2022	AB22-0505-08	
Cobalt	96		%	6.0	05/05/2022	AB22-0505-08	
Copper	91		%	1.0	05/05/2022	AB22-0505-08	
Iron	113		%	20.0	05/05/2022	AB22-0505-08	
Lead	99		%	1.0	05/05/2022	AB22-0505-08	
Lithium	103		%	10.0	05/05/2022	AB22-0505-08	
Magnesium	114		%	1000.0	05/10/2022	AB22-0505-08	
Manganese	94		%	5.0	05/05/2022	AB22-0505-08	
Molybdenum	110		%	5.0	05/05/2022	AB22-0505-08	
Nickel	90		%	2.0	05/05/2022	AB22-0505-08	
Potassium	109		%	100.0	05/10/2022	AB22-0505-08	
Selenium	92		%	1.0	05/05/2022	AB22-0505-08	
Silver	113		%	0.2	05/05/2022	AB22-0505-08	
Sodium	116		%	1000.0	05/10/2022	AB22-0505-08	
Thallium	99		%	2.0	05/05/2022	AB22-0505-08	
Vanadium	98	98		2.0	05/05/2022	AB22-0505-08	
Zinc	91		%	10.0	05/05/2022	AB22-0505-08	
Mercury by EPA 7470A, Total, Aqueous	5			Aliquot #: 22-0	437-03-C01-A02	Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Mercury	94.0		%	0.2	05/09/2022	AB22-0509-01	
Anions by EPA 300.0 Aqueous, NO2, N	03			Aliquot #: 22-0	437-03-C02-A01	Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Nitrate	93		%	100.0	05/04/2022	AB22-0504-08	
Nitrite	93	%		100.0	05/04/2022	AB22-0504-08	
Anions by EPA 300.0 CCR Rule Analyte	List, Cl, F, S	5O4, Aqı	ieous	Aliquot #: 22-0	437-03-C02-A02	Analyst: DMW	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking	
Chloride	113		%	1000.0	05/06/2022	AB22-0505-07	

Sample Site:	DEK Bottom Ash Pond & Lined Impoundment	Laboratory Project:	22-0437	
Field Sample ID:	DEK-MW-18001 MSD	Collect Date:	05/03/2022	
Lab Sample ID:	22-0437-03	Collect Time:	01:44 PM	
Matrix:	Groundwater			

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous					437-03-C02-A02	Analyst: DMW		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Fluoride	83		%	1000.0	05/04/2022	AB22-0505-07		
Sulfate	114		%	1000.0	05/06/2022	AB22-0505-07		
Nitrogen-Ammonia by SM4500NH3(h),	Groundwater H	L		Aliquot #: 22-0	437-03-C03-A01	Analyst: LMO		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Ammonia	103		%	25.0	05/09/2022	AB22-0509-09		
Alkalinity by SM 2320B				Aliquot #: 22-0	437-03-C05-A01	Analyst: DLS		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Alkalinity Total	96.7		%	10000.0	05/09/2022	AB22-0509-08		
Sulfide, Total by SM 4500 S2D				Aliquot #: 22-0	437-03-C07-A01	Analyst: Merit		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Sulfide	92		%	20.0	05/06/2022	AB22-0509-15		
Total Organic Carbon by SM 5310B, Aq	ueous			Aliquot #: 22-0	437-03-C08-A01	Analyst: BAL		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Total Organic Carbon	117		%	1000.0	05/10/2022	AB22-0519-08		
Dissolved Organic Carbon by SM 5310	B, Aqueous			Aliquot #: 22-0	437-03-C09-A01	Analyst: BAL		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking		
Dissolved Organic Carbon	87		%	1000.0	05/10/2022	AB22-0519-09		

Data	Qualifiers	

Exception Summary

No exceptions occurred.

CONSUMERS ENERGY Chemistry Department

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 2 ATTACHMENT A

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

		10	7-1			
	oject Log-In Number: _			12		
In	spection Date: 05 0	4[22		Inspection By: <u>CUH</u>		
Sa	mple Origin/Project Nan	ne: DEI	K LI +	BAP		
Sh	ipment Delivered By: En	nter the type o	of shipment ca	mier.		
	Pony	FedEx V	UI	S USPS_	Air	borne
	Tracking Number:	27272030	1342	Shipping Form A	ttached: Yes X	No
Sh	ipping Containers: Enter	the type and	number of sl	hipping containers received	2	
	Cooler 🖌	Cardboard H	Box	Custom Case	Envelop	e/Mailer
	Loose/Unpackaged	Containers		Other		
Co	ndition of Shipment: En	ter the as-rece	eived conditio	on of the shipment containe		
	Damaged Shipment	Observed: N	one 🗸	Dented	Lea	king
En	closed Documents: Enter CoC ₩	1.27		closed with the shipment.	Other	
Te	nperature of Containers	: Measure the	temperature	of several sample containe	rs.	
				Samples Received on I		
Nu				ber of sample containers re		
	Container Type	Water	Soil	Other	Broken	Leaking
	VOA (40mL or 60mL					
	Quart/Liter (g/p)	60=6				
	9-oz (amber glass ja	r) (
DHOAPER	2-oz (amber glass)					
PH paper 0-14	125 mL (plastic)	12				
10+#	24 mL vial (glass)	1				
222420	V50 500 mL (plastic) Other	<u> </u>	_			
exp: 8.1.23						

PG.232 not needed

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

Page 6 of

135 WEST TRAIL ST., JACKSON, MI 49201 . (517) 788-1251

			PROJECT NUMBER:	SAP CC or W	O#:							ANALYSIS REQUESTED										
Q2-202	22 DEK Botto	m Ash Pond &	Lined Imp	ound.	22-0437 REQUESTER: Harold Register							ore Space is Needed)				QA REQUIREMENT:						
SAMPI	ING TEAM:				TURNAROUND TIME REQUIRED:											I NPDES						
SEND	REPORT TO:	Caleb Batts			email:	phone:													_	arbon		ISO 17025
C	OPY TO:	Harold Regis	ter		MATRIX CODES: GW = Groundwater OX = Ot		1	C	ONT	ΓAI	NER	s							Total Organic Carbon	Dissolved Organic Carbon	E	10 CFR 50 APP. B
-		TRC			WW = Wastewater SL = Sh W = Water / Aqueous Liquid A = Air		#	1	PRE	SE	RVA	TIVI	3	etals					anic (l Orga		INTERNAL INFO
	LAB	SAMPLE COL	LECTION	MATRIX	S = Soil / General Solid WP = V $O = Oil WT = C$	General Waste	TOTAL #	0	03	04	H	HC	ı	Total Metals	Ammonia	0	Alkalinity	Sulfide	al Org	solved	C	OTHER
SA	MPLE ID	DATE	TIME	MAN	FIELD SAMPLE ID / L	OCATION	TO	None	HNG	H ₂ S	NaOH	MeC	Other	Tot	m A m	TDS	Alk	Sulf	Tota	Dis		REMARKS
22	2-0437-01	5/3/02	1344	GW	DEK-MW-18001		9	4	1	1	1 2	1		x	x	x	x	x	x	x		
	-02	1 1	1344	GW	DEK-MW-18001 MS		8	3	1	1	1 2	1		x ,	x		x	x	x	x		
	-03	111'	1344	GW	DEK-MW-18001 MSD		8	3	1	1	1 2			x ,	x		x	x	x	x		
									-			1					-	1				
-							-	-	-		+	-			-	-	-				-	
				-			_	-	-	_	+	-	-				-			_	_	
							_				-	-	_				_					-
16																						
																					-	200
												1		_		1		-		-		
				-						-		+		-	-	-	+					
RELIN	QUISHED BY:		1	DATE/	TIME:	RECEIVED BY:	_							COM	MENT	S:		_				
/	2					Fed Ex										~						
RELINI	QUISHED BY:	-	913/	DATE/		RECEIVED BY:		_				_	_	Denet		T P				1.00	TE #. 4	015402
C						ALCEIVED BT.								Temp								te: 6-3-22
-	Fed	Ex	4	05.0	4-22 10:25	22-0437 Page 13						_		remp	rature	1.0	-1-			Ca	. Due Da	IC. 0-3-26

Report ID: S35622.01(01) Generated on 05/06/2022

Report to

Attention: Emil Blaj Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 C:517-684-9467 FAX: Email: emil.blaj@cmsenergy.com

Report produced by

Analytical Laboratory Report

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: John Laverty (johnlaverty@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Summary

Lab Sample ID(s): S35622.01-S35622.03 Project: 22-0437 PR#22050489 Collected Date(s): 05/03/2022 Submitted Date/Time: 05/05/2022 08:15 Sampled by: Unknown P.O. #: 4400106050

Table of Contents

Cover Page (Page 1) General Report Notes (Page 2) Report Narrative (Page 2) Laboratory Certifications (Page 3) Qualifier Descriptions (Page 3) Glossary of Abbreviations (Page 3) Method Summary (Page 4) Sample Summary (Page 5)

Naya Mushah

Maya Murshak Technical Director

General Report Notes

Analytical results relate only to the samples tested, in the condition received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

When MDL results are provided, then 'Not detected' indicates that parameter was not found at a level equal to or greater than the MDL.

40 CFR Part 136 Table II Required Containers, Preservation Techniques and Holding Times for the Clean Water Act specify that samples

for acrolein, acrylonitrile, and 2-chlorovinylethyl ether need to be preserved at a pH in the range of 4 to 5 or if not preserved, analyzed within 3 days of sampling.

QA/QC corresponding to this analytical report is a separate document with the same Merit ID reference and is available upon request.

Full accreditation certificates are available upon request. Starred (*) analytes are not NELAP accredited.

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc.

Limits for drinking water samples, are listed as the MCL Limits (Maximum Contaminant Level Concentrations)

PFAS requirement: Section 9.3.8 of U.S. EPA Method 537.1 states "If the method analyte(s) found in the Field Sample is present in the

FRB at a concentration greater than 1/3 the MRL, then all samples collected with that FRB are invalid and must be recollected and reanalyzed."

Samples submitted without an accompanying FRB may not be acceptable for compliance purposes.

Wisconsin PFAs analysis: MDL = LOD; RL = LOQ. LOD and LOQ are adjusted for dilution.

Report Narrative

There is no additional narrative for this analytical report

Laboratory Certifications

Authority	Certification ID
Michigan DEQ	#9956
DOD ELAP/ISO 17025	#69699
WBENC	#2005110032
Ohio VAP	#CL0002
Indiana DOH	#C-MI-07
New York NELAC	#11814
North Carolina DENR	#680
North Carolina DOH	#26702
Alaska CSLAP	#17-001
Pennsylvania DEP	#68-05884
Wisconsin DNR	FID# 399147320

Qualifier Descriptions

Qualifier	Description
!	Result is outside of stated limit criteria
В	Compound also found in associated method blank
E	Concentration exceeds calibration range
F	Analysis run outside of holding time
G	Estimated result due to extraction run outside of holding time
н	Sample submitted and run outside of holding time
1 I	Matrix interference with internal standard
J	Estimated value less than reporting limit, but greater than MDL
L	Elevated reporting limit due to low sample amount
М	Result reported to MDL not RDL
0	Analysis performed by outside laboratory. See attached report.
R	Preliminary result
S	Surrogate recovery outside of control limits
т	No correction for total solids
Х	Elevated reporting limit due to matrix interference
Y	Elevated reporting limit due to high target concentration
b	Value detected less than reporting limit, but greater than MDL
е	Reported value estimated due to interference
j	Analyte also found in associated method blank
р	Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.
х	Preserved from bulk sample

Glossary of Abbreviations

Abbreviation	Description
RL/RDL	Reporting Limit
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
SW	EPA SW 846 (Soil and Wastewater) Methods
E	EPA Methods
SM	Standard Methods
LN	Linear
BR	Branched
4	

Method Summary

Method

SM4500-S2 D

Version Standard Method 4450 S2 D 2011

Sample Summary (3 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S35622.01	22-0437-01 (DEK-MW-18001)	Groundwater	05/03/22 07:18
S35622.02	22-0437-01 (DEK-MW-18001 Field MS)	Groundwater	05/03/22 08:05
S35622.03	22-0437-01 (DEK-MW-18001 Field MSD)	Groundwater	05/03/22 09:20

Lab Sample ID: S35622.01

Sample Tag: 22-0437-01 (DEK-MW-18001) Collected Date/Time: 05/03/2022 07:18 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/06/22 08:06, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S35622.02

Sample Tag: 22-0437-01 (DEK-MW-18001 Field MS) Collected Date/Time: 05/03/2022 08:05 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/06/22 08:10, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.183	0.02	0.005	mg/L	1	18496-25-8	1

1-* Sample spiked @ 0.200 mg/L

Lab Sample ID: S35622.03

Sample Tag: 22-0437-01 (DEK-MW-18001 Field MSD) Collected Date/Time: 05/03/2022 09:20 Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH	Yes	3.2	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/06/22 08:12, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.183	0.02	0.005	mg/L	1	18496-25-8	1

1-* Sample spiked @ 0.200 mg/L

Merit Laboratories Login Checklist

Lab Set ID:S35622

Client: CONSUMERS (Consumers Energy)

Project: 22-0437 PR#22050489

Submitted:05/05/2022 08:15 Login User: MMC

Attention: Emil Blaj Address: Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Selection	Description	Note
Sample Receiving		
01. X Yes No N/A	Samples are received at 4C +/- 2C Thermometer #	IR 3.2
02. X Yes No N/A	Received on ice/ cooling process begun	
03. Yes X No N/A	Samples shipped	
04. X Yes No N/A	Samples left in 24 hr. drop box	
05. X Yes No N/A	Are there custody seals/tape or is the drop box locked	
Chain of Custody		
06. X Yes No N/A	COC adequately filled out	
07. X Yes No N/A	COC signed and relinquished to the lab	
08. XYes No N/A	Sample tag on bottles match COC	
09. Yes X No N/A	Subcontracting needed? Subcontacted to:	
Preservation		
10. 🕱 Yes 🗌 No 🗌 N/A	Do sample have correct chemical preservation	
11. X Yes No N/A	Completed pH checks on preserved samples? (no VOAs)	
11. X Yes No N/A 12. Yes X No N/A	Completed pH checks on preserved samples? (no VOAs) Did any samples need to be preserved in the lab?	
12. Yes X No N/A		
12. Yes X No N/A Bottle Conditions	Did any samples need to be preserved in the lab?	
12. Yes X No N/A Bottle Conditions 13. X Yes No N/A	Did any samples need to be preserved in the lab?	
I2. Yes No N/A Bottle Conditions I3. Yes No N/A 14. X Yes No N/A	Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used	
12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A 15. Yes X No N/A	Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used Merit bottles used	
12. Yes X No N/A Bottle Conditions 13. X Yes No N/A 14. X Yes No N/A 15. Yes X No N/A 16. X Yes No N/A	Did any samples need to be preserved in the lab? All bottles intact Appropriate analytical bottles are used Merit bottles used Sufficient sample volume received	

Corrective action for all exceptions is to call the client and to notify the project manager.

Merit Laboratories Bottle Preservation Check

Lab Set ID: S35622 Submitted: 05/05/2022 08:15 Client: CONSUMERS (Consumers Energy)

Project: 22-0437 PR#22050489

Initial Preservation Check: 05/05/2022 08:56 MMC Preservation Recheck (E200.8): N/A Attention: Emil Blaj Address: Consumers Energy Company 135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Sample ID	Bottle / Preservation	pH (Orig)	Add ml	pH (New)	Notes
S35622.01	125ml Plastic NaOH	>12			
S35622.02	125ml Plastic NaOH	>12			
S35622.03	125ml Plastic NaOH	>12			

		-{	Merit	2680 East Lansin Phone (517) 332-0 www.meritlabs.co	0167	, East Fa	t La ax (5	nsing 17) 3	, MI 4 32-40	8823 34				0.0.C. I	PAGE	+ <u> </u>	OF _	1		•																																																																																																										
REPOR				CHAIN	IOF	CL	JST	rod	Y RI	ECC	RD								INVOI	CE TO																																																																																																										
CONTACT NAME E	Emil Blaj						CONTACT NAME SAME																																																																																																																							
COMPANY Con	sumers I	Energy						COMP	NY																																																																																																																					
ADDRESS 135 V	W. Trail S	Street					- 11	ADDRESS																																																																																																																						
спу Jackson				STATE MI ZIP C	ODE	4920	1 CITY STATE ZIP CODE																																																																																																																							
PHONE NO. 517-	788-5888		FAX NO. 517-788-2533	P.O. NO. 4400106	050			PHONE	NO.				E	MAIL ADI	DRESS			_	k																																																																																																											
E-MAIL ADDRESS	emil.blaj(acmsen	ergy.com	QUOTE NO.				ANALYSIS (ATTACH LIST IF MORE SPACE IS REQUIRED)								RED)																																																																																																														
PROJECT NO./NAM	ME 22-043	4 PR#22	2050489	SAMPLER(S) - PLEASE P	RINT/S	IGN NA	ME			N/A	7		1	Π		TT		Certifica	2103																																																																																																											
TURNAROUNI	D TIME RE	QUIRED	1 DAY 2 DAYS 3 D	AYS STANDARD	ТО	HER	-				-									inking Water																																																																																																										
DELIVERABLE	S REQUIR					DTHE	R	_			- e					11		DoD	NP	DES																																																																																																										
MATRIX (CODE:	GW=GROUN SL=SLUDG		WW=WASTEWATER S=SO DRINKING WATER O=OIL		=SOL N=WA					# Containers & Preservatives			# Containers & Preservatives			# Containers & HTP Preservatives			Preservatives 5		# Containers & Preservatives																																																								# Containers & Preservatives					# Containers & Preservatives																# Containers & Preservatives		# Containers & Preservatives		# Containers & Preservatives		# Containers & Un Preservatives		# Containers & Preservatives		# Containers & Preservatives																Detroit	_ocations	w York
MERIT LAB NO. FOR LAB USE ONLY	YE. DATE	AR	SAMPLE IDENTIFICATION-DE		MATRIX	# OF	NONE	HCI HNO,	H ₅ SO ₄ NaOH	MeOH	Total							Other Special I	Instruction	9																																																																																																										
35622.01	05/03/22	0718	22-0437-01 (DEK-MW-	18001)	GW				1		1							and and a second second	with NaOH	and the second se																																																																																																										
a contraction of the second	05/03/22	0805	22-0437-02 (DEK-MW-1	8001 Field MS)	GW	/ 1			1	T	1																																																																																																																			
.03	05/03/22	0920	22-0437-03 (DEK-MW-1	8001 Field MSD)	GW	/ 1			1		1							"																																																																																																												
																		Please spil	ke MS/MSD	and report																																																																																																										
		_																spike con	centration	and/or rec.																																																																																																										
					+	-	\square	-				\square			-		_																																																																																																													
					+	-	\vdash	-		-		\vdash			+	$\left \right $			_																																																																																																											
					+	+	\vdash	+	-	-			-		-																																																																																																															
					t		H						+		+		-	-																																																																																																												
					T								1		1																																																																																																															
RELINQUISHED BY SIGNATURE/ORGA RECEIVED BY: SIGNATURE/ORGA	NIZATION	Yu	NUMERS ENERGY	DATE OS-04-22. DATE DATE	11			SIGNAT	UISHED URE/OR ED BY: URE/OR	GANIZ			ł	ner	+ I		Box		5/5/22 5/5/22	0815																																																																																																										
RELINQUISHED BY SIGNATURE/ORGA				DATE		TIME	-	SEAL N	-		COLUMN DWG		CT NO E	INITI	ALS	N	OTES:	TEMP. ON																																																																																																												
RECEIVED BY: SIGNATURE/ORGA	NIZATION			DATE	1	TIME .	1	SEAL N	Э.					INITI	ALS				3.	.2																																																																																																										

PLEASE NOTE: SIGNING ACKNOWLEDGES ADHERENCE TO MERIT'S SAMPLE ACCEPTANCE POLICY ON REVERSE SIDE

2105 Pless Drive Brighton, Michigan 48114 Phone (810)229-7575 Fax (810)229-8650 E-mail bai-brighton@sbcglobal.net

May 11, 2022

Consumers Energy Company 135 W. Trail St. Jackson, MI 49201

Subject: Q2-2022 DEK Bottom Ash Pond&Lined Impound 22-0437

Dear Mr. Blaj :

Thank you for making Brighton Analytical, L.L.C. your laboratory of choice. Attached are the results for the samples submitted on 05/06/2022 for the above mentioned project. NELAP/TNI Accredited Analysis and EGLE Drinking Water Certified Analysis will be identified in their respective reporting formats. Hard copies can be supplied at your request for a fee of \$20.00 per copy.

The invoice for this project will be emailed separately. If you have any questions concerning the data or invoice, please don't hesitate to contact our office. We welcome your comments and suggestions to improve our quality systems. Please reference Brighton Analytical, L.L.C. Project ID 81646 when calling or emailing. We thank you for this opportunity to partner with you on this project and hope to work with you again in the future.

Sincerely, Brighton Analytical, L.L.C.

Brighton Analytical LLC

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 05/03/2022 To: Submit Date: 05/06/2022 Consumers Energy Company Report Date: 05/11/2022 135 W. Trail St. Jackson, MI 49201 BA Report Number: 81646 Project Name: Q2-2022 DEK Bottom Ash Pond&Lined Impound BA Sample ID: Project Number: 22-0437 **CR00137** Sample ID: 22-0437-01 DEK-MW-18001 Parameters Result Units DL **Method Reference** Analyst **Organic Analysis** Dissolved Organic Carbon 4800 ug/L 5000 SM5310B RG

Total Organic Carbon4400ug/L1000SM5310BDL=Reported detection limit for analytical method requested.Some compounds require special

analytical methods to achieve EGLE designated target detection limits (TDL).

Elevated DOC dl due to sample matrix.

000 Released by

RG

Analysis

Date

05/10/2022

05/10/2022

Date

5/11/2022

Page 1 of 1

22-0437 Page 26 of 32

Consumers Energy Company 135 W. Trail St. Jackson, MI 49201

BA Report Number: 81646	Proje	ect Name: Q2-20	22 DEK Bot	ttom Ash Pond&Lined I	mpound	
BA Sample ID: CR00138	Proje	ect Number: 22-0	437			
	Sample ID:	22-0437-02 DEK	K-MW-18001	l MS		
Parameters	Result	Units	DL	Method Reference	Analyst	Analysis Date
Organic Analysis						
Dissolved Organic Carbon	106%	ug/L		SM5310B	RG	05/10/202
Total Organic Carbon	114%	ug/L		SM5310B	RG	05/10/202

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

000 Released by

Date

5/11/2022

Page 1 of 1

BA Report Number: 81646 BA Sample ID: CR00139	Proje	ect Number: 22-0	437	ttom Ash Pond&Lined I	mpound	
	Sample ID:	22-0437-03 DEK	K-MW-18001	1 MSD		
Parameters	Result	Units	DL	Method Reference	Analyst	Analysis Date
Organic Analysis Dissolved Organic Carbon Total Organic Carbon	87% 117%	ug/L ug/L		SM5310B SM5310B	RG RG	05/10/2022 05/10/2022

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

000 Released by

Date

5/11/2022

Page 1 of 1

Consumers	Maran			CHAIN OF CUSTODY CONSIMERS ENERGY COMPANY - LABORATORY	IN OF CUSTODY	STC	D	V ORY	SER	SERVICES	or lo
	Count on Us [®])	135 WEST TRAIL ST., JACKSON, MI 49201	CKSON, MI 492	01 • (;	517) 78	(517) 788-1251	_		
SAMPLING SITE / CUSTOMER:	STOMER:			PROJECT NUMBER:	SAP CC or WO#:				A	ANALYSIS REQUESTED	OA PEOLIIREMENT.
Q2-2022 DEK Bottom Ash Pond & Lined Impound.	n Ash Pond & I	ined Imp	ound.	22-0437	REQUESTER: Emil Blaj	nil Blaj			(Attac	(Attach List if More Space is Needed)	AA NEQUINEINEINI
SAMPLING TEAM:				TURNAROUND TIME REQUIRED: 24 HR	DARD 🛛 OTHER			Ī			□ NPDES ⊠ TNI
SEND REPORT TO:	Emil Blaj			email:Emil.Blaj@cmsenergy.com	phone:						□ ISO 17025
COPY TO:				MATRIX CODES: GW = Groundwater OX = Other		CONT	CONTAINERS				□ 10 CFR 50 APP. B
							PRESERVATIVE	IVE			□ INTERNAL INFO
LAB	SAMPLE COLLECTION	ECTION		S = Soil / General Solid WP = Wipe O = Oil WT = General Waste		٤(Н		il Orga Solved		C OTHER
SAMPLE ID	DATE	TIME	ITAM	FIELD SAMPLE ID / LOCATION		ONH PuoN	HCI N ⁹ OI H ⁵ SC	Othe MeO	-		REMARKS
22-0437-01	05/03/2022	1344	GW	DEK-MW-18001		2	5		x x		137
-0437	05/03/2022	1344	GW	DEK-MW-18001 MS		2	5		x x		13%
E0-	05/03/2022	1344	GW	DEK-MW-18001 MSD		2	5		×××		132
29 of 32											
2									_		
								-			
RELINQUISHED BY:	A.M.		DATE/TIME:		RECEIVED BY:	-	-		COMMENTS	NTS: PR 220507	
RELINQUISHED BY:	1		DATE/TIME:		RECEIVED BY:				Received on Ic	3.4 °C	M&TE #: Cal. Due Date:

÷

BRIGHTON ANALYTICAL, LLC

QUALITY ASSURANCE/QUALITY CONTROL

22-0437 Page 30 of 32

REPRESENTATIVE BATCH QUALITY CONTROL Accuracy & Precision

Analyst: RG

Parameter: TOC

Analysis Date: 5/10/2022

Method Reference: EPA 415.1/SM5310B/9060

SPIKE - ACCURACY									
Laboratory ID	Spike level PPB	Background PPB			Method Blank Concentration				
CR00137	TV=10000	4400 114/117		80 - 120	ND				
Laboratory ID	Observed A PPB	Observed BRPDPPB(%)		Acceptable Range(%)					
CR00137	15800	16100	1.90	<u><</u> 20					
		MISCELLA	NEOUS						
		Standard ID #	%Recoveries						
Independent Secondar	y Reference Material:	#4295.1	93						
Method Standard (Lal	o. Control Spike):	#3046.6	108						

COMMENTS:

REPRESENTATIVE BATCH QUALITY CONTROL Accuracy & Precision

Analyst: RG

Parameter: DOC

Analysis Date: 5/10/2022

Method Reference: EPA 415.1/SM5310B/9060

SPIKE - ACCURACY								
Laboratory ID	Spike level PPB	BackgroundRecoveriesPPB(%)		Acceptable Range (%)	Method Blank Concentration			
CR00137	TV=10000	4800	106/87	80 - 120	ND			
Laboratory ID	Observed A PPB	Observed B PPB	RPDAcceptable(%)Range(%)					
CR00137	15400	13500	13.10	<u><</u> 20				
		MISCELLA	NEOUS		- 11			
		Standard ID #	%Recoveries					
Independent Secondar	y Reference Material:	#4295.1	93					
Method Standard (Lat	o. Control Spike):	#3046.6	108					

COMMENTS:

To: CDBatts, Karn/Weadock

From: EBlaj, T-258

Date: May 25, 2022

Subject: RCRA GROUNDWATER MONITORING – DEK-JCW BACKGROUND WELLS – 2022 Q2

CC: HDRegister, P22-521 BLSwanberg, P22-119 Darby Litz, Project Manager TRC Companies, Inc. 1540 Eisenhower Place Ann Arbor, MI 48108

135 W. Trail St.

Jackson, MI 49201

Chemistry Project: 22-0443

phone 517-788-1251 *fax* 517-788-2533

TRC Environmental, Inc. conducted groundwater monitoring at the Karn/Weadock Background Wells area on 05/02/2022 and 05/03/2022, for the 2nd Quarter monitoring requirement, as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 05/04/2022.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate. The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

22-0443 Page 1 of 13

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste -Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section, when applicable; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

Acronym	Description
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

SM Standard Methods Compendium

22-0443 Page 2 of 13

<u>Qualifier</u>	Description
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
Ι	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
Μ	The precision for duplicate analysis was not met; RPD outside acceptance criteria
Ν	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
Х	Other notation required; comment listed in sample notes and/or case narrative

Customer Name:Karn/Weadock ComplexWork Order ID:Q2-2022 JCW-DEK Background WellsDate Received:5/04/2022Chemistry Project:22-0443

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
22-0443-01	MW-15002	Groundwater	05/02/2022 05:24 PM	DEK JCW Background
22-0443-02	MW-15008	Groundwater	05/02/2022 01:45 PM	DEK JCW Background
22-0443-03	MW-15016	Groundwater	05/03/2022 08:37 AM	DEK JCW Background
22-0443-04	MW-15019	Groundwater	05/02/2022 03:20 PM	DEK JCW Background
22-0443-05	DUP-Background	Groundwater	05/02/2022 12:00 AM	DEK JCW Background
22-0443-06	FB- Background	Water	05/02/2022 01:45 PM	DEK JCW Background

Laboratory Project: 22-0443 Collect Date: 05/02/2022 Collect Time: 05:24 PM

Sample Site:DEK JCW BackgroundField Sample ID:MW-15002Lab Sample ID:22-0443-01Matrix:Groundwater

Total Dissolved Solids

Mercury by EPA 7470A, Total, Aqueous			Aliquot #: 22-0	443-01-C01-A01	Analyst: CLH	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/10/2022	AB22-0510-04
Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	s Exp	Aliquot #: 22-0	443-01-C01-A02	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Arsenic	14		ug/L	1.0	05/11/2022	AB22-0511-14
Barium	682		ug/L	5.0	05/11/2022	AB22-0511-14
Beryllium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Boron	103		ug/L	20.0	05/11/2022	AB22-0511-14
Cadmium	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Calcium	238000		ug/L	1000.0	05/12/2022	AB22-0511-14
Chromium	3		ug/L	1.0	05/11/2022	AB22-0511-14
Cobalt	ND		ug/L	6.0	05/11/2022	AB22-0511-14
Copper	3		ug/L	1.0	05/11/2022	AB22-0511-14
Iron	16100		ug/L	20.0	05/11/2022	AB22-0511-14
Lead	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Lithium	16		ug/L	10.0	05/11/2022	AB22-0511-14
Molybdenum	ND		ug/L	5.0	05/11/2022	AB22-0511-14
Nickel	14		ug/L	2.0	05/11/2022	AB22-0511-14
Selenium	54		ug/L	1.0	05/11/2022	AB22-0511-14
Silver	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Thallium	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Vanadium	15		ug/L	2.0	05/11/2022	AB22-0511-14
Zinc	23		ug/L	10.0	05/11/2022	AB22-0511-14
Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F,	SO4, Aqı	leous	Aliquot #: 22-0	443-01-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	2210000		ug/L	1000.0	05/17/2022	AB22-0509-05
Fluoride	ND		ug/L	1000.0	05/16/2022	AB22-0509-05
Sulfate	6000		ug/L	1000.0	05/16/2022	AB22-0509-05
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	443-01-C03-A01	Analyst: CE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

mg/L

10.0

05/05/2022

AB22-0505-01

4240

Laboratory Project: 22-0443 Collect Date: 05/02/2022 01:45 PM

Collect Time:

Sample Site:	DEK JCW Background
Field Sample ID:	MW-15008
Lab Sample ID:	22-0443-02
Matrix:	Groundwater

Mercury by EPA 7470A, Total, Aqueous				Aliquot #: 22-0443-02-C01-A01		Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/10/2022	AB22-0510-04
Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	s Exp	Aliguot #: 22-0	0443-02-C01-A02	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Arsenic	2		ug/L	1.0	05/11/2022	AB22-0511-14
Barium	52		ug/L	5.0	05/11/2022	AB22-0511-14
Beryllium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Boron	112		ug/L	20.0	05/11/2022	AB22-0511-14
Cadmium	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Calcium	89500		ug/L	1000.0	05/12/2022	AB22-0511-14
Chromium	1		ug/L	1.0	05/11/2022	AB22-0511-14
Cobalt	ND		ug/L	6.0	05/11/2022	AB22-0511-14
Copper	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Iron	15500		ug/L	20.0	05/11/2022	AB22-0511-14
Lead	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Lithium	16		ug/L	10.0	05/11/2022	AB22-0511-14
Molybdenum	ND		ug/L	5.0	05/11/2022	AB22-0511-14
Nickel	5		ug/L	2.0	05/11/2022	AB22-0511-14
Selenium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Silver	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Thallium	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Vanadium	6		ug/L	2.0	05/11/2022	AB22-0511-14
Zinc	ND		ug/L	10.0	05/11/2022	AB22-0511-14
Anions by EPA 300.0 CCR Rule Analyt	te List, Cl, F,	SO4, Aqı	leous	Aliquot #: 22-0	0443-02-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	197000		ug/L	1000.0	05/17/2022	AB22-0509-05
Fluoride	ND		ug/L	1000.0	05/16/2022	AB22-0509-05
Sulfate	4990		ug/L	1000.0	05/16/2022	AB22-0509-05
Total Dissolved Solids by SM 2540C				Aliguot #: 22-0	0443-02-C03-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	783		mg/L	10.0	05/05/2022	AB22-0505-02

Laboratory Project: Collect Date: 05/03/2022 Collect Time:

22-0443 08:37 AM

Sample Site:	DEK JCW Background
Field Sample ID:	MW-15016
Lab Sample ID:	22-0443-03
Matrix:	Groundwater

Mercury by EPA 7470A, Total, Aqueous				Aliquot #: 22-0	Aliquot #: 22-0443-03-C01-A01	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/10/2022	AB22-0510-04
Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metal	s Exp	Aliquot #: 22-0443-03-C01-A02		Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Arsenic	8		ug/L	1.0	05/11/2022	AB22-0511-14
Barium	72		ug/L	5.0	05/11/2022	AB22-0511-14
Beryllium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Boron	329		ug/L	20.0	05/11/2022	AB22-0511-14
Cadmium	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Calcium	216000		ug/L	1000.0	05/12/2022	AB22-0511-14
Chromium	1		ug/L	1.0	05/11/2022	AB22-0511-14
Cobalt	ND		ug/L	6.0	05/11/2022	AB22-0511-14
Copper	5		ug/L	1.0	05/11/2022	AB22-0511-14
Iron	8020		ug/L	20.0	05/11/2022	AB22-0511-14
Lead	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Lithium	80		ug/L	10.0	05/11/2022	AB22-0511-14
Molybdenum	ND		ug/L	5.0	05/11/2022	AB22-0511-14
Nickel	13		ug/L	2.0	05/11/2022	AB22-0511-14
Selenium	2		ug/L	1.0	05/11/2022	AB22-0511-14
Silver	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Thallium	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Vanadium	3		ug/L	2.0	05/11/2022	AB22-0511-14
Zinc	ND		ug/L	10.0	05/11/2022	AB22-0511-14
Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F,	SO4, Aqı	ueous	Aliquot #: 22-0	0443-03-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	243000		ug/L	1000.0	05/17/2022	AB22-0509-05
Fluoride	ND		ug/L	1000.0	05/16/2022	AB22-0509-05
Sulfate	267000		ug/L	1000.0	05/17/2022	AB22-0509-05
Total Dissolved Solids by SM 2540C				Aliquot #: 22-0	0443-03-C03-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	1390	i iug	mg/L	10.0	05/05/2022	AB22-0505-02
	1000		g/∟	10.0	00,00,2022	

Laboratory Project: 22-0443 Collect Date: 05/02/2022 Collect Time: 03:20 PM

Sample Site:DEK JCW BackgroundField Sample ID:MW-15019Lab Sample ID:22-0443-04Matrix:Groundwater

					0443-04-C01-A01	Analyst: CLH
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/10/2022	AB22-0510-04
Metals by EPA 6020B: CCR Ru	le Appendix III-IV Tot	tal Metals	s Ехр	Aliquot #: 22-0	0443-04-C01-A02	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Arsenic	2		ug/L	1.0	05/11/2022	AB22-0511-14
Barium	308		ug/L	5.0	05/11/2022	AB22-0511-14
Beryllium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Boron	236		ug/L	20.0	05/11/2022	AB22-0511-14
Cadmium	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Calcium	139000		ug/L	1000.0	05/12/2022	AB22-0511-14
Chromium	1		ug/L	1.0	05/11/2022	AB22-0511-14
Cobalt	ND		ug/L	6.0	05/11/2022	AB22-0511-14
Copper	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Iron	21000		ug/L	20.0	05/11/2022	AB22-0511-14
Lead	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Lithium	12		ug/L	10.0	05/11/2022	AB22-0511-14
Molybdenum	ND		ug/L	5.0	05/11/2022	AB22-0511-14
Nickel	8		ug/L	2.0	05/11/2022	AB22-0511-14
Selenium	2		ug/L	1.0	05/11/2022	AB22-0511-14
Silver	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Thallium	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Vanadium	3		ug/L	2.0	05/11/2022	AB22-0511-14
Zinc	ND		ug/L	10.0	05/11/2022	AB22-0511-14
Anions by EPA 300.0 CCR Rule	e Analyte List, Cl, F, S	SO4, Aqu	eous	Aliquot #: 22-0	0443-04-C02-A01	Analyst: DMW
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	324000		ug/L	1000.0	05/17/2022	AB22-0509-05
Fluoride	ND		ug/L	1000.0	05/16/2022	AB22-0509-05
Sulfate	62500		ug/L	1000.0	05/16/2022	AB22-0509-05
Total Dissolved Solids by SM 2	2540C			Aliquot #: 22-0	0443-04-C03-A01	Analyst: CET
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	1200	-	mg/L	10.0	05/05/2022	AB22-0505-02

Laboratory Project: 22-0443 Collect Date: 05/02/2022 Collect Time: 12:00 AM

Sample Site:DEK JCW BackgroundField Sample ID:DUP-BackgroundLab Sample ID:22-0443-05Matrix:Groundwater

6			Allquot #. 22-0	443-03-C01-A01	Analyst: CLH
Result	Flag	Units	RL	Analysis Date	Tracking
ND		ug/L	0.2	05/10/2022	AB22-0510-04
ndix III-IV To	tal Metals	в Ехр	Aliquot #: 22-0	443-05-C01-A02	Analyst: EB
Result	Flag	Units	RL	Analysis Date	Tracking
ND		ug/L	1.0	05/11/2022	AB22-0511-14
2		ug/L	1.0	05/11/2022	AB22-0511-14
58		ug/L	5.0	05/11/2022	AB22-0511-14
ND		ug/L	1.0	05/11/2022	AB22-0511-14
125		ug/L	20.0	05/11/2022	AB22-0511-14
ND		ug/L	0.2	05/11/2022	AB22-0511-14
103000		ug/L	1000.0	05/12/2022	AB22-0511-14
2		ug/L	1.0	05/11/2022	AB22-0511-14
ND		ug/L	6.0	05/11/2022	AB22-0511-14
ND		ug/L	1.0	05/11/2022	AB22-0511-14
16600		ug/L	20.0	05/11/2022	AB22-0511-14
ND		ug/L	1.0	05/11/2022	AB22-0511-14
17		ug/L	10.0	05/11/2022	AB22-0511-14
ND		ug/L	5.0	05/11/2022	AB22-0511-14
5		ug/L	2.0	05/11/2022	AB22-0511-14
ND		ug/L	1.0	05/11/2022	AB22-0511-14
ND		ug/L	0.2	05/11/2022	AB22-0511-14
ND		ug/L	2.0	05/11/2022	AB22-0511-14
6		ug/L	2.0	05/11/2022	AB22-0511-14
ND		ug/L	10.0	05/11/2022	AB22-0511-14
e List, Cl, F,	SO4, Aqı	ieous	Aliquot #: 22-0	443-05-C02-A01	Analyst: DMW
Result	Flag	Units	RL	Analysis Date	Tracking
198000		ug/L	1000.0	05/17/2022	AB22-0509-05
		-			AB22-0509-05
4950		ug/L	1000.0	05/16/2022	AB22-0509-05
			Aliquot #: 22-0	443-05-C03-A01	Analyst: CET
Result	Flag	Units	RL	Analysis Date	Tracking
786	•			05/05/2022	AB22-0505-02
	Result ND ndix III-IV To Result ND 2 58 ND 125 ND 125 ND 103000 2 ND 16600 ND 16600 ND 17 ND 5 ND 6 ND 6 ND 6 ND 4950	Result Flag ND Metals ndix III-IV Total Metals Result Flag ND Flag 198000 Flag 198000 Flag 198000 Flag	Result Flag Units ND ug/L ndix III-IV Total Metals Exp Result Flag Units ND ug/L ug/L 2 ug/L ug/L 58 ug/L ug/L 125 ug/L ug/L ND ug/L ug/L 103000 ug/L ug/L ND ug/L ug/L ND ug/L ug/L ND ug/L ug/L 103000 ug/L ug/L ND ug/L ug/L ND <td< td=""><td>Result Flag Units RL ND ug/L 0.2 Aliquot #: 22-0 Aliquot #: 22-0 Result Flag Units Result Flag Units ND ug/L 1.0 2 ug/L 1.0 58 ug/L 5.0 ND ug/L 1.0 125 ug/L 0.2 103000 ug/L 1000.0 2 ug/L 1.0 105 ug/L 1.0 125 ug/L 1000.0 2 ug/L 1.0 103000 ug/L 1.0 ND ug/L 1.0 16600 ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 2.0 ND ug/L 2.0 ND ug/L 2.0</td><td>Result Flag Units RL Analysis Date ND ug/L 0.2 05/10/2022 ndix III-IV Total Metals Exp Aliquot #: 22-0443-05-C01-A02 Result Flag Units RL Analysis Date ND ug/L 1.0 05/11/2022 2 ug/L 1.0 05/11/2022 58 ug/L 5.0 05/11/2022 ND ug/L 1.0 05/11/2022 ND ug/L 0.2 05/11/2022 ND ug/L 0.2 05/11/2022 ND ug/L 0.00 05/12/2022 ND ug/L 1.00 05/11/2022 ND ug/L 1.0 05/11/2022<!--</td--></td></td<>	Result Flag Units RL ND ug/L 0.2 Aliquot #: 22-0 Aliquot #: 22-0 Result Flag Units Result Flag Units ND ug/L 1.0 2 ug/L 1.0 58 ug/L 5.0 ND ug/L 1.0 125 ug/L 0.2 103000 ug/L 1000.0 2 ug/L 1.0 105 ug/L 1.0 125 ug/L 1000.0 2 ug/L 1.0 103000 ug/L 1.0 ND ug/L 1.0 16600 ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 2.0 ND ug/L 2.0 ND ug/L 2.0	Result Flag Units RL Analysis Date ND ug/L 0.2 05/10/2022 ndix III-IV Total Metals Exp Aliquot #: 22-0443-05-C01-A02 Result Flag Units RL Analysis Date ND ug/L 1.0 05/11/2022 2 ug/L 1.0 05/11/2022 58 ug/L 5.0 05/11/2022 ND ug/L 1.0 05/11/2022 ND ug/L 0.2 05/11/2022 ND ug/L 0.2 05/11/2022 ND ug/L 0.00 05/12/2022 ND ug/L 1.00 05/11/2022 ND ug/L 1.0 05/11/2022 </td

Laboratory Project: 22-0443 Collect Date: 05/02/2022 Collect Time: 01:45 PM

Sample Site:	DEK JCW Background
Field Sample ID:	FB- Background
Lab Sample ID:	22-0443-06
Matrix:	Water

Mercury by EPA 7470A, To	otal, Aqueous	Aliquot #: 22-0	443-06-C01-A01	1 Analyst: CLH		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/10/2022	AB22-0510-04
Metals by EPA 6020B: CCI	R Rule Appendix III-IV Tot	al Metals	s Exp	Aliquot #: 22-0	443-06-C01-A02	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Arsenic	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Barium	ND		ug/L	5.0	05/11/2022	AB22-0511-14
Beryllium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Boron	ND		ug/L	20.0	05/11/2022	AB22-0511-14
Cadmium	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Calcium	ND		ug/L	1000.0	05/12/2022	AB22-0511-14
Chromium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Cobalt	ND		ug/L	6.0	05/11/2022	AB22-0511-14
Copper	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Iron	ND		ug/L	20.0	05/11/2022	AB22-0511-14
Lead	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Lithium	ND		ug/L	10.0	05/11/2022	AB22-0511-14
Molybdenum	ND		ug/L	5.0	05/11/2022	AB22-0511-14
Nickel	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Selenium	ND		ug/L	1.0	05/11/2022	AB22-0511-14
Silver	ND		ug/L	0.2	05/11/2022	AB22-0511-14
Thallium	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Vanadium	ND		ug/L	2.0	05/11/2022	AB22-0511-14
Zinc	ND		ug/L	10.0	05/11/2022	AB22-0511-14

Exception Summary

No exceptions occured.

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 2 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Proje	ect Log-In Number:	22.0443	3			
Inspe	ection Date: 5.4	1.22	Inspe	ction By: dr	NW	
	ole Origin/Project Nan			Constant of the second s	wells	
Ship	nent Delivered By: Er	nter the type of sh	ipment carrier.			
	Pony	FedEx	UPS	USPS	Airt	oorne
	Other/Hand Carry (
	Tracking Number:	27272471	08310	Shipping Form Attac	hed: Yes V	No
Ship	oing Containers: Enter	r the type and num	ber of shipping co	ntainers received.		
	Cooler V	Cardboard Box	Cu	istom Case	Envelop	e/Mailer
	Loose/Unpackaged	Containers	Ot	her		
Cond	ition of Shipment: En	ter the as-received	l condition of the s	hipment container.		
	Damaged Shipment	Observed: None	1	Dented	Leal	king
	Other		*			0
Enclo	Shipping Containers sed Documents: Enter CoC W		nents enclosed with	Sealed <u>V</u> h the shipment, Data Sheet	Other	_
Temp	erature of Containers	: Measure the tem	perature of several	sample containers.		
Numb	As-Received Tempe METEHモ を Der and Type of Conta	e Date: UN	5402 62	les Received on Ice: 5.22 pple containers receiv	10000	-
	Container Type	Water	Soil	Other	Broken	Leaking
pH paper	VOA (40ml, or 60mL))				
1 II	Quart/Liter (g/p)	_			-	
COT NO: 13-640-508	9-oz (amber glass jar)			-	
0.0-14.0	2-oz (amber glass)	T				
	125 mL (plastic)	<u></u>				
Lot: 222420	24 mL vial (glass) 500 mL (plastic)					
FXP. 8.1.23	Other 250 ML plostic	5				
FXP. 8.1.23	and the first					

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY – LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page _ 1 _ of _ 1

SAMPLING SITE / CUSTOMER:			1	PROJECT NUMBER:	SAP CC or WO#:						ANALYSIS REQUESTED									
Q2-2022 JCW-DEK Background Wells SAMPLING TEAM:				22-0443	REQUESTER	REQUESTER: Harold Register					-	(Attach List if More Space is Needed)						QA REQUIREMENT:		
				TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ STANDARD ⊠ OTHER									□ NPDES ⊠ TNI							
SEND REPORT TO:	Caleb Batts			email:	phone:														□ ISO 17025	
COPY TO:	Harold Regis	ter		MATRIX CODES: GW = Groundwater OX = Oth		CONTAINERS												□ 10 CFR 50 APP. E	3	
	TRC			WW = Wastewater SL = Shu W = Water / Aqueous Liquid A = Air	dge	PRESERVATIVE			IVE	als							□ INTERNAL INFO	NAL INFO		
LAB	SAMPLE COLI	LECTION	XIX	S = Soil / General Solid WP = W $O = Oil WT = Ge$	ipe eneral Waste	TOTAL #	AL#		н.	Il Metals	suc				OTHER	_				
SAMPLE ID	DATE	DATE TIME W		FIELD SAMPLE ID / LO	OCATION	ATION	None	ONH	H ₂ SO NaOF	NaOH HCl MeOH Other Total	Total]	Anions	TDS		REMARKS					
22-0443-01	5/2/22	1724	GW	MW-15002		4	3	1				x	x	x						
-02	5/2/22	1345	GW	MW-15008		4	3	1				x	x	x						
-03	5/3/2.2	837	GW	MW-15016		4	3	1				x	x	x						
-04	5/2/22	1520	GW	MW-15019		4	3	1				x	x	x						
-05	5/2/22	-	GW	DUP-Background		4	3	1				x	x	x						
-06	5/2. 2.2	1745	w	FB- Background		1						x								
	4 /																			
																	F	1		
	-					T						-								
RELINQUISHED BY:	c .	ا م	DATE/	TIME:	RECEIVED BY:					1		CC	MMI	ENTS	:					
Menny	Schun	124T		5/3/22	Ecolox															
RELINQUISHED BY:		1	DATE/	TIME:	RECEIVED BY:							1.00							E#: 015402	
fel G	×	6	5-0	1-2022 10:25	X							Te	mpera	ture:	2.4.	.4.6.	C	Cal. I	Due Date: 6-3-22	3
					22-0443 Page 13 0	of 13					-	-								_

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Tel: (330)497-9396

Laboratory Job ID: 240-166154-1

Client Project/Site: CCR DEK Bottom Ash Pond

For:

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Darby Litz

soohs to

Authorized for release by: 6/12/2022 7:41:03 PM

Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@et.eurofinsus.com

LINKS

Review your project results through

EOL

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Tracer Carrier Summary	12
QC Sample Results	13
QC Association Summary	15
Lab Chronicle	16
Certification Summary	18
Chain of Custody	19
Receipt Checklists	24

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

3

Qualifiers

_		
	-	A
	a	u

Rad	
Qualifier	Qualifier Description
*	RPD of the LCS and LCSD exceeds the control limits
U	Result is less than the sample detection limit.

Glossary

Clossury	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 240-166154-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-166154-1

Comments

The EPA Method 904.0 Radium-228, EPA Method 903.0 Radium-226, and Ra226_Ra228 Combined Radium 226 and Radium 228 analyses were performed at the Eurofins St. Louis laboratory.

Receipt

The samples were received on 5/6/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 0.9° C, 1.3° C and 1.4° C.

RAD

Method 903.0: Radium-226 batch 564568

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. DEK-MW-15002 (240-166154-1), DEK-MW-EB (240-166154-2), DEK-MW-15005 (240-166154-3), DEK-MW-15006 (240-166154-4), DUP-DEK-BAP (240-166154-5), (LCS 160-564568/1-A), (LCSD 160-564568/2-A) and (MB 160-564568/23-A)

Method 904.0: Radium-228 batch 564569

The RER/DER of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) was outside control limits. However the recovery for the LCS/LCSD passed and the RPD was <40% demonstrating acceptable method performance. Original results will be reported. (LCSD 160-564569/2-A)

Method 904.0: Radium-228 batch 564569

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. DEK-MW-15002 (240-166154-1), DEK-MW-EB (240-166154-2), DEK-MW-15005 (240-166154-3), DEK-MW-15006 (240-166154-4), DUP-DEK-BAP (240-166154-5), (LCS 160-564569/1-A), (LCSD 160-564569/2-A) and (MB 160-564569/23-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 240-166154-1

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

5

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep STD	Preparation, Precipitate Separation (Standard In-Growth)	None	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
Protocol Ref			
	Environmental Protection Agency		
None = No			
TAL-STL =	 TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure. 		
Laboratory R	References:		
TAL SL = I	Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566		

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Job	ID:	240-	1661	54-1
-----	-----	------	------	------

1	
5	
6	
8	
9	
12	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-166154-1	DEK-MW-15002	Water	05/03/22 14:21	05/06/22 08:00
240-166154-2	DEK-MW-EB	Water	05/03/22 10:42	05/06/22 08:00
240-166154-3	DEK-MW-15005	Water	05/03/22 12:56	05/06/22 08:00
240-166154-4	DEK-MW-15006	Water	05/03/22 10:42	05/06/22 08:00
240-166154-5	DUP-DEK-BAP	Water	05/03/22 00:00	05/06/22 08:00

Client Sample ID: DEK-MW-15002

Lab Sample ID: 240-166154-1

Matrix: Water

5

7

Date Collected: 05/03/22 14:21 Date Received: 05/06/22 08:00

_

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.353	U	0.282	0.283	1.00	0.423	pCi/L	05/10/22 09:51	06/07/22 18:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.5		40 - 110					05/10/22 09:51	06/07/22 18:09	1

			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Radium-228	0.283	U *	0.323	0.324	1.00	0.530	pCi/L	05/10/22 10:04	06/07/22 15:36	1	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac	
Ba Carrier	88.5		40 - 110					05/10/22 10:04	06/07/22 15:36	1	
Y Carrier	88.2		40 - 110					05/10/22 10:04	06/07/22 15:36	1	

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.636		0.429	0.430	5.00	0.530	pCi/L		06/08/22 13:03	1

Client Sample Results

5

7

Lab Sample ID: 240-166154-2 Matrix: Water

Client Sample ID: DEK-MW-EB Date Collected: 05/03/22 10:42 Date Received: 05/06/22 08:00

_

-0.0206 % Yield	Qualifier U Qualifier	Uncert. (2σ+/-) 0.279 <i>Limits</i>	Uncert. (2σ+/-) 0.279	RL 1.00	MDC 0.571		Prepared 05/10/22 09:51	Analyzed 06/07/22 18:09	Dil Fac
-0.0206 % Yield	U	0.279	<u> </u>						1 DI Fac
%Yield			0.279	1.00	0.571	pCi/L	05/10/22 09:51	06/07/22 18:09	1
	Qualifier	Limits							
57.0							Prepared	Analyzed	Dil Fac
57.9		40 - 110					05/10/22 09:51	06/07/22 18:09	1
ium-228	(GFPC)								
	. ,	Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.185	U *	0.434	0.435	1.00	0.763	pCi/L	05/10/22 10:04	06/07/22 15:36	1
	Result 0.185	um-228 (GFPC) Result Qualifier 0.185 U*	Count Uncert. Result Qualifier (2σ+/-) 0.185 U * 0.434	CountTotalUncert.Uncert.ResultQualifier(2σ+/-)(2σ+/-)	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) 0.185 U * 0.434 0.435 1.00	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) 0.185 U* 0.434 0.435 1.00 0.763	Count Total Uncert. Uncert. Result Qualifier 0.185 U* 0.434 0.435 1.00 0.763 pCi/L	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.185 U* 0.434 0.435 1.00 0.763 pCi/L 05/10/22 10:04	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed 0.185 U* 0.434 0.435 1.00 0.763 pCi/L 05/10/22 10:04 06/07/22 15:36

Carrier	%Yield	Qualifier Limits		Prepared	Analyzed	Dil Fac
Ba Carrier	57.9	40 - 11	0	05/10/22 10:04	06/07/22 15:36	1
Y Carrier	87.1	40 - 11	0	05/10/22 10:04	06/07/22 15:36	1
_ Method: Ra226	6_Ra228 - Com	bined Radium-22	6 and Radium-22	8		
		Cour	t Total			
		Uncer	t. Uncert.			

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC Unit	it Prepared	Analyzed	Dil Fac	
Combined Radium 226	0.165	U	0.516	0.517	5.00	0.763 pCi/	i/L	06/08/22 13:03	1	
+ 228										

Matrix: Water

5 6 7

Lab Sample ID: 240-166154-3

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Date Collected: 05/03/22 12:56

Client Sample ID: DEK-MW-15005

Method: 903.0 -			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fa
Radium-226	0.620		0.301	0.306	1.00	0.356	pCi/L	05/10/22 09:51	06/07/22 18:09	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier Method: 904.0 -	^{88.8} Radium-228	(GFPC)	40 - 110 Count Uncert.	Total Uncert.				05/10/22 09:51	06/07/22 18:09	
		(GFPC)	Count					05/10/22 09:51	06/07/22 18:09	
	Radium-228	(GFPC) Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC		Prepared	Analyzed	Dil Fa
Method: 904.0 -	Radium-228	Qualifier	Count Uncert.	Uncert.	RL 1.00	MDC 0.498				Dil Fa
Method: 904.0 -	Radium-228 	Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)				Prepared	Analyzed	Dil Fa
Method: 904.0 - Analyte Radium-228	Radium-228 	Qualifier	Count Uncert. (2σ+/-) 0.399	Uncert. (2σ+/-)				Prepared 05/10/22 10:04	Analyzed 06/07/22 15:36	

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.70		0.500	0.513	5.00	0.498	pCi/L		06/08/22 13:03	1
226 + 228										

Lab Sample ID: 240-166154-4

Matrix: Water

Client Sample ID: DEK-MW-15006 Date Collected: 05/03/22 10:42 Date Received: 05/06/22 08:00

Method: 903.0 -	Radium-226	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.417	U	0.305	0.308	1.00	0.449	pCi/L	05/10/22 09:51	06/07/22 18:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.3		40 - 110					05/10/22 09:51	06/07/22 18:09	1
	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.870	*	0.402	0.410	1.00	0.554	pCi/L	05/10/22 10:04	06/07/22 15:36	1

Radium-220	0.070	0.402	0.410	1.00	0.004 p01/L	00/10/22 10:04	00/01/22 10:00		
Carrier	%Yield Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Ba Carrier	86.3	40 - 110				05/10/22 10:04	06/07/22 15:36	1	
Y Carrier	87.9	40 - 110				05/10/22 10:04	06/07/22 15:36	1	
_ Method: Ra226 Ra	a228 - Combined Ra	dium-226 ar	nd Radium-22	28					

Count Total

			oount	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Combined Radium	1.29		0.505	0.513	5.00	0.554	pCi/L		06/08/22 13:03	1	
226 + 228											

5

7

Lab Sample ID: 240-166154-5 Matrix: Water

Date Collected: 05/03/22 00:00 Date Received: 05/06/22 08:00

Client Sample ID: DUP-DEK-BAP

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.395		0.273	0.275	1.00	0.386	pCi/L	05/10/22 09:51	06/07/22 18:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.0		40 - 110					05/10/22 09:51	06/07/22 18:09	1

Uncert. Uncert. **Result Qualifier** Analyte (2**σ**+/-) (2**σ**+/-) RL MDC Unit Prepared Analyzed Dil Fac 0.347 U* 0.316 0.502 pCi/L 05/10/22 10:04 06/07/22 15:36 Radium-228 0.318 1.00 1 Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 90.0 40 - 110 05/10/22 10:04 06/07/22 15:36 1 40 - 110 05/10/22 10:04 06/07/22 15:36 Y Carrier 88.6 1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.742		0.418	0.420	5.00	0.502	pCi/L		06/08/22 13:03	1

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Method: 903.0 - Radium-226 (GFPC) Matrix: Water

Prep Type: Total/NA

Prep Type: Total/NA

			Percent Yield (Acceptance Limits)	
		Ва		
Lab Sample ID	Client Sample ID	(40-110)		5
240-166154-1	DEK-MW-15002	88.5		_
240-166154-2	DEK-MW-EB	57.9		
240-166154-3	DEK-MW-15005	88.8		
240-166154-4	DEK-MW-15006	86.3		
240-166154-5	DUP-DEK-BAP	90.0		
LCS 160-564568/1-A	Lab Control Sample	94.3		8
LCSD 160-564568/2-A	Lab Control Sample Dup	82.3		
MB 160-564568/23-A	Method Blank	99.3		C
				ž
Tracer/Carrier Legend	d			

Ba = Ba Carrier

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water

				Percent Yield (Acceptance Limits)
		Ва	Y	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
40-166154-1	DEK-MW-15002	88.5	88.2	
40-166154-2	DEK-MW-EB	57.9	87.1	
40-166154-3	DEK-MW-15005	88.8	87.1	
40-166154-4	DEK-MW-15006	86.3	87.9	
0-166154-5	DUP-DEK-BAP	90.0	88.6	
CS 160-564569/1-A	Lab Control Sample	94.3	84.9	
CSD 160-564569/2-A	Lab Control Sample Dup	82.3	84.5	
IB 160-564569/23-A	Method Blank	99.3	91.2	

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

QC Sample Results

Job ID: 240-166154-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Analysis Batc Analyte		08									Dron Type	1 TO	tal/N/
Analyte											Prep Type Prep Bate		
-				Count	Total						пер Бай		0400
-		мв	МВ	Uncert.	Uncert.								
-			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	F	Prepared	Analyze	d	Dil Fa
Radium-226	(0.002143		0.135	0.135	1.00	0.285			10/22 09:51			
		MB	МВ										
Carrier		%Yield		Limits					F	Prepared	Analyze	d	Dil Fa
Ba Carrier		99.3		40 - 110						<u> </u>	06/07/22 20		
_ab Sample II		160-564	568/1-4					Cli	ent Sa	mple ID:	Lab Conti	ol S	ampl
Matrix: Water											Prep Type		
Analysis Bato		23									Prep Bate		
		-				Total							
			Spike	LCS	LCS	Uncert.					%Rec		
Analyte			Added	Result	Qual	(2 σ+/-)	RL	MDC	Unit	%Rec	Limits		
Radium-226			11.3	9.625		1.28	1.00	0.274	pCi/L	85	75 - 125		
	LCS	LCS											
Carrier	%Yield	Qualifier	Limits										
Ba Carrier	94.3		40 - 110	_									
_ab Sample II	D: LCSE) 160-56	4568/2-A					Client S	ample	ID: Lab	Control Sa	ampl	e Dur
Matrix: Water									ampio		Prep Type		
Analysis Bato		23									Prep Bate		
						Total					•		
			Spike	LCSD	LCSD	Uncert.					%Rec		RE
Analyte			Added	Result	Qual	(2 σ+/-)	RL	MDC		%Rec	Limits	RER	Lim
Radium-226			11.3	9.709		1.34	1.00	0.405	pCi/L	86	75 - 125	0.03	
	LCSD	LCSD											
Carrier		Qualifier	Limits										
Ba Carrier	82.3		40 - 110	_									
othod: 004	0 Po	dium	220 (CED										
ethod: 904	.v - ra	ulum-)									
_ab Sample II	D: MB 1	60-5645	69/23-A						Cli	ent Samp	ole ID: Met	hod	Blan
Matrix: Water											Prep Type		
Analysis Bato		50									Prep Bate		

QC Sample Results

Job ID: 240-166154-1

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Wat Analysis Ba	atch: 569007									Prep Typ Prep Ba		
					Total							
		Spike	LCS	LCS	Uncert.					%Rec		
Analyte		Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits		
Radium-228		8.55	6.624		1.00	1.00	0.571	pCi/L	77	75 - 125		
	LCS LCS											
Carrier	%Yield Qualifier	Limits										
Ba Carrier	94.3	40 - 110										
Y Carrier	84.9	40 - 110										
i oumor												
	PID: LCSD 160-564	569/2-4					Client S	amnle	ID: I ah	Control S	Sample	a Dun
Lab Sample	e ID: LCSD 160-564	569/2-A					Client S	ample	ID: Lab	Control S		
Lab Sample Matrix: Wat	ter	569/2-A					Client S	ample	ID: Lab	Prep Typ	be: Tot	al/NA
Lab Sample Matrix: Wat		569/2-A			Total		Client S	ample	ID: Lab		be: Tot	al/NA
Lab Sample Matrix: Wat	ter	569/2-A Spike	LCSD	LCSD	Total Uncert.		Client S	ample	ID: Lab	Prep Typ	be: Tot	al/NA
Lab Sample Matrix: Wat Analysis Ba	ter		LCSD Result			RL	Client S MDC		ID: Lab %Rec	Prep Typ Prep Ba	be: Tot	al/NA 64569
Lab Sample Matrix: Wat Analysis Ba Analyte	ter	Spike		Qual	Uncert.			Unit		Prep Typ Prep Bar %Rec	be: Tot tch: 50	al/NA 64569 RER
Lab Sample Matrix: Wat Analysis Ba Analyte	ter	Spike Added	Result	Qual	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bar %Rec Limits	e: Tot tch: 50	Al/NA 64569 RER Limit
Lab Sample Matrix: Wat Analysis Ba Analyte Radium-228	ter atch: 569007 	Spike Added	Result	Qual	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bar %Rec Limits	e: Tot tch: 50	Al/NA 64569 RER Limit
Lab Sample Matrix: Wat	ter atch: 569007 	Spike Added 8.55	Result	Qual	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bar %Rec Limits	e: Tot tch: 50	Al/NA 64569 RER Limit

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Rad

Prep Batch: 564568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-166154-1	DEK-MW-15002	Total/NA	Water	PrecSep STD	
240-166154-2	DEK-MW-EB	Total/NA	Water	PrecSep STD	
240-166154-3	DEK-MW-15005	Total/NA	Water	PrecSep STD	
240-166154-4	DEK-MW-15006	Total/NA	Water	PrecSep STD	
240-166154-5	DUP-DEK-BAP	Total/NA	Water	PrecSep STD	
MB 160-564568/23-A	Method Blank	Total/NA	Water	PrecSep STD	
LCS 160-564568/1-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-564568/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-166154-1	DEK-MW-15002	Total/NA	Water	PrecSep_0	
240-166154-2	DEK-MW-EB	Total/NA	Water	PrecSep_0	
240-166154-3	DEK-MW-15005	Total/NA	Water	PrecSep_0	
240-166154-4	DEK-MW-15006	Total/NA	Water	PrecSep_0	
240-166154-5	DUP-DEK-BAP	Total/NA	Water	PrecSep_0	
MB 160-564569/23-A	Method Blank	Total/NA	Water	PrecSep_0	
	Lab Osutual Causula	Total/NIA	Water	PrecSep 0	
LCS 160-564569/1-A	Lab Control Sample	Total/NA	valei	Tiecoep_0	

Dilution

Factor

1

1

1

Run

Client Sample ID: DEK-MW-15002 Date Collected: 05/03/22 14:21 Date Received: 05/06/22 08:00

Batch

Туре

Prep

Prep

Client Sample ID: DEK-MW-EB

Date Collected: 05/03/22 10:42

Date Received: 05/06/22 08:00

Analysis

Analysis

Analysis

Batch

Type

Prep

Prep

Analysis

Analysis

Analysis

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Batch

903.0

904.0

Batch

904.0

Ra226_Ra228

Method

PrecSep STD

PrecSep 0

Ra226 Ra228

Lab Sample ID: 240-166154-1 Matrix: Water

0-166	154-2
Motrix	Motor

Batch

Number

564568

568835

564569

568835

Batch

Prepared

or Analyzed

05/10/22 09:51

06/07/22 18:09

569042 06/08/22 13:03 SCB

Prepared

568835 06/07/22 15:36 FLC

569042 06/08/22 13:03 SCB

05/10/22 10:04 LPS

06/07/22 15:36 FLC

Analyst

Analyst

LPS

FI C

Lab

TAL SL

TAL SL

TAL SL

TAL SL

TAL SL

Lab Sample ID: 24

Lab

TAL SL

TAL SL

TAL SL

TAL SL

TAL SL

Lab Sample ID: 240-166154-3

Lab Sample ID: 240-166154-4

Matrix: Water

Matrix: Water

Matrix: Water

Method	Run	Factor	Number	or Analyzed	Anal
PrecSep STD			564568	05/10/22 09:51	LPS
903.0		1	568835	06/07/22 18:09	FLC
PrecSep_0			564569	05/10/22 10:04	LPS

1

1

Dilution

Client Sample ID: DEK-MW-15005 Date Collected: 05/03/22 12:56 Date Received: 05/06/22 08:00

-	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	568835	06/07/22 18:09	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568835	06/07/22 15:36	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Client Sample ID: DEK-MW-15006 Date Collected: 05/03/22 10:42 Date Received: 05/06/22 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	568835	06/07/22 18:09	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568835	06/07/22 15:36	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Matrix: Water

Lab Sample ID: 240-166154-5

Client Sample ID: DUP-DEK-BAP Date Collected: 05/03/22 00:00 Date Received: 05/06/22 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	568835	06/07/22 18:09	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568835	06/07/22 15:36	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Laboratory References:

TAL SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond Job ID: 240-166154-1

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-22
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	07-01-22
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	200023	11-30-22
lowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-22
Kentucky (DW)	State	KY90125	12-31-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-22
Louisiana	NELAP	04080	06-30-22
Louisiana (DW)	State	LA011	12-31-22
Maryland	State	310	09-30-22
MI - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-23
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	NELAP	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	02-28-23
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

LUCUIII CONTOUT 180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	0	chain c	Chain of Custody Record	ody Ro	ecord		MIM	190		🖏 eurofins 📴	Environment Testing America
	Sampler LIOIAL.		Man LT	Lab PN Brook	Lab PM: Brooke Krie M			Carrier Tracking No(s)		COC No: 240-04780-29052 1	
	Phone		Magn	E-Mail	NI SIN S			State of Origin:		240-34103-23002.1 Page	
vacco meriz Company TRC Environmental Cornoration		Γ	PWSID.	- SIN	a move and a		Analveis Reginested			Job #	
Adress 1540 Elsenhower Place	Due Date Requested:	:pa								00	
City Ann Arbor	TAT Requested (days):	ays):								B - HCL B - NaOH C - Zn Acetate O	M - Hexane N - None O - AsNaO2
State, Zip MI, 48108-7080	Compliance Project:	ct: A Yes A No	A No							0.00	Na204S Na2SO3
Phone 734-971-7080(Tel) 734-971-9022(Fax)	PO#: TBD				(0					2 (N H	- Nazozus - H2SO4 - TSP Dodecahvdrate
Email JKrenz@trccompanies.com	#OM								L2	>>	U - Acetone V - MCAA
Project Name. Karn/Weadock CCR DEK Bottom Ash Pond	Project # 24024154				88 OL	ז רואנ			enistr		W - pH 4-5 Z other (specify)
Site	SSOW#				Nas	epieT t			01 COL	Other:	
Samole Identification	Samole Date	Sample	Sample Type (C=comp,		ield Filtered : Perform MS/M AS26Ra	orebnet2 - 0.≯0			otal Number	Social Instructions (Note:	ctions/Noto-
			- 0		X	6 0					citolisimore.
DEK-MW-15002	5/3/22	1421		Water	N N	, ×					
DEK-MW-16001- C.B		(012		Water	N N						
DEK-MW-15005		1256		Water	N W	X					
DEK-MW-15006		1043		Water	NN	X					
DUP-DEK-BAP		(Water	NN/	X					
							240-	240-166154 Chain of Custody	Istody		
Identification					Sampl	9 Disposal	A fee may b	assessed if sampl	es are retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	nth)
Oon-Hazard Flammable Skin Irritant P Deliverable Requested: I, II, III, V, Other (specify)	Poison B Unknown		Radiological		Specia	Return To Client al Instructions/Q0	Special Instructions/QC Requirements	Disposal By Lab ients:	Arch	Archive For	Months
Empty Kit Relinquished by:		Date:		Γ	Time.			Method of Shipment	hent		
Reinquished by Lichury SC Le Longe de		91 Trk	909	Company		Received by	2963	Jul / hy Dave	Date/Time 5/3/	2	company a TIPC
Reinquished by	Date/Time	11/40	\$30	Company		Received by:		Date Contraction	Datertime 5/5/27 Datertime	-90fg	COMPany COMPany COMPany COMPany
Custody Seals Intact: Custody Seal No.:				1 1 2 2	B	oler Temperatu	Temperature(s) °C and Other Remarks		1	1	
					14	13	11 12	。 9 10	7	× 4 5 6	Ver: 06/08/2021

	111151
Eurofins TestAmerica Canton Sample Receipt Form/Narrative	Login # : [[[[[]]]
Canton Facility	
Client TRC Site Name	Cooler unpacked by:
Cooler Received on 5-6-72 Opened on 5-6-72	Ome
FedEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica	a Courier Other
	Location
TestAmerica Cooler # Foam Box Client Cooler Box	Other
Packing material used: Bubble Wrap Foam Plastic Bag (None)	Other
COOLANT: Wet Ice Blue Ice Dry Ice Water None	
1. Cooler temperature upon receipt See Multi	ple Cooler Form
IR GUN# IR-13 (CF 0.0 °C) Observed Cooler Temp °C Correcte IR GUN #IR-15 (CF -0.7 °C) Observed Cooler Temp °C Correct	ed Cooler Temp°C
	F -
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity	
-Were the seals on the outside of the cooler(s) signed & dated?	Yes No NA checked for nH by
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)?	Yes No Receiving:
-Were tamper/custody seals intact and uncompromised?	Yes No NA Ves No VOAs
3. Shippers' packing slip attached to the cooler(s)?	
4. Did custody papers accompany the sample(s)?	TOC
5. Were the custody papers relinquished & signed in the appropriate place?	Vés No
5. Was/were the person(s) who collected the samples clearly identified on the CO	Yes No
 Did all bottles arrive in good condition (Unbroken)? Could all bottle labels (ID/Date/Time) be reconciled with the COC? 	Ves No
 Could an bottle labels (ID/Date/Time) be reconciled with the COC? For each sample, does the COC specify preservatives (YN), # of containers (Y 	
0. Were correct bottle(s) used for the test(s) indicated?	Yes No
1. Sufficient quantity received to perform indicated analyses?	Yes No
12. Are these work share samples and all listed on the COC?	Yes (No)
If yes, Questions 13-17 have been checked at the originating laboratory.	
13. Were all preserved sample(s) at the correct pH upon receipt?	No NA pH Strip Lot# HC157842
14. Were VOAs on the COC?	Yes No
15. Were air bubbles >6 mm in any VOA vials? Larger than this.	Yes No (NA)
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	
7. Was a LL Hg or Me Hg trip blank present?	Yes (No)
Contacted PM Date by via	a Verbal Voice Mail Other
Concerning	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 2 additional n	ext page Samples processed by:
	Samples processes cy.
9. SAMPLE CONDITION	and a distribution of the distribution of
Sample(s) were received after the recomme	re received in a broken container.
Pro(6)	
Sample(s) were received with bubb	le >6 mm in diameter. (Notify PM)
0. SAMPLE PRESERVATION	
ample(s)	were further preserved in the laboratory.
Sample(s) Time preserved:Preservative(s) added/Lot number(s):	
OA Sample Preservation - Date/Time VOAs Frozen:	

111164 Login

l	#	:	0	6	1	5	4	

			Eurofins - Canto	n Sample Receipt Mu	Itiple Cooler Form	
Co	oler Descri	ption	IR Gun #	Observed	Corrected	Coolant
A	(Circle)		(Gircle)	Temp °C	Temp °C	(Circle)
20	Client Box	Other	19-13 IR-15	1.3	1.3 (Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-3 IR-15	1.4	1.4 (Wet ic Blue ice Dry ice Water None
TA	Client Box	Other	IR-13 IR-15	0.9	0.9	Wet Ice Blue Ice Dry Ice
TA	Client Box	Other	HR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15		<u> </u>	Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15		<u>, , , , , , , , , , , , , , , , , , , </u>	Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15		<u> </u>	Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15		,	Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wetice Blueice Drylce
TA	Client Box	Other	IR-13 IR-15		- <u></u>	Water None Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA	Client Box	Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA	Client Box	Other	IR-13 IR-15		<u> </u>	Wetice Blueice Dry ice
TA	Client Box	Other	IR-13 IR-15	· · · · · · · · · · · · · · · · · · ·		Water None Wet Ice Blue Ice Dry Ice
TA	Client Box	Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ice
TA	Client Box	Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ice
		Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ice
	Client Box		IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ice
					See Temp	Water None erature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

Temperature readings: _____

			Container Preservative	
Client Sample ID	<u>Lab ID</u>	Container Type	pH Temp Added (mls) Lot #	
DEK-MW-15002	240-166154-A-1	Plastic 1 liter - Nitric Acid	<2	5
DEK-MW-15002	240-166154-B-1	Plastic 1 liter - Nitric Acid	<2	
DEK-MW-EB	240-166154-A-2	Plastic 1 liter - Nitric Acid	<2	
DEK-MW-EB	240-166154-B-2	Plastic 1 liter - Nitric Acid	<2	
DEK-MW-15005	240-166154-A-3	Plastic 1 liter - Nitric Acid	<2	
DEK-MW-15005	240-166154-B-3	Plastic 1 liter - Nitric Acid	<2	8
DEK-MW-15006	240-166154-A-4	Plastic 1 liter - Nitric Acid	<2	9
DEK-MW-15006	240-166154-B-4	Plastic 1 liter - Nitric Acid	<2	
DUP-DEK-BAP	240-166154-A-5	Plastic 1 liter - Nitric Acid	<2	
DUP-DEK-BAP	240-166154-B-5	Plastic 1 liter - Nitric Acid	<2	

s Canton	Buren Avenue	OH 44203
Eurofins	180 S. Van	Barberton,

Chain of Custody Record

Client Information (Sub Contract Lab)	Sampler:			Lab PM: Brooks	Lab PM: Brooks: Kris M				8	Carrier Tracking No(s)	g No(s):		COC No: 240-151603 1	
	Dhone								į				240-131093.1	
Shipping/Receiving	-1006			Kris.Br	ooks@e	et.eurc	E-maii: Kris.Brooks@et.eurofinsus.com	com	<u> </u>	State of Origin Michigan			Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.				Ac.	creditatio	ins Req	Accreditations Required (See note):	e note):					Job #: 240-166154-1	
Address 13715 Rider Trail North,	Due Date Requested: 6/7/2022	:pa						Analy	Analvsis Reguested	ested			Preservation Codes	odes:
City Earth City	TAT Requested (days):	ays):				-							A - HCL B - NaOH	
State, Zip: MO, 63045													C - Zin Acetate D - Nitric Acid E - NaHSO4	O - ASNAUZ P - Na2O4S Q - Na2SO3
Phone. 314-298-8566(Tel) 314-298-8757(Fax)	# 04												F - MeOH G - Amchlor H - Accordio Acid	
Email	#OM			01 10	(0								I - Ascurate Acta 1 - Ice J - DI Water	
Project Name CCR DEK Bottom Ash Pond	Project #: 24024154				e ol v							nenis	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#			alams:	N) ds		Dd					inos ti	Other:	
Samula Mantification - Cliant ID (1 ab ID)	Complete Com	Sample		Matrix (w=water 5=eolid. 0=weste/oli.	erform MS/M 03.0/PrecSep_S	0_qe25e1q\0.40	a226Ra228_GF					otal Number o		
			Preservation Code:	5			ы						opecial	Special Instructions/Note:
DEK-MW-15002 (240-166154-1)	5/3/22	14:21	5	Water	×	×	×					~		TVA protocol - Ra-226+228 action limit at
DEK-MW-EB (240-166154-2)	5/3/22	10:42	5	Water	×	+	×	F				~	171	0.0 pCi/L. VA protocol - Ra-226+228 action limit at
DEK-MW-15005 (240-166154-3)	5/3/22	12:56	5	Water	×	×	×					2		VA protocol - Ra-226+228 action limit at
DEK-MW-15006 (240-166154-4)	5(31)2	Lastern 10:42	5	Water	>	+	,	F						5.0 pCi/L. TVA protocol - Ra-226+228 action limit at
	00/07	Eastern				-	< :			+	_			5.0 pCi/L. TVA protocol - Ra-226+228 action limit at
	221510	Lastern	5	water	×	×	×		_		+-	N		
						-			-	-	_			
						_			-					
						_								
Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory or other instructions will be provided. Any stanges to the Eurofins Environment Testing North Central. LLC alaces the samples shipped back to the Eurofins Environment Testing North Central. LLC analyses for analyses. The samples shipped back to the Eurofins Environment Testing North Central. LLC laboratory or other instructions will be provided. Any changes to accreditation or the State of Origin listed above for analysis/testsmatrix being analyzed, the samples shipped back to the Eurofins Environment Testing North Central. LLC alternation immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting Environment Testing North Central. LLC.	nment Testing North Centr. ed above for analysis/tests th Central, LLC attention im	al. LLC places t /matrix being ai mediately. If al	he ownership of met nalyzed, the samples I requested accredit	hod, analyte must be shi ations are cu	& accred pped bac rrent to da	itation c k to the ate, retu	complianc Eurofins im the sig	te upon o Environn med Chai	It subcontract ent Testing N	laboratories. orth Central, ittesting to st	This samp LLC laborat aid complica	le shipmen ory or othe ince to Euro	is forwarded under instructions will be fins Environment Te	chain-of-custody. If the provided. Any changes to ssting North Central, LLC.
Possible Hazard Identification					Samp	le Dis	posal (A fee n	ay be ass	essed if s	amples a	rre retair	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)
Unconfirmed						Returi	Return To Client	ent		Disposal By Lab	ab	Arc	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	able Rank: 2			Specia	al Instr	uctions	/QC Re	Special Instructions/QC Requirements:					
Empty Kit Relinquished by:		Date:		۲.	Time:					Method o	Method of Shipment:			
Residence by	Date/Time: 5-6-22		1428 ET	AL.	Rec	Received by	ž		FED EX		Date/Time:	, aj		Company
Relinquished by: FED EX	Date/Time:		Company	any	Rec	Received by:	ind by:	NID	V lette: tota	+		$ \circ$	9 2022 083	Company COMPANY
Relinquished by	Date/Time.		Company	Ane	Rec	Received by:	ž				Date/Time			
Custody Seals Intact: Custody Seal No.:					ð.	oler Ten	nperature	(s) °C an	Cooler Temperature(s) °C and Other Remarks:	ks:				
						1	1	1	1					Ver: 06/08/2021
						Л	3			ן ה	3		5	

Login Number: 166154 List Number: 2 Creator: Worthington, Sierra M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 240-166154-1 SDG Number:

List Source: Eurofins St. Louis

List Creation: 05/09/22 02:40 PM

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Tel: (330)497-9396

Laboratory Job ID: 240-166148-1

Client Project/Site: CCR DEK Bottom Ash Pond

For:

LINKS

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Visit us at:

Ask— The Expert TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Darby Litz

soohs to

Authorized for release by: 6/10/2022 8:42:08 PM

Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Tracer Carrier Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Chain of Custody	14
Receipt Checklists	19

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

3

Qualifiers

_		
	-	A
	a	u

Rad	
Qualifier	Qualifier Description
*	RPD of the LCS and LCSD exceeds the control limits
U	Result is less than the sample detection limit.

Glossary

Clossury	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 240-166148-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-166148-1

Comments

The EPA Method 904.0 Radium-228, EPA Method 903.0 Radium-226, and Ra226_Ra228 Combined Radium 226 and Radium 228 analyses were performed at the Eurofins St. Louis laboratory.

Receipt

The samples were received on 5/6/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 0.9° C, 1.3° C and 1.4° C.

RAD

Method 903.0: Radium-226 batch 564568

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

DEK-MW-18001 (240-166148-1), (LCS 160-564568/1-A), (LCSD 160-564568/2-A) and (MB 160-564568/23-A)

Method 904.0: Radium-228 batch 564569

The RER/DER of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) was outside control limits. However the recovery for the LCS/LCSD passed and the RPD was <40% demonstrating acceptable method performance. Original results will be reported. (LCSD 160-564569/2-A)

Method 904.0: Radium-228 batch 564569

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

DEK-MW-18001 (240-166148-1), (LCS 160-564569/1-A), (LCSD 160-564569/2-A) and (MB 160-564569/23-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

5

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep STD	Preparation, Precipitate Separation (Standard In-Growth)	None	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
Protocol Ref	erences:		
EPA = US	Environmental Protection Agency		
None = N	one		
TAL-STL :	= TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.		
Laboratory F	References:		
TAL SL =	Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566		

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-166148-1	DEK-MW-18001	Water	05/04/22 13:44	05/06/22 08:00

Lab Sample ID: 240-166148-1

Matrix: Water

5

7

Client Sample ID: DEK-MW-18001 Date Collected: 05/04/22 13:44 Date Received: 05/06/22 08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.294		0.214	0.216	1.00	0.292	pCi/L	05/09/22 14:15	06/07/22 18:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.8		40 - 110					05/09/22 14:15	06/07/22 18:10	1

Count Total Uncert. Uncert. **Result Qualifier** Analyte (2**σ**+/-) (2**σ**+/-) RL MDC Unit Prepared Analyzed Dil Fac 0.317 0.321 0.438 pCi/L 05/09/22 14:18 06/07/22 15:33 Radium-228 0.592 1.00 1 * Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 90.8 40 - 110 05/09/22 14:18 06/07/22 15:33 1 87.5 40 - 110 05/09/22 14:18 06/07/22 15:33 Y Carrier 1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.885		0.382	0.387	5.00	0.438 pCi/L		06/08/22 13:03	1

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water

_				Percent Yield (Acceptance Limits)	
		Ва			
Lab Sample ID	Client Sample ID	(40-110)			
240-166148-1	DEK-MW-18001	90.8			
LCS 160-564568/1-A	Lab Control Sample	94.3			
LCSD 160-564568/2-A	Lab Control Sample Dup	82.3			
MB 160-564568/23-A	Method Blank	99.3			
Tracer/Carrier Legend	Ł				
Ba = Ba Carrier					
Nethod: 904.0 - R	adium-228 (GFPC)				_
Matrix: Water				Prep Type: Total	I/NA
_				Percent Yield (Acceptance Limits)	1
		Ва	Y		
Lab Sample ID	Client Sample ID	(40-110)	(40-110)		
040 400440 4			07.5		

Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
240-166148-1	DEK-MW-18001	90.8	87.5	
LCS 160-564569/1-A	Lab Control Sample	94.3	84.9	
LCSD 160-564569/2-A	Lab Control Sample Dup	82.3	84.5	
MB 160-564569/23-A	Method Blank	99.3	91.2	

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

QC Sample Results

Job ID: 240-166148-1

Method: 903.0 - Radium-226 (GFPC)

Antoine Manto		60-5645	68/23-A						Cli	ent Samp	ole ID: Me		
Matrix: Wate											Prep Typ		
Analysis Bat	cn: 5690	800		Count	Total						Prep Bat	tcn: 5	6456
		мв	MD	Uncert.	Uncert.								
nalyte			Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyze	od	Dil Fa
Radium-226		0.002143		0.135	0.135	1.00	0.285			10/22 09:51	·		DIFa
aulum-220		0.002143	0	0.155	0.155	1.00	0.205	poire	03/	10/22 09.51	00/01/22 2	20.02	
		MB	МВ										
Carrier		%Yield	Qualifier	Limits					F	Prepared	Analyz	ed	Dil Fa
Ba Carrier		99.3		40 - 110					05/	10/22 09:51	06/07/22 2	20:02	
ab Sample	ID: LCS	160-564	568/1-A					Cli	ent Sa	mple ID:	Lab Cont	trol Sa	ampl
Atrix: Wate											Prep Typ		
Analysis Bat		23									Prep Ba		
						Total							
			Spike	LCS	LCS	Uncert.					%Rec		
nalyte			Added	Result	Qual	(2 σ +/-)	RL	MDC	Unit	%Rec	Limits		
Radium-226			11.3	9.625		1.28	1.00	0.274	pCi/L	85	75 - 125		
	LCS	LCS											
Carrier	0/ Viold	Qualifier	Limits										
annen	% riela	Quanner	Linits										
	94.3	Quaimer	40 - 110	_									
Ba Carrier	94.3		40 - 110	_				Client S	ample		Control S	Sample	
Ba Carrier	94.3		40 - 110	-				Client S	ample	e ID: Lab	Control S		
Ba Carrier Lab Sample Matrix: Wate	94.3 ID: LCSE r	D 160-56	40 - 110	_				Client S	ample	e ID: Lab	Prep Typ	e: Tot	tal/N
Ba Carrier	94.3 ID: LCSE r	D 160-56	40 - 110	-		Total		Client S	ample	e ID: Lab		e: Tot	tal/N
Ba Carrier Lab Sample Matrix: Wate	94.3 ID: LCSE r	D 160-56	40 - 110 6 4568/2-A	LCSD	LCSD	Total Uncert.		Client S	ample	e ID: Lab	Prep Typ Prep Bat	e: Tot	tal/N 6456
a Carrier Lab Sample Matrix: Wate Analysis Bat	94.3 ID: LCSE r	D 160-56	40 - 110 64568/2-A Spike		LCSD Qual	Uncert.			-		Prep Typ Prep Bat %Rec	be: Tot tch: 5	tal/N 6456 RE
Ba Carrier Lab Sample Matrix: Wate	94.3 ID: LCSE r	D 160-56	40 - 110 6 4568/2-A	LCSD <u>Result</u> 9.709			RL 1.00 -	Client S 	Unit	e ID: Lab	Prep Typ Prep Bat	e: Tot	tal/N 6456 RE Lim
a Carrier Lab Sample Matrix: Wate Analysis Bat	94.3 ID: LCSE r ich: 5688) 160-56 23	40 - 110 64568/2-A Spike Added	Result		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5 <u>RER</u>	tal/N
a Carrier Lab Sample Matrix: Wate Analysis Bat Malyte Radium-226	94.3 ID: LCSE r tch: 5688	D 160-56 223 LCSD	40 - 110 44568/2-A Spike Added 11.3	Result		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5 <u>RER</u>	tal/N 6456 RE Lim
a Carrier Lab Sample Matrix: Wate Analysis Bat	94.3 ID: LCSE r tch: 5688) 160-56 23	40 - 110 44568/2-A Spike Added 11.3	8.709		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5 <u>RER</u>	tal/N 6456 RE Lim
Ba Carrier Lab Sample Matrix: Wate Analysis Bat Analyte Radium-226 Carrier Ba Carrier	94.3 ID: LCSE r tch: 5688 LCSD %Yield 82.3	D 160-56 23 LCSD Qualifier	40 - 110 4568/2-A Spike Added 11.3 Limits 40 - 110	Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5 <u>RER</u>	tal/N 6456 RE
Ba Carrier Lab Sample Matrix: Wate Analysis Bat Analyte Radium-226 Carrier Ba Carrier	94.3 ID: LCSE r tch: 5688 LCSD %Yield 82.3	D 160-56 23 LCSD Qualifier	40 - 110 4568/2-A Spike Added 11.3 Limits 40 - 110	Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5 <u>RER</u>	tal/N 6456 RE Lim
Carrier Cab Sample Matrix: Wate Analysis Bat Analyte Radium-226 Carrier Ba Carrier Ba Carrier Ethod: 904	94.3 ID: LCSE r tch: 5688 <i>LCSD</i> %Yield 82.3 4.0 - Ra	D 160-56 23 LCSD Qualifier	40 - 110 44568/2-A Spike Added 11.3 Limits 40 - 110 228 (GFPC	Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit pCi/L		Prep Typ Prep Bat %Rec Limits 75 - 125	e: Tot tch: 50 <u>RER</u> 0.03	tal/N 6456 RE Lim
a Carrier ab Sample Matrix: Wate Analysis Bat Analyte Radium-226 Carrier Ba Carrier ethod: 904 Lab Sample	94.3 ID: LCSE r ID: 5688 <i>LCSD</i> %Yield 82.3 4.0 - Ra ID: MB 1	D 160-56 23 LCSD Qualifier	40 - 110 44568/2-A Spike Added 11.3 Limits 40 - 110 228 (GFPC	Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit pCi/L		Prep Typ Prep Bat %Rec Limits 75 - 125	RER 0.03	tal/N 6456 Lim
Carrier Cab Sample Matrix: Wate Analysis Bat Analyte Radium-226 Carrier Ba Carrier Ba Carrier Ethod: 904	94.3 ID: LCSE r tch: 5688 <i>LCSD</i> %Vield 82.3 4.0 - Ra ID: MB 1 r	23 LCSD Qualifier dium-2 60-5645	40 - 110 44568/2-A Spike Added 11.3 Limits 40 - 110 228 (GFPC	Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit pCi/L		Prep Typ Prep Bat %Rec Limits 75 - 125	e: Tot tch: 50 RER 0.03	tal/N 6456 RE Lim Blan

MB MB Uncert. Uncert. (2**σ**+/-) Analyte **Result Qualifier** (2**σ**+/-) RL MDC Unit Prepared Analyzed Dil Fac Radium-228 0.03881 U 0.215 0.215 1.00 0.396 pCi/L 05/10/22 10:04 06/07/22 15:38 1 MB MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 99.3 40 - 110 05/10/22 10:04 06/07/22 15:38 1 40 - 110 Y Carrier 91.2 05/10/22 10:04 06/07/22 15:38 1

9

QC Sample Results

Job ID: 240-166148-1

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Wat Analysis Ba	ter atch: 569007									Prep Typ Prep Ba		
					Total							
		Spike	LCS	LCS	Uncert.					%Rec		
Analyte		Added	Result	Qual	(2 σ+/-)	RL	MDC	Unit	%Rec	Limits		
Radium-228		8.55	6.624		1.00	1.00	0.571	pCi/L	77	75 - 125		
	LCS LCS											
Carrier	%Yield Qualifier	Limits										
Ba Carrier	94.3	40 - 110										
Y Carrier	84.9	40 - 110										
		569/2-4					Client S	amnlo	ID: Lab	Control S	amnla	
Lab Sample	e ID: LCSD 160-564	569/2-A				(Client S	ample	ID: Lab	Control S		
Lab Sample Matrix: Wat	ter	569/2-A				(Client S	ample	ID: Lab	Prep Typ	e: Tot	tal/NA
Lab Sample Matrix: Wat		569/2-A			Total		Client S	ample	ID: Lab		e: Tot	tal/NA
Lab Sample Matrix: Wat	ter	569/2-A Spike	LCSD	LCSD	Total Uncert.		Client S	ample	ID: Lab	Prep Typ	e: Tot	tal/NA
Lab Sample Matrix: Wat Analysis Ba	ter		LCSD Result			RL	Client S		ID: Lab %Rec	Prep Typ Prep Ba	e: Tot	tal/NA 64569
Lab Sample Matrix: Wat Analysis Ba Analyte	ter	Spike		Qual	Uncert.			Unit		Prep Typ Prep Bar %Rec	be: Tot tch: 50	tal/NA 64569 RER
Lab Sample Matrix: Wat Analysis Ba	ter	Spike Added	Result	Qual	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Ba %Rec Limits	e: Tot tch: 50	tal/NA 64569 RER Limit
Lab Sample Matrix: Wat Analysis Ba Analyte Radium-228	ter atch: 569007 	Spike Added	Result	Qual	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Ba %Rec Limits	e: Tot tch: 50	tal/NA 64569 RER Limit
Lab Sample Matrix: Wat Analysis Ba Analyte	ter atch: 569007 	Spike Added 8.55	Result	Qual	Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Ba %Rec Limits	e: Tot tch: 50	tal/NA 64569 RER Limit

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond

Rad

Prep Batch: 564568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-166148-1	DEK-MW-18001	Total/NA	Water	PrecSep STD	
MB 160-564568/23-A	Method Blank	Total/NA	Water	PrecSep STD	
-CS 160-564568/1-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-564568/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	
rep Batch: 564569					
	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID DEK-MW-18001	Prep Type Total/NA	Matrix Water	Method PrecSep_0	Prep Batch
rep Batch: 564569 Lab Sample ID 240-166148-1 MB 160-564569/23-A					Prep Batch
Lab Sample ID 240-166148-1	DEK-MW-18001	Total/NA	Water	PrecSep_0	Prep Batch

Dilution

Factor

1

1

1

Run

Batch

Number

564568

564569

Prepared

or Analyzed

568823 06/07/22 18:10 FLC

568823 06/07/22 15:33 FLC

569042 06/08/22 13:03 SCB

05/09/22 14:15 LPS

05/09/22 14:18 LPS

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Laboratory References:

Batch

903.0

904.0

Method

PrecSep STD

PrecSep_0

Ra226_Ra228

TAL SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Lab Sa	mple ID:	240-166148-1
		Matrix: Water
Amelyot	Lah	
Analyst	Lap	

TAL SL

TAL SL

TAL SL

TAL SL

TAL SL

Job ID: 240-166148-1

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR DEK Bottom Ash Pond Job ID: 240-166148-1

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-22
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	07-01-22
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	200023	11-30-22
owa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-22
Kentucky (DW)	State	KY90125	12-31-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-22
_ouisiana	NELAP	04080	06-30-22
ouisiana (DW)	State	LA011	12-31-22
Maryland	State	310	09-30-22
II - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-23
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	NELAP	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	02-28-23
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
JSDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

MICHIGAN seurofins Environment Testing America	Carrier Tracking No(s) COC No 240-94787-29053.1	State of Origin: Page Page 1 of 1	Job #	Preservation Coc	A - HCL M - Hexane B - NaCH N - None C - Zh Acetate O - ASNAO2			I - Ice J - DI Water	K - EDTA L - EDA	oo too Qfe 	- Jədmuki İsic	F Special Instructions/Note:				William		Custody 4		mples are retained longer than 1 m	Disposal By Lab Archive For Months nents:	Method of Shipment	Date/Time Company たらしつみ 12 プレービーイメーム	(40)	Date/Time	emarks	Ver: 06/08/2021
nain of Custody Record	Len 2 Brooks, Kris M	1026-56	GISMd		;[8	A Yes A No	(0		EbC 62 OL	528 ⁻ CI	Sample Type mple (C=comp,			1344 G Water WN X X	Water				240-166148 Chall of		Rediological Client Collent Client Cl		Company)	Cooler Temperature(s) °C and Other Remarks	1 1 1
		Phone 734-39		Due Date Requested:	TAT Requested (days):	Compliance Project:	PO# TBD		Pond & I 24024154			Sample Date		1 +t-h-s							er (specify)	Date	Date/Time.	6	Date/Time	al No.:	
Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	Client Information	Client Contact Jacob Krenz	Company: TRC Environmental Corporation.	Address 1540 Eisenhower Place	City Ann Arbor	State, 21p MI, 48108-7080	Phone 734-971-7080(Tel) 734-971-9022(Fax)	Email JKrenz@trccompanies.com	Project Name Karn/Weadock CCR DEK Bottom Ash Pond & I	Site		Sample Identification	DEK MM 15000	DEK-MW-18001						Possible Hazard Identification	Non-Hazard Flammable Deliverable Requested: 1, II, IV, Othe	Empty Kit Relinquished by	Relinquisheddy	Relinquished by	Relinquished by:	Custody Seals Intact: Custody Seal No. A Yes A No	

Eurofins TestAmerica Canton Sample Receipt Form/Nari	ative	Login # : 166148
Canton Facility		
Client TRC Site Name	÷	Cooler unpacked by:
Cooler Received on 56-72 Opened on	5-6-22	Ch. O
FedEx: 1 [#] Grd Exp UPS FAS (Lippe) Client Drop O		Other
Receipt After-hours: Drop-off Date/Time	Storage Location	Oulei
TestAmerica Cooler # TA Foam Box Client Coo		
	ater None	
1. Cooler temperature upon receipt	See Multiple Cooler For	m
IR GUN# IR-13 (CF 0.0 °C) Observed Cooler Temp	°C Corrected Cooler Te	emp. °C
IR GUN #IR-15 (CF -0.7°C) Observed Cooler Temp	°C Corrected Cooler T	emp. °C
2. Were tamper/custody seals on the outside of the cooler(s)? I		No
-Were the seals on the outside of the cooler(s) signed & dat		No NA Jests that are not
-Were tamper/custody seals on the bottle(s) or bottle kits (1		Checked for pH by Receiving:
-Were tamper/custody seals intact and uncompromised?		No NA
3. Shippers' packing slip attached to the cooler(s)?		No VOAs
Did custody papers accompany the sample(s)?	Yes	Oil and Grease
Were the custody papers relinquished & signed in the appropriate the second sec		DNo TOC
. Was/were the person(s) who collected the samples clearly ide		
Did all bottles arrive in good condition (Unbroken)?	Ves) No
Could all bottle labels (ID/Date/Time) be reconciled with the		
For each sample, does the COC specify preservatives (YN), #	of containers (YN), and sa	mple type of grab/comp(YN)?
0. Were correct bottle(s) used for the test(s) indicated?	Yes)No
1. Sufficient quantity received to perform indicated analyses?	Yes	No
2. Are these work share samples and all listed on the COC?	Yes	(No)
If yes, Questions 13-17 have been checked at the originating	aboratory.	
3. Were all preserved sample(s) at the correct pH upon receipt?	(c)	No NA pH Strip Lot# HC157842
4. Were VOAs on the COC?		No
15. Were air bubbles >6 mm in any VOA vials? Larg		No (NA)
6. Was a VOA trip blank present in the cooler(s)? Trip Blank L		Č.
7. Was a LL Hg or Me Hg trip blank present?	Yes	(NO)
Contacted PM Date by	via Verhal Vo	nice Mail Other
	The verbal ve	Sice Mair Ouler
Concerning		
	n	
8. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	additional next page	Samples processed by:
	L	
9. SAMPLE CONDITION		
sample(s) were received a	fler the recommended holdin	in time had expired
sample(s)		in a broken container.
ample(s)were real	which received i	
	erved with bubble >0 film in	diameter. (Notity PM)
0. SAMPLE PRESERVATION		
ample(s)	were furth	her preserved in the laboratory.
Sample(s) Preservative(s) added/Lot number	(s):	
OA Sample Preservation - Date/Time VOAs Frozen:		

N. 6 1/19 Login

1	#	:	l	6	Q	1	1	0	

5 6

13

	Eurofins - Cantor	n Sample Receipt Mu	Itiple Cooler Form	
Cooler Description	IR Gun #	Observed	Corrected	Coolant
(Circle)	(Gircle)	Temp °C	Temp °C	(Circle)
Client Box Other	IR-13 IR-15	1.3	1-3	Wet Ice Blue Ice Dry Ice
TA Client Box Other	IR-3 IR-15	1.4	1.4	Wet Ic Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15	0.9	0.9	Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	HR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15		······································	Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15	and a second	· · · · · · · · · · · · · · · · · · ·	Wet ice Biue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15		<u>a an tha an /u>	Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15	. <u> </u>		Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15	· · · · · · · · · · · · · · · · · · ·		Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15		· · · · · · · · · · · · · · · · · · ·	Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice
TA Client Box Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15		<u> </u>	Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15		· · · · · · · · · · · · · · · · · · ·	Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15			Water None Water None
			See Ten	perature Excursion Form

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

Login Container Summary Report

Temperature readings:				2
Temperature readings.			Container Preservative	3
Client Sample ID	Lab ID	Container Type	pH Temp Added (mls) Lot #	4
DEK-MW-18001	240-166148-A-1	Plastic 1 liter - Nitric Acid	<2	5
DEK-MW-18001	240-166148-B-1	Plastic 1 liter - Nitric Acid	<2	6
				7
				8
				9
				10
				11
				12
				13
				14

nton	Avenue
ns Cai	an Buren
Eurofi	180 S. Var

Chain of Custody Record

Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	5				5								_		Am	America	
Client Information (Such Contract 1 ab)	Sampler:			Lab PM: Deceto						Carrier Tracking No(s)	icking No(:(s	8	COC No:			-
	Phone			E-Mail	Erooks, Kris M					Chata of O.	inin.		74	240-151693.1			_
Shipping/Receiving				Kris.Br	ooks@e	et.euro	finsus.c	шo		Michigan			Page	Page 1 of 1			_
Company TestAmerica Laboratories, Inc.				Ac	Accreditations Required (See note)	ns Requ	ired (See	a note):					Jot	Job #: 240-166148-1			-
Address: 13715 Rider Trail North	Due Date Requested:			-									Ā	Preservation Codes	Codes:		_
City	TAT Requested (days):				1		$\left \right $				E	E	Ť	- HCL		exane	_
Earth City Siae 2p 6 6 3045							_							D - Naur C - Zn Acetate D - Nitric Acid F NausOd		N - NONE 0 - ASNA02 P - Na204S	
Phone 314-298-8566(Tel) 314-298-8757(Fax)	PO #:			T									jų o	F - MeOH G - Amchlor		C - 1442503 R - Na2S203 S - H2S04	
	# 0M			1011 10	(0								I _ ·	H - Ascorbic Aci I - Ice		T - TSP Dodecahydrate U - Acetone	_
Project Name:	Project #			0 901	or No									J - UI Water K - EDTA	> 3 + 5	V - MCAA W - pH 4-5 7 _ other (consist)	-
CCR DEK Bottom Ash Pond	24024154) 90	50A								and the	ECA.	0-7	 - otner (specify) 	-
Sile	SSOW#			qms2	V as		Dd:							Other:			_
Sample Identification - Client ID (Lab ID)	Samole Date	Sample (Type ((C=comp, 0=	Matrix (wwwater, s=solid, Orwasteloii, HTTiteue AAA)	M/SM mone 03.01Precsep_		3ª226Kª228_GI			. I :			otal Number	Cooria Sooria	l la	Crossial Instancelura Nucley.	
	1	K /			X								N	Charle		HOURS INOTA	100
DEK-MW-18001 (240-166148-1)	5/4/22 F	13:44 Fastern	_	Water	×	×	×		-	-			2 17	A protocol -	Ra-226+2	TVA protocol - Ra-226+228 action limit at	-
																	-
		+	+				+	-	+								-
									-								-
																	_
																	-
																	-
									_								-
Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing North Central. LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory accreditation in the State of Origin listed above for analysis/instistrimatinx being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central. LLC alactions will be provided. Any changes careditations are current to date, return the signed Chain of Custody or other instructions will be provided. Any changes careditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofine Environment Testing North Central. LLC attention inmediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofine Environment Testing North Central. LLC attention for North Central. LLC attention in the Signed Chain of Custody attesting to said complicance to Eurofine Environment Testing North Central. LLC	ent Testing North Central, LI above for analysis/tests/mat central, LLC attention immed	LC places the rix being ana liately. If all r	ownership of me lyzed, the sample equested accredi	thod, analyte s must be shi ations are cui	& accredi oped bacl rent to da	tation co to the I ite, retur	Eurofins the sig	e upon ol Environm ned Chai	It subcont ent Testin n of Custo	act laborator 3 North Ceni dy attesting	ries. This trail. LLC is to said cor	sample shi iboratory o nplicance t	oment is fo other instr o Eurofins I	rwarded unde uctions will be Environment 1	r chain-of- s provided. Testing Nor	ustody. If the Any changes to th Central. LLC.	
Possible Hazard Identification					Sampl	e Disp) leso	A fee n	ay be	ssessed	if samp	les are r	etained I	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 mont	(4	_
Unconfirmed						Return	Return To Client	ent	<u>ר</u>	Disposal By Lab	ly Lab		Archive For	For	W	Months	_
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Bank: 2			Specia	linstru	uctions/	QC Re	Special Instructions/QC Requirements:	its:				į			-
Empty Kit Relinquished by:	Date:	te:		Ē	Time:					Г	Method of Shipment:	ment:					_
Reingdyshop by	5-6-22		428 Com	Company	Rec	Received by			FEDEX	k	Dat	Date/Time:			Company	any	_
Relinquished by: FED EX	Date/Time:		Com	any	Rec	Received by:	3	2	1.3 F	Wethington		Date/Time:	9 20	2022 OR	OR35 CTASIO	any Arc D	_
Relinquished by:	Date/Time:		Company	any	Rec	Received by:	4			>	Dat	Date/Time:			Company	any	_
Custody Seals Intact: Custody Seal No.: A Yes A No.			-		ð	iler Tem	perature((s) °C and	Cooler Temperature(s) °C and Other Remarks:	marks:					-		_

'er: 06/08/202

13

Login Number: 166148 List Number: 2 Creator: Worthington, Sierra M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 240-166148-1 SDG Number:

List Source: Eurofins St. Louis

List Creation: 05/09/22 02:25 PM

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Tel: (330)497-9396

Laboratory Job ID: 240-166150-1

Client Project/Site: CCR Background Well

For:

TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Attn: Darby Litz

soohs to

Authorized for release by: 6/12/2022 7:33:54 PM

Kris Brooks, Project Manager II (330)966-9790 Kris.Brooks@et.eurofinsus.com

LINKS **Review your project** results through EOL Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Tracer Carrier Summary	13
QC Sample Results	14
QC Association Summary	16
Lab Chronicle	17
Certification Summary	19
Chain of Custody	20
Receipt Checklists	25

3

Qualifiers

_		
	-	A
	a	u

Qualifier Description	
RPD of the LCS and LCSD exceeds the control limits	
Result is less than the sample detection limit.	5
-	RPD of the LCS and LCSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 240-166150-1

Laboratory: Eurofins Canton

Narrative

Job Narrative 240-166150-1

Comments

The EPA Method 904.0 Radium-228, EPA Method 903.0 Radium-226, and Ra226_Ra228 Combined Radium 226 and Radium 228 analyses were performed at the Eurofins St. Louis laboratory.

Receipt

The samples were received on 5/6/2022 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 0.9° C, 1.3° C and 1.4° C.

RAD

Method 903.0: Radium-226 batch 564568

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. MW-15002 (240-166150-1), MW-15008 (240-166150-2), MW-15016 (240-166150-3), MW-15019 (240-166150-4), DUP-04 (240-166150-5), EB-04 (240-166150-6), (LCS 160-564568/1-A), (LCSD 160-564568/2-A) and (MB 160-564568/23-A)

Method 904.0: Radium-228 batch 564569

The RER/DER of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) was outside control limits. However the recovery for the LCS/LCSD passed and the RPD was <40% demonstrating acceptable method performance. Original results will be reported. (LCSD 160-564569/2-A)

Method 904.0: Radium-228 batch 564569

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date. MW-15002 (240-166150-1), MW-15008 (240-166150-2), MW-15016 (240-166150-3), MW-15019 (240-166150-4), DUP-04 (240-166150-5), EB-04 (240-166150-6), (LCS 160-564569/1-A), (LCSD 160-564569/2-A) and (MB 160-564569/23-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 240-166150-1

Method Summary

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

5

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	TAL SL
904.0	Radium-228 (GFPC)	EPA	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep STD	Preparation, Precipitate Separation (Standard In-Growth)	None	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
TAL-STL =	TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.		
Laboratory R			
IAL SL = I	Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566		

Sample Summary

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

Lab Sample ID 240-166150-1	Client Sample ID	Matrix Water	Collected	Received
240-166150-2	MW-15008	Water	05/02/22 13:45	05/06/22 08:00
240-166150-3	MW-15016	Water	05/03/22 08:37	05/06/22 08:00
240-166150-4	MW-15019	Water	05/02/22 15:20	05/06/22 08:00
240-166150-5	DUP-04	Water	05/02/22 00:00	05/06/22 08:00
240-166150-6	EB-04	Water	05/02/22 13:45	05/06/22 08:00

Client Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

Job ID: 240-166150-1

5

7

Lab Sample ID: 240-166150-1 Matrix: Water

Client Sample ID: MW-15002 Date Collected: 05/02/22 17:24 Date Received: 05/06/22 08:00

Method: 903.0 -										
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	1.37		0.522	0.536	1.00	0.574	pCi/L	05/10/22 09:51	06/07/22 18:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
			40 - 110					05/10/22 09:51	06/07/22 18:11	1
Ba Carrier Method: 904.0 -	82.3 Radium-228	(GFPC)	40 - 110					03/10/22 09.31	00/07/22 10:11	,
		(GFPC)	Count Uncert.	Total Uncert.				03/10/22 09.31	00,07722 10.11	I
	Radium-228	(GFPC) Qualifier	Count		RL	MDC	Unit	Prepared	Analyzed	, Dil Fac
Method: 904.0 -	Radium-228	Qualifier	Count Uncert.	Uncert.	RL 1.00		Unit pCi/L			Dil Fac
Method: 904.0 - Analyte	Radium-228	Qualifier	Count Uncert. (2σ+/-)	Uncert. (2σ+/-)				Prepared	Analyzed	Dil Fac 1 Dil Fac
Method: 904.0 - Analyte Radium-228	Radium-228	Qualifier *	Count Uncert. (2σ+/-) 0.757	Uncert. (2σ+/-)				Prepared 05/10/22 10:04	Analyzed 06/07/22 15:33	1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result (Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	4.68		0.920	0.976	5.00	0.785 pCi/L		06/08/22 13:03	1

Client Sample Results

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

Lab Sample ID: 240-166150-2

Matrix: Water

5

7

Date Received: 05/06/22 08:00 Method: 903.0 - Radium-226 (GFPC) Count

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.317	U	0.294	0.295	1.00	0.447	pCi/L	05/10/22 09:51	06/07/22 18:35	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.8		40 - 110					05/10/22 09:51	06/07/22 18:35	1

Total

Method: 904.0 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.							
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Radium-228	0.509	U *	0.388	0.391	1.00	0.588	pCi/L	05/10/22 10:04	06/07/22 15:33	1	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac	
Ba Carrier	89.8		40 - 110					05/10/22 10:04	06/07/22 15:33	1	
Y Carrier	86.4		40 - 110					05/10/22 10:04	06/07/22 15:33	1	

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.826		0.487	0.490	5.00	0.588	pCi/L		06/08/22 13:03	1

Matrix: Water

Lab Sample ID: 240-166150-3

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

Client Sample ID: MW-15016 Date Collected: 05/03/22 08:37 Date Received: 05/06/22 08:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0815	U	0.195	0.195	1.00	0.368	pCi/L	05/10/22 09:51	06/07/22 18:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.0		40 - 110					05/10/22 09:51	06/07/22 18:11	1

				Uncert.	Uncert.							
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
	Radium-228	0.542	U *	0.403	0.406	1.00	0.611	pCi/L	05/10/22 10:04	06/07/22 15:33	1	
	Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac	
	Ba Carrier	93.0		40 - 110					05/10/22 10:04	06/07/22 15:33	1	
	Y Carrier	84.5		40 - 110					05/10/22 10:04	06/07/22 15:33	1	
_												

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.624		0.448	0.450	5.00	0.611	pCi/L		06/08/22 13:03	1

Matrix: Water

Lab Sample ID: 240-166150-4

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

Client Sample ID: MW-15019 Date Collected: 05/02/22 15:20 Date Received: 05/06/22 08:00

Date Received: (·								
Method: 903.0 -	Radium-226	(GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.278	U	0.349	0.350	1.00	0.579	pCi/L	05/10/22 09:51	06/07/22 18:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.8		40 - 110					05/10/22 09:51	06/07/22 18:05	1
	Radium-228	(GFPC)								
		. ,	Count	Total						
			Uncert.	Uncert.						
Analyta	Decult	Qualifian	(2 ~+ /)	(2~+/)	ы	MDC	linit	Droporod	Analyzad	

Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac	
Radium-228	1.83	*	0.601	0.625	1.00	0.742	pCi/L	05/10/22 10:04	06/07/22 15:33	1	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac	
Ba Carrier	89.8		40 - 110					05/10/22 10:04	06/07/22 15:33	1	
Y Carrier	86.7		40 - 110					05/10/22 10:04	06/07/22 15:33	1	
Mothod: Bo226		hined Dev	dium 200 a	nd Dodium	220						

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	2.11		0.695	0.716	5.00	0.742	pCi/L		06/08/22 13:03	1
226 + 228										

Eurofins Canton

Matrix: Water

5 6 7

Lab Sample ID: 240-166150-5

Client Sample ID: DUP-04 Date Collected: 05/02/22 00:00 Date Received: 05/06/22 08:00

Method: 903.0 -	Radium-226	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2 σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.650		0.422	0.426	1.00	0.599	pCi/L	05/10/22 09:51	06/07/22 18:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	88.3		40 - 110					05/10/22 09:51	06/07/22 18:05	1
Method: 904.0 -	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2 σ +/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Analyte			()	()					· · · · · , - · · ·	

Radium-228	0.938	*	0.482	0.490	1.00	0.675 pCi/L	05/10/22 10:04	06/07/22 15:34	1	
Carrier	%Yield	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Ba Carrier	88.3		40 - 110				05/10/22 10:04	06/07/22 15:34	1	
Y Carrier	89.0		40 - 110				05/10/22 10:04	06/07/22 15:34	1	
Mothod: Pa226	7-000 Com		dium 000 or							I

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.59		0.641	0.649	5.00	0.675	pCi/L		06/08/22 13:03	1

Lab Sample ID: 240-166150-6

05/10/22 10:04 06/07/22 15:35

05/10/22 10:04 06/07/22 15:35

Matrix: Water

Date Collected: 05/02/22 13:45 Date Received: 05/06/22 08:00

Client Sample ID: EB-04

Method: 903.0 -	Radium-226	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0315	U	0.209	0.209	1.00	0.466	pCi/L	05/10/22 09:51	06/07/22 18:05	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	57.6		40 - 110					05/10/22 09:51	06/07/22 18:05	1
 Method: 904.0 -	Radium-228	(GFPC)								
		(/	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.292	U *	0.488	0.488	1.00	0.832	pCi/L	05/10/22 10:04	06/07/22 15:35	1
Carrier	0/ Min Isl	Qualifier	Limits					Prepared	Analyzed	Dil Fac

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

40 - 110

40 - 110

57.6

87.9

			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.260	U	0.531	0.531	5.00	0.832 pCi/L		06/08/22 13:03	1

Ba Carrier

Y Carrier

5 7

1

1

Client: TRC Environmental Corporation. Project/Site: CCR Background Well

Method: 903.0 - Radium-226 (GFPC) Matrix: Water

Percent Yield (Acceptance Limits)

		Ва			
Lab Sample ID	Client Sample ID	(40-110)			
240-166150-1	MW-15002	82.3	 	 	
240-166150-2	MW-15008	89.8			
240-166150-3	MW-15016	93.0			
240-166150-4	MW-15019	89.8			
240-166150-5	DUP-04	88.3			
240-166150-6	EB-04	57.6			
LCS 160-564568/1-A	Lab Control Sample	94.3			
LCSD 160-564568/2-A	Lab Control Sample Dup	82.3			
MB 160-564568/23-A	Method Blank	99.3			

Tracer/Carrier Legend

Ba = Ba Carrier

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water

				Percent Yield (Acceptance Limits)
		Ва	Y	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
240-166150-1	MW-15002	82.3	86.7	
240-166150-2	MW-15008	89.8	86.4	
240-166150-3	MW-15016	93.0	84.5	
240-166150-4	MW-15019	89.8	86.7	
240-166150-5	DUP-04	88.3	89.0	
240-166150-6	EB-04	57.6	87.9	
LCS 160-564569/1-A	Lab Control Sample	94.3	84.9	
LCSD 160-564569/2-A	Lab Control Sample Dup	82.3	84.5	
MB 160-564569/23-A	Method Blank	99.3	91.2	

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

Prep Type: Total/NA

Job ID: 240-166150-1

QC Sample Results

Job ID: 240-166150-1

Method: 903.0 - Radium-226 (GFPC)

Analysis Bat	r ch: 5690	08									Prep Typ Prep Bat		
				Count	Total								
		MB	МВ	Uncert.	Uncert.								
Analyte		Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	I	Prepared	Analyze	əd	Dil Fa
Radium-226	(0.002143	U	0.135	0.135	1.00	0.285	pCi/L	05/	10/22 09:51	06/07/22 2	0:02	
		MB	МВ										
Carrier		%Yield	Qualifier	Limits						Prepared	Analyze	ed	Dil Fa
Ba Carrier		99.3		40 - 110					05/	/10/22 09:51	06/07/22 2	20:02	
_ab Sample I	D: LCS	160-564	568/1-A					Cli	ent Sa	ample ID:	Lab Cont	trol Sa	ample
Matrix: Water	r										Prep Typ	e: Tot	tal/N/
Analysis Bate	ch: <mark>56</mark> 88	23									Prep Bat	tch: 5	6456
						Total							
			Spike	LCS	LCS	Uncert.					%Rec		
Analyte			Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits		
Radium-226			11.3	9.625		1.28	1.00	0.274	pCi/L	85	75 - 125		
	LCS												
Carrier	%Yield	Qualifier		_									
	94.3		40 - 110										
Ba Carrier	94.3 D: LCSC) 160-56						Client S	ample	e ID: Lab (
Ba Carrier Lab Sample I Matrix: Water	94.3 D: LCSE							Client S	ample		Prep Typ	e: Tot	tal/N
Ba Carrier Lab Sample I Matrix: Water	94.3 D: LCSE							Client S	ample			e: Tot	tal/N
Ba Carrier Lab Sample I Matrix: Water	94.3 D: LCSE		64568/2-A			Total		Client S	ample		Prep Typ Prep Bat	e: Tot	tal/N/ 6456
^{Ba Carrier} Lab Sample I Matrix: Water Analysis Bate	94.3 D: LCSE		54568/2-A Spike	LCSD	LCSD	Uncert.					Prep Typ Prep Bat %Rec	e: Tot tch: 5	tal/N/ 6456 RE
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte	94.3 D: LCSE		64568/2-A Spike Added	LCSD Result		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5	tal/N/ 6456 RE
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte Radium-226	94.3 D: LCSE		54568/2-A Spike	LCSD		Uncert.			Unit		Prep Typ Prep Bat %Rec	e: Tot tch: 5	tal/N/ 6456 REI
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte	94.3 D: LCSE	23	64568/2-A Spike Added	LCSD Result		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5	tal/N/ 6456 RE
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte	94.3 D: LCSE ch: 5688	23	54568/2-A Spike 	LCSD Result		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5	tal/N
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte Radium-226 Carrier	94.3 D: LCSE ch: 5688	23 	54568/2-A Spike 	LCSD Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5	tal/N 6456 RE Lim
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte Radium-226 Carrier Ba Carrier	94.3 D: LCSE ch: 5688 <u>LCSD</u> %Yield 82.3	23 LCSD Qualifier	54568/2-A Spike Added 11.3 Limits 40 - 110	LCSD Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	Prep Typ Prep Bat %Rec Limits	e: Tot tch: 5	tal/N 6456 RE Lim
Analyte Carrier Ba Carrier Carrier Ba Carrier Ba Carrier Carrier Ba Carrier	94.3 D: LCSE ch: 5688 <u>LCSD</u> %Yield 82.3 L.O - Ra	23 LCSD Qualifier dium-2	54568/2-A Spike Added 11.3 Limits 40 - 110 228 (GFPC	LCSD Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit pCi/L	<u>%Rec</u> 86	Prep Typ Prep Bat %Rec Limits 75 - 125	RER 0.03	tal/N, 6456 RE Lim
Ba Carrier Lab Sample I Matrix: Water Analysis Bate Analyte Radium-226	94.3 D: LCSE ch: 5688 <u><i>LCSD</i></u> %Yield 82.3 LO - Ra D: MB 1	23 LCSD Qualifier dium-2	54568/2-A Spike Added 11.3 Limits 40 - 110 228 (GFPC	LCSD Result 9.709		Uncert. (2σ+/-)	RL	MDC	Unit pCi/L	<u>%Rec</u> 86	Prep Typ Prep Bat %Rec Limits 75 - 125	RER 0.03	tal/N 6456 RE Lim

	МВ	МВ	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.03881	U	0.215	0.215	1.00	0.396	pCi/L	05/10/22 10:04	06/07/22 15:38	1
	МВ	МВ								
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.3		40 - 110					05/10/22 10:04	06/07/22 15:38	1
Y Carrier	91.2		40 - 110					05/10/22 10:04	06/07/22 15:38	

QC Sample Results

Job ID: 240-166150-1

9

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample Matrix: Wat Analysis Ba	er		9/1-A					Cli	ent Sa	mple ID:	Lab Con Prep Typ Prep Ba	e: Tot	al/NA	ļ
Analyte			Spike Added	LCS Result	LCS Qual	Total Uncert. (2σ+/-)	RL	MDC	Unit	%Rec	%Rec Limits			Ì
Radium-228			8.55	6.624		1.00	1.00	0.571	pCi/L	77	75 - 125			
	LCS	LCS												
Carrier	%Yield	Qualifier	Limits											i
Ba Carrier	94.3		40 - 110											
Y Carrier	84.9		40 - 110											
Lab Sample		0 160-5645	69/2-A					Client S	ample	ID. I ab	Control S	ample	e Dun	
Matrix: Wat											Prep Typ			
Analysis Ba	atch: 5690	07									Prep Ba			
-						Total								
			Spike	LCSD	LCSD	Uncert.					%Rec		RER	
Analyte			Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	RER	Limit	
Radium-228		_	8.55	9.176	*	1.28	1.00	0.579	pCi/L	107	75 - 125	1.12	1	
	LCSD	LCSD												
Carrier	%Yield	Qualifier	Limits											ŝ
Ba Carrier	82.3		40 - 110											
Y Carrier	84.5		40 - 110											

Rad

Prep Batch: 564568

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-166150-1	MW-15002	Total/NA	Water	PrecSep STD	
240-166150-2	MW-15008	Total/NA	Water	PrecSep STD	
240-166150-3	MW-15016	Total/NA	Water	PrecSep STD	
240-166150-4	MW-15019	Total/NA	Water	PrecSep STD	
240-166150-5	DUP-04	Total/NA	Water	PrecSep STD	
240-166150-6	EB-04	Total/NA	Water	PrecSep STD	
MB 160-564568/23-A	Method Blank	Total/NA	Water	PrecSep STD	
LCS 160-564568/1-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-564568/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	
rep Batch: 564569					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-166150-1	MW-15002	Total/NA	Water	PrecSep 0	
240-166150-2	MW-15008	Total/NA	Water	PrecSep_0	
	MW-15008 MW-15016		Water Water	•=	
240-166150-3		Total/NA		PrecSep_0	
240-166150-3 240-166150-4	MW-15016	Total/NA Total/NA	Water	PrecSep_0 PrecSep_0	
240-166150-3 240-166150-4 240-166150-5	MW-15016 MW-15019	Total/NA Total/NA Total/NA	Water Water	PrecSep_0 PrecSep_0 PrecSep_0	
240-166150-3 240-166150-4 240-166150-5 240-166150-6	MW-15016 MW-15019 DUP-04	Total/NA Total/NA Total/NA Total/NA	Water Water Water	PrecSep_0 PrecSep_0 PrecSep_0 PrecSep_0 PrecSep_0	
240-166150-2 240-166150-3 240-166150-4 240-166150-5 240-166150-6 MB 160-564569/23-A LCS 160-564569/1-A	MW-15016 MW-15019 DUP-04 EB-04	Total/NA Total/NA Total/NA Total/NA Total/NA	Water Water Water Water	PrecSep_0 PrecSep_0 PrecSep_0 PrecSep_0 PrecSep_0 PrecSep_0	

Client Sample ID: MW-15002 Date Collected: 05/02/22 17:24 Date Received: 05/06/22 08:00

Job	ID:	240-	-1

66150-1

Matrix: Water

Matrix: Water

Lab Sample ID: 240-166150-1 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	568823	06/07/22 18:11	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568823	06/07/22 15:33	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Client Sample ID: MW-15008 Date Collected: 05/02/22 13:45 Date Received: 05/06/22 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	568823	06/07/22 18:35	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568823	06/07/22 15:33	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Client Sample ID: MW-15016 Date Collected: 05/03/22 08:37 Date Received: 05/06/22 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	568823	06/07/22 18:11	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568823	06/07/22 15:33	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Client Sample ID: MW-15019 Date Collected: 05/02/22 15:20 Date Received: 05/06/22 08:00

Lab Sample ID: 240-166150-4 Matrix: Water

Lab Sample ID: 240-166150-3

Batch Batch Dilution Batch Prepared Method Number or Analyzed Analyst Prep Type Туре Run Factor Lab Total/NA Prep PrecSep STD 564568 05/10/22 09:51 LPS TAL SL Total/NA Analysis 903.0 569008 06/07/22 18:05 FLC TAL SL 1 Total/NA TAL SL Prep PrecSep_0 564569 05/10/22 10:04 LPS Total/NA Analysis 904.0 1 568823 06/07/22 15:33 FLC TAL SL Total/NA TAL SL Analysis Ra226 Ra228 569042 06/08/22 13:03 SCB 1

Eurofins Canton

Client Sample ID: DUP-04 Date Collected: 05/02/22 00:00 Date Received: 05/06/22 08:00

Date Receive	a: 05/06/22 0	8:00						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	569008	06/07/22 18:05	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568823	06/07/22 15:34	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Client Sample ID: EB-04 Date Collected: 05/02/22 13:45 Date Received: 05/06/22 08:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep STD			564568	05/10/22 09:51	LPS	TAL SL
Total/NA	Analysis	903.0		1	569008	06/07/22 18:05	FLC	TAL SL
Total/NA	Prep	PrecSep_0			564569	05/10/22 10:04	LPS	TAL SL
Total/NA	Analysis	904.0		1	568835	06/07/22 15:35	FLC	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	569042	06/08/22 13:03	SCB	TAL SL

Laboratory References:

TAL SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 240-166150-1

Matrix: Water

Matrix: Water

Lab Sample ID: 240-166150-5

Lab Sample ID: 240-166150-6

1 2 3 4 5 6 7 8 9 10 11 12 13

Eurofins Canton

Accreditation/Certification Summary

Client: TRC Environmental Corporation. Project/Site: CCR Background Well Job ID: 240-166150-1

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
NAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-22
California	Los Angeles County Sanitation Districts	10259	06-30-22
California	State	2886	07-01-22
Connecticut	State	PH-0241	03-31-23
Florida	NELAP	E87689	06-30-22
HI - RadChem Recognition	State	n/a	06-30-22
Illinois	NELAP	200023	11-30-22
lowa	State	373	12-01-22
Kansas	NELAP	E-10236	10-31-22
Kentucky (DW)	State	KY90125	12-31-22
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-22
Louisiana	NELAP	04080	06-30-22
₋ouisiana (DW)	State	LA011	12-31-22
Maryland	State	310	09-30-22
MI - RadChem Recognition	State	9005	06-30-22
Missouri	State	780	06-30-22
Nevada	State	MO000542020-1	07-31-22
New Jersey	NELAP	MO002	06-30-22
New York	NELAP	11616	04-01-23
North Dakota	State	R-207	06-30-22
NRC	NRC	24-24817-01	12-31-22
Oklahoma	NELAP	9997	08-31-22
Oregon	NELAP	4157	09-01-22
Pennsylvania	NELAP	68-00540	02-28-23
South Carolina	State	85002001	06-30-22
Texas	NELAP	T104704193	07-31-22
US Fish & Wildlife	US Federal Programs	058448	07-31-22
USDA	US Federal Programs	P330-17-00028	03-11-23
Utah	NELAP	MO000542021-14	08-01-22
Virginia	NELAP	10310	06-14-22
Washington	State	C592	08-30-22
West Virginia DEP	State	381	10-31-22

Eurofins Canton 180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772	Chain		of Custody Record	ecord	MICH	MICHIGAN 190	🐝 eurofins America
Client Information	Sampler, Helina	Sel.	Lab PM	Lab PM Brooks, Kris M	Ö	Carrier Tracking No(s)	COC No: 240-94785-33282 1
Client Contact Jacob Krenz	Phone:		T	E-Mail: Kris.Brooks@et.eurofinsus.com		State of Origin:	Page Page 1 of 1
Company TRC Environmental Corporation.		PWSID	-		Analysis Requested	ested	# 4007
Address: 1540 Eisenhower Place	Due Date Requested:						
City Ann Arbor	TAT Requested (days):						A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip MI, 48108-7080	Compliance Project: A Yes	es 🛆 No					
Phone 734-971-7080(Tel) 734-971-9022(Fax)	PO# TBD			(0			
Email JKrenz@trccompanies.com	MA OM						J - DI Water
Project Name Karn/Weadock CCR Background Well	Project # 24024154			EbC			K - EDTA L - EDA
Site	SSOW#			228 ⁻ GI			of con
Cample Identification	07			ield Filtered S M/SM MS/M 0.0, Ra226Ra 04,0 - Standard			otal Number
			Preservation Code:	6 C	-		F Special Instructions/Note:
MW-15002	12/2/2 1724	-	Water	∇			
MW-15008	2/22	1	Water	XXXX			
MW-15016	13/22	1 0	Water	XXIII			
MW-15019	5/2/22 1590	-	Water	XXVI			
DUP-04	5/2/22 -	S	Water	V.XIV N			
EB-04	5/2/2.2. 104	5 5	Water	MXXMW			
			Water				
					240-166	240-166150 Chain of Custody	
Possible Hazard Identification				Sample Disposal (A I	sal (A fee may be ass	essed if samples are	ger than 1 m
Deliverable Requested 1, II, IV, Other (specify)		and a second		Special Instruction	Requirem	Uisposal by Lab	
Empty Kit Relinquished by	Date			Time:		Method of Shipment	
Relinquished by HEWY, Je Wirzudt	Date/Time: 5/3/2.	2/1600			O Phin	Date/Time S-3 -	-72 /1600 Company
	DaterTime Date	330	Company	Received by	OWN	Date/Time S15123	1360
2	5/5/27 1335	2	Company Fre Tr	Received by	to and	Date/Time	0800
Custody Seals Intact: Custody Seal No.:				Copler Temp	objer Temperature(s) °C and Other Remarks	arks	
				1	1		Ver: 06/08/2021
				3 4	1 2	8	2 3 4 5 6 7

	111110
Eurofins TestAmerica Canton Sample Receipt Form/Narrative	Login # : 166150
Client TRC Site Name	Cooler unpacked by:
Cooler Received on 5-6-72 Opened on 5-6-72	0.0
FedEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	Oulei
 Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt See Multiple Cooler Find GUN# IR-13 (CF 0.0 °C) Observed Cooler Temp. °C Corrected Cooler IR GUN# IR-15 (CF -0.7°C) Observed Cooler Temp. °C Corrected Cooler Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity (cc. Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yee -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yee -Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Were the custody papers accompany the sample(s)? Were the person(s) who collected the samples clearly identified on the COC? Did all bottle labels (ID/Date/Time) be reconciled with the COC? For each sample, does the COC specify preservatives (VN), # of containers (Y/N) and s Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples and all listed on the COC? Yee If yes, Questions 13-17 have been checked at the originating laboratory. 	orm Femp°C Temp°C No No No No No No No No No No
	s No
	s No (NÀ) s No
	s (No)
Contacted PM Date by via Verbal V	Voice Mail Other
Concerning	
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES additional next page	Samples processed by:
Containers for DUP-04 and EB-04 are labele	
	a as
match Coc. Samples are logged per the CUC	The S-6-77
per the Chi	Mue 5-6 CL
19. SAMPLE CONDITION	
Sample(s) were received after the recommended hold	ing time had expired.
	in a broken container.
Sample(s) were received with bubble >6 mm i	n diameter. (Notify PM)
20. SAMPLE PRESERVATION	
Sample(s) were fur	ther preserved in the laboratory.
Sample(s)	
VOA Sample Preservation - Date/Time VOAs Frozen:	

Login #: 166150

Cooler Description	Eurofins - Canto	Observed	Corrected	Coolant
(Circle)	(Gircle)	Temp °C	Temp °C	(Circle)
Client Box Other	11-13 IR-15	1.3	1.3	Wet Ice Blue Ice Dry I Water None
TA Client Box Other	IR-3 IR-15	1.4	1.4	Wet Ice Blue Ice Dry I Water None
TA Client Box Other	IR-13 IR-15	09	09	Wet Ice Blue Ice Dry I
TA Client Box Other	HK-13 IR-15			Wet Ice Blue Ice Dry I Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry k Water None
1A Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry k Water None
TA Client Box Other	IR-13 IR-15		<u></u>	Wet ice Blue ice Dry is Water None
TA Client Box Other	IR-13 IR-15	and a strength of the state of	And a company of the second	Wet Ice Blue Ice Dry k
TA Client Box Other	IR-13 IR-15		and the start of the second sec	Wet Ice Blue Ice Dry k
TA Client Box Other	IR-13 IR-15		and a second	Water None Wet Ice Blue Ice Dry k
TA Client Box Other	IR-13 IR-15			Water None Wet Ice Blue Ice Dry k
TA Client Box Other	IR-13 IR-15	and a second		Water None Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ic Water None
TA Client Box Other	iR-13 IR-15		<u> </u>	Wet ice Blue ice Dry k Water None
TA Client Box Other	IR-13 IR-15		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Wet ice Blue ice Dry k Water None
TA Client Box Other	iR-13 IR-15			Wet Ice Blue Ice Dry ic Water None
TA Client Box Other	IR-13 IR-15		<u></u>	Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15		<u></u>	Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Sive Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15		<u> </u>	Wet Ice Blue Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Sive Ice Dry Ic Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15		<u></u>	Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet ice Blue ice Dry ice Water None
TA Client Box Other	IR-13 IR-15		<u></u>	Wet Ice Blue Ice Dry Ice Water None
TA Client Box Other	IR-13 IR-15			Wet Ice Blue Ice Dry Ice

WI-NC-099 Cooler Receipt Form Page 2 - Multiple Coolers

13

Temperature readings: _____

Client Sample ID	<u>Lab ID</u>	Container Type	ContainerPreservativepHTempAdded (mls)Lot #4
MW-15002	240-166150-A-1	Plastic 1 liter - Nitric Acid	<2 5
MW-15002	240-166150-B-1	Plastic 1 liter - Nitric Acid	<2
MW-15008	240-166150-A-2	Plastic 1 liter - Nitric Acid	<2 6
MW-15008	240-166150-B-2	Plastic 1 liter - Nitric Acid	<2 7
MW-15016	240-166150-A-3	Plastic 1 liter - Nitric Acid	<2
MW-15016	240-166150-B-3	Plastic 1 liter - Nitric Acid	<2 8
MW-15019	240-166150-A-4	Plastic 1 liter - Nitric Acid	<2 9
MW-15019	240-166150-B-4	Plastic 1 liter - Nitric Acid	<2
DUP-04	240-166150-A-5	Plastic 1 liter - Nitric Acid	<2 10
DUP-04	240-166150-B-5	Plastic 1 liter - Nitric Acid	<2 11
EB-04	240-166150-A-6	Plastic 1 liter - Nitric Acid	<2 12
EB-04	240-166150-B-6	Plastic 1 liter - Nitric Acid	<2
			13

nton	Avenue
rofins Cal	S. Van Buren
Ш	180

1 Barberton, OH 44203 Phone: 330-497-9306 E

Chain of Custody Record

Phone: 330-497-9396 Fax: 330-497-0772														
Client Information (Sub Contract Lab)	Sampler:			Lab PM Brooks	Lab PM: Brooks, Kris M	5			0	Carrier Tracking No(s)	g No(s):		COC No: 240-151693.1	
Client Contact: Shipping/Receiving	Phone			E-Mail: Kris.B	E-Mail: Kris.Brooks@et.eurofinsus.com	et.euro	ofinsus.	EOS	0 2	State of Origin: Michigan			Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditations Required (See note)	ons Req	uired (Se	e note):				Γ	Job #: 240-166150-1	
Address 13715 Rider Trail North.	Due Date Requested: 6/7/2022	į						Analys	Analysis Requested	lested		Γ	Preservation Codes	8
City Earth City State, Zip MO, 63045	TAT Requested (days):	iys):				<u> </u>		Ì					A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3
Phone 314-298-8566(Tel) 314-298-8757(Fax)	PO #:					_				_			F - MeOH G - Amchlor H - Ascorbic Arid	
Email	#OM				(0)								1 - Di Water	
Project Name: CCR Background Well	Project #: 24024154				10 88			_				19nist	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				N) as		Dd:					_	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (w~water. S=eolid. O=westeloil. BT=Tiseue, A=Air)	Field Filtered S Perform MS/M	903.0/PrecSep_6	Ra226Ra228_GF					Total Number	Special II	Special Instructions/Note:
	X	X	Preservat	Preservation Code:	X							X		N
MW-15002 (240-166150-1)	5/2/22	17:24 Eastern		Water		××	×		_			2	TVA protocol - Re 5.0 pCi/l	TVA protocol - Ra-226+228 action limit at 5.0 nCi/l
MW-15008 (240-166150-2)	5/2/22	13:45 Eastern		Water	^	××	×					2	TVA protocol - Re 5.0 nCi/l	TVA protocol - Ra-226+228 action limit at 5.0 nCi/l
MVV-15016 (240-166150-3)	5/3/22	08:37 Eastern		Water	~	××	×					2	TVA protocol - Re 5.0 pCi/l	TVA protocol - Ra-226+228 action limit at 5.0 oCi/l
MW-15019 (240-166150-4)	5/2/22	15:20 Eastern		Water	^	×	×					N	TVA protocol - Ra 5.0 pCi/L	TVA protocol - Ra-226+228 action limit at 5.0 pCi/L.
DUP-04 (240-166150-5)	5/2/22	Eastern		Water	^ 	××	×					2	TVA protocol - Ra 5.0 pCi/L.	TVA protocol - Ra-226+228 action limit at 5.0 pCi/L.
EB-04 (240-166150-6)	5/2/22	13:45 Eastern		Water		×	×					N	TVA protocol - Ra 5.0 pCi/L.	TVA protocol - Ra-226+228 action limit at 5.0 pCi/L.
Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing North Central. LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory or other shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysistlests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central. Any changes to	nent Testing North Centra 1 above for analysis/tests	II, LLC places t matrix being ar	he ownership c	of method, analy	Ate & accred	ditation c	complianc Eurofins	Se upon ou	t subcontrac	t laboratories.	This sample s	hipment is	s forwarded under c	hain-of-custody. If the rovided. Any changes to
accreatiation status should be prought to Eurotins Environment Lesting North (Central, LLC attention im	mediately. If al	I requested acc	creditations are	current to d	late, retu	um the sig	gned Chair	of Custody	attesting to sa	id complicance	e to Eurofir	ns Environment Tes	sting North Central, LLC.
rossible hazard identification Unconfirmed					Samp	le Dis Returi	le Disposal (A f Return To Client	A fee m ient	ay be as:	assessed if s Disposal Bv L	samples are	⊐ Archi	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) — Return To Client — Disposal By Lab Archive For Mon	1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank: 2			Speci	al Instr	uctions	/QC Rec	Special Instructions/QC Requirements:					
Empty Kit Relinquished by:		Date:			Time:					Method o	Method of Shipment:			
Residentisher by	Date/Time: 5-6-22		1428	COMPANY	Re	Received by	а Хо	Ē	FED EX		Date/Time:			Company
Relinquished by: FED EX	Date/Time:		<u> </u>	Company	Re	Received by:	-	1100	the state	+	MAY ^{me} 0	റ	2022 0835	Company
	Date/Time:		<u> </u>	Company	В	Received by:	[Date/Time:			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					ů	oler Ten	nperature	e(s) °C and	Cooler Temperature(s) °C and Other Remarks:	irks:				
					┨								1	

Ver: 06/08/2021

13

Login Number: 166150 List Number: 2 Creator: Worthington, Sierra M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	False	

List Source: Eurofins St. Louis

List Creation: 05/09/22 02:40 PM

Date:	July 27, 2022
То:	J.R. Register, Consumers Energy
From:	Darby Litz, TRC Kristin Lowery, TRC
Project No.:	464095.0001.0000 Phase 2 Task 2
Subject:	First Semiannual 2022 Nature and Extent Data Summary, DE Karn Bottom Ash Pond, Consumers Energy, Essexville, Michigan

In response to the United States Environmental Protection Agency's (U.S. EPA's) Resource Conservation and Recovery Act (RCRA) Coal Combustion Residual rule ("CCR Rule") promulgated on April 17, 2015, as amended, Consumers Energy Company (Consumers Energy) has conducted groundwater monitoring at the DE Karn Bottom Ash Pond CCR Unit. During the statistical evaluation of the initial assessment monitoring event (May 2018) for the Karn Bottom Ash Pond, arsenic was present in one or more downgradient monitoring well(s) at statistically significant levels exceeding the Groundwater Protection Standards (GWPSs)¹.

The CCR Rule 40 CFR §257.96(a) requires that an owner or operator initiate an assessment of corrective measures (ACM) to prevent further release, to remediate any releases, and to restore impacted areas to original conditions if any Appendix IV constituent has been detected at a statistically significant level exceeding a GWPS. The *Assessment of Corrective Measures* (ACM) (TRC, September 2019) was initiated on April 14, 2019 and was certified and submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on September 11, 2019 in accordance with the schedule in §257.96.

Per §257.95(g)(1), in the event that the facility determines, pursuant to §257.93(h), that there is a statistical exceedance of the GWPSs for one or more of the Appendix IV constituents, the facility must characterize the nature and extent of the release of CCR as well as any site conditions that may affect the remedy selected. Installation of additional monitoring wells at locations downgradient of the Karn Bottom Ash Pond groundwater monitoring system was not necessary or feasible due to the presence of existing monitoring wells sampled under the groundwater surface water interface (GSI) Compliance Monitoring Program administered under a Michigan-approved Hydrogeological Monitoring Plan (Consumers Energy, 2019), and the proximity of the surface water bodies. Monitoring wells designated for nature and extent characterization are shown on Figures 1 and 2 and data collected over the past year (July 2021 through May 2022) from these nature and extent groundwater monitoring wells are included in Tables 1 and 2.

¹ TRC. 2019. Statistical Evaluation of Initial Assessment Monitoring Sampling Event, DE Karn Bottom Ash Pond, Consumers Energy Company, Essexville, Michigan. January 14.

Given the proximity of the Karn Bottom Ash Pond to the Karn Landfill at the Karn property, the nature and extent of contamination was assessed from a site-wide perspective rather than on a per CCR unit basis. The nature and extent of groundwater impacted by a release from the Karn Bottom Ash Pond overlaps with groundwater impacted by operation of the Karn Landfill. Additionally, looking at impacted groundwater on a site-wide basis was more practical from a risk mitigation standpoint, given:

- the likely age of the release(s);
- a long operational history of ash management
- the historical use of CCR as fill; and
- The influence of geochemistry on several of the Appendix IV constituent concentrations in groundwater.

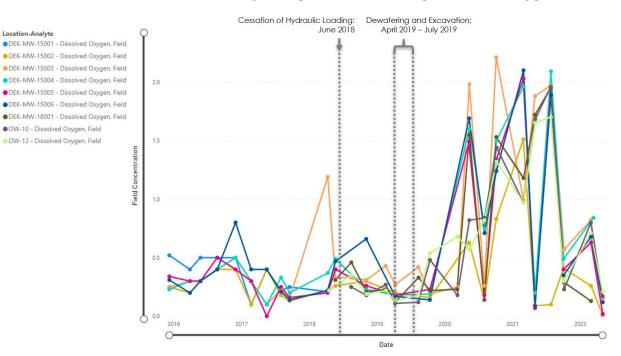
As discussed in the ACM, the nature and extent of contamination (e.g. arsenic) in groundwater relative to GWPSs has been defined per the RCRA CCR Rule requirements based on the site-specific hydrogeology. Although arsenic concentrations exceed the GWPS in on-site groundwater monitoring locations, arsenic is delineated within the limits of the property owned by Consumers Energy and there are currently no adverse effects on human health or the environment from either surface water or groundwater due to CCR management at the Karn Bottom Ash Pond. The property is owned and operated by Consumers Energy and groundwater is not used for drinking water. There are no on-site drinking water wells and there are no surface water potable water intakes within 3 miles of the site, so the drinking water pathway is not complete.

The distribution of arsenic relative to the Karn Bottom Ash Pond groundwater monitoring system in the shallow water-bearing unit as compared to the GWPS is presented in Figure 1. Three categories were assigned to groundwater data collected from July 2021 to May 2022, as follows:

- White No Exceedances: all concentrations were below the GWPS
- Yellow Two or More Exceedances: individual observations above the GWPS²
- Orange Statistically Significant GWPS Exceedances³

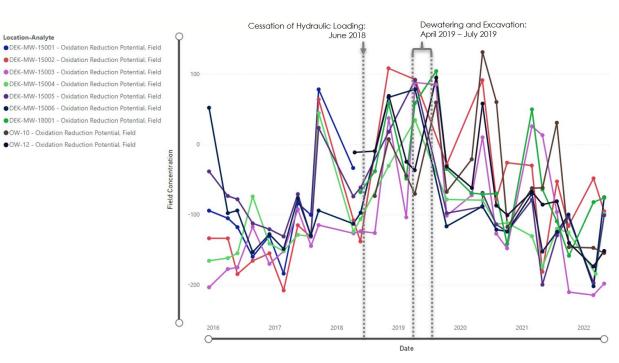
The highest concentrations of arsenic observed in the vicinity of the Karn Bottom Ash Pond have been observed at DEK MW-15003, a monitoring well located to the north of the bottom ash pond and associated with the shifted "highest" elevation of mounded groundwater relative to the Karn Bottom Ash Pond. Although historically the point source discharge of sluiced bottom ash into the Karn Bottom Ash Pond created localized mounding of the potentiometric surface, the new Karn Lined Impoundment went into service on June 7, 2018 and has been continuously collecting the process water and bottom ash that went into the former bottom ash pond. Since the former bottom ash pond is no longer being hydraulically loaded with sluiced ash and has been dewatered by gravity, the characteristic

² Although an exceedance is defined as a single detection above the GWPS, confidence intervals will be used to determine compliance per the CCR Rule using the Karn Bottom Ash Pond monitoring well network. Compliance with the GWPSs established under § 257.95(h) will be achieved by demonstrating that concentrations of constituents listed in Appendix IV to this part have not exceeded the GWPSs for a period of three consecutive years using the statistical procedures and performance standards in § 257.93(f) and (g).


³ Lower confidence limit is above the GWPS based upon most recent assessment monitoring statistical evaluation using the most recent eight sampling events (November 2018 through May 2022).

groundwater mound centered within the pooled area is no longer present. The groundwater elevation data collected from the groundwater monitoring system of the former bottom ash pond in May 2022 demonstrate a reduction in groundwater elevation measurements by several feet when compared to groundwater elevations measured prior to June 2018. Given this shift in groundwater flow direction, DEK-MW-15003 and DEK-MW-15004 are now located upgradient to side gradient of the CCR unit and are no longer representative of groundwater chemistry downgradient of the Karn Bottom Ash Pond. DEK-MW-15003 and DEK-MW-15004 cannot reliably be used to assess the effectiveness of the CCR removal activities and are influenced by the long operational history of ash management in this area of the site. These two wells were removed from the certified downgradient monitoring well network. The recertification was included in Appendix D of the October 2021 Assessment Monitoring Data Summary and Statistical Evaluation⁴.

Recent data show that groundwater quality is improving for select constituents (e.g., downward trends in arsenic concentrations) since sluicing to the Karn Bottom Ash Pond ceased in June 2018 when the bottom ash and transport water was diverted to the Karn Lined Impoundment. Arsenic concentrations at DEK-MW-15002 appear to exhibit a downward trend on the time-series chart (Attachment A). This data set was tested further in Sanitas™ utilizing Sen's Slope to estimate the average rate of change in concentration over time and utilizing the Mann-Kendall trend test to test for significance of the trend at the 98% confidence level. The trend test shows that arsenic concentrations are generally decreasing with time, as evidenced by the negative Sen's Slope. The decreasing trend at DEK-MW-15002 was deemed statistically significant at the 98% confidence level. Groundwater chemistry appears to be improving as a result of discontinuing the hydraulic loading to the Karn Bottom Ash Pond and the completed source removal of CCR, as shown by the decrease in concentrations of arsenic at DEK-MW-15002 ; however, attainment of the GWPS at all of the Bottom Ash Pond downgradient monitoring wells may not be feasible due to influences other than the former pond, such as the presence and former operation of the nearby Karn Landfill. Arsenic in the nature and extent monitoring wells located along the landfill perimeter bordering Saginaw Bay also exhibit concentrations above the GWPS. Although arsenic is present above the GWPS, the drinking water pathway is not complete as there are no drinking water wells on-site. Redox conditions, which affect contaminant transport, are still stabilizing in the Bottom Ash Pond Area following removal activities and will continue to be evaluated further.


As shown on the charts below, the dissolved oxygen concentration and oxidation-reduction potential (ORP) showed highly variable results following CCR removal activities. Specifically, dissolved oxygen transitioned from the suboxic/anoxic state of 0.5 mg/L or less to an oxic state of greater than 1.5 mg/L immediately following CCR removal. In the same time period, the electric potential transitioned from a moderately negative electric potential near -100 mV to a moderately positive electric potential of +100 mV. The observed trends for these two key field-measured parameters demonstrate that the preferred equilibrium redox state (e.g. preferred redox couple chemistry) also shifted during the time period immediately following CCR removal. Data from 2022 indicate that trends in the redox conditions may be stabilizing at values similar to pre-dewatering conditions based on measurements of dissolved oxygen in the anoxic range at less than 0.5 mg/L and negative electric potential.

⁴ TRC. January 2022. October 2021 Assessment Monitoring Data Summary and Statistical Evaluation – DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.

Groundwater Chemistry Changes Post-Dewatering - Dissolved Oxygen

Groundwater Chemistry Changes Post-Dewatering - Oxidation-Reduction Potential

Additionally, monitoring performed under the Michigan-approved GSI Compliance Monitoring Program demonstrates protection of human health and the environment with criteria determined to be protective at the potential point of exposure. Transect/porewater GSI compliance sampling data collected

Location-Analyte

OW-10 - Dissolved Oxygen, Field OW-12 - Dissolved Oxygen, Field

quarterly show that biogeochemical conditions are contributing to the reduction of arsenic in groundwater as observed in arsenic concentrations in transect push-point samples located along the water's edge of Saginaw Bay are generally much lower than the arsenic concentrations observed in the perimeter dike wells. Compliance with water quality criteria is demonstrated on a quarterly basis by evaluating the total chronic loading based on the authorization for the mixing zone.

The distribution of arsenic in the shallow water-bearing unit as compared to the mixing zone GSI criteria is presented in Figure 2. Three categories were assigned to the data from July 2021 to May 2022⁵, as follows:

- White No Exceedances: all concentrations were below the mixing zone GSI criteria
- Light Blue Two consecutive exceedances of the chronic mixing zone GSI criterion
- Dark Blue Two consecutive exceedances of the acute mixing zone GSI criterion

Groundwater monitoring locations along the DE Karn Intake Channel and boundary between the coal ash management areas and the power plant complex (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001) document contaminant concentrations of arsenic are less than the authorized Mixing Zone-Based Chronic Concentration of 100 ug/L, with the exception of T4-3GSI and T5-3GSI. Total chronic loading, calculated from concentrations observed in groundwater samples collected from push-point samplers advanced at locations T1-3GSI through T6-3GSI, remains below the chronic mixing zone GSI criterion, indicating current conditions are protective of the GSI pathway.

Attachments

- Table 1Summary of Groundwater Sampling Results (Analytical): July 2021 to May 2022; DE
Karn Nature and Extent Monitoring Wells
- Table 2Summary of Groundwater Sampling Results (Analytical): July 2021 to May 2022; DE
Karn Nature and Extent GSI Monitoring Locations
- Figure 1 Nature and Extent Summary: GWPS Exceedances
- Figure 2 Nature and Extent Summary: GSI Pathway Compliance

Attachment A Trend Evaluation

⁵ Given the dynamic nature of the groundwater surface water interactions, it is appropriate to look at a shorter timeframe for data analysis (one year).

Tables

								Sa	mple Location:		DEK-M	W-15003			DEK-M	W-15004			MM	/-01	
									Sample Date:	7/27/2021	10/7/2021	2/28/2022	5/3/2022	7/28/2021	10/4/2021	3/14/2022	5/4/2022	7/27/2021	10/4/2021	2/28/2022	5/2/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^		1.0002020		0/0/2022				0, 112022				
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	825	976	821	760	915	1,120	986	914	5,510	5,250	5,290	5,630
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	23.6	24.5	26.3	30.0	59.7	65.8	67.3	69.2	80.3	84.5	81.8	82.3
Chloride	mg/L	NA	250E	250 ^E	50	320,000	640,000	NC	NC	53.1	54.0	54.7	57.0	66.6	64.0	69.5	63.4	86.8	95.7	95.8	89.7
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000				
Sulfate	mg/L	NA	250E	250 ^E	500EE	600,000	1,200,000	NC	NC	42.5	39.7	37.2	41.2	148	143	226	219	< 1	< 1	< 1	< 1
Total Dissolved Solids	mg/L	NA	500E	500 ^E	500	NC	NC	NC	NC	246	253	262	275	518	530	600	629				
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	8.4	8.3	8.1	7.9	7.3	7.1	7.5	7.3	8.4	8.2	8.2	8.1
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1				
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	354	481	577	349	170	170	187	171	8	8	11	9
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC	40	42	49	44	100	102	138	134				
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1				
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	< 1	1	< 1	< 1	< 1	< 1	< 1	1	1	2	1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6				
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000				
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1				
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	15	19	20	21	28	35	34	35	84	83	79	83
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	26	28	30	21	10	9	20	12	< 5	< 5	< 5	< 5
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC		1.03		0.799		2.97						
Selenium	ug/L	50	50	50	5.0	62	120	55	120	1	1	2	1	2	2	2	2	2	2	4	3
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	157	103	225	130	2,690	2,440	3,630	3,640	136	227	253	244
Copper	ug/L	NA	1,000 ^E	1,000 ^E	20	33	66	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1				
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC	< 2	< 2	< 2	< 2	2	3	4	4				
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2	< 2
Zinc	ug/L	NA	2,400	5,000E	260	260	520	NC	NC	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10				

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.

*** - Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 - Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^A} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

- If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway

per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.

E - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

								Sa	mple Location:		MM	/-03			MW	/-06			MM	/-08	
									Sample Date:	7/27/2021	10/4/2021	2/28/2022	5/2/2022	7/27/2021	10/4/2021	2/28/2022	5/2/2022	7/27/2021	10/4/2021	2/28/2022	5/2/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^												
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	8,770	9,150	9,120	8,580	1,050	998	745	1,020	4,130	4,700	4,850	4,450
Calcium	mg/L	NA	NC	NC	500 ^{EE}	NC	NC	NC	NC	114	133	131	124	106	103	110	158	191	186	177	160
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	74.2	72.0	75.5	85.3	22.1	17.9	7.73	13.3	54.4	53.6	53.8	51.4
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Sulfate	mg/L	NA	250 ^E	250 ^E	500 ^{EE}	600,000	1,200,000	NC	NC	< 1	2.24	< 1	< 1	105	86.7	80.3	190	333	270	274	241
Total Dissolved Solids	mg/L	NA	500 ^E	500 ^E	500	NC	NC	NC	NC												
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.9	7.8	8.2	7.6	7.3	7.3	7.1	7.0	7.1	7.1	7.0	7.1
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC												
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	3	4	3	4	186	207	124	111	84	104	97	100
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC												
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC												
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC												
Chromium	ug/L	100	100	100	11	16	32	NC	NC	2	2	2	2	1	1	2	2	1	1	2	< 1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC												
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC												
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	92	96	89	92	49	49	34	52	113	109	98	111
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC												
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5	< 5	< 5	10	11	< 5	< 5	32	31	32	21
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC												
Selenium	ug/L	50	50	50	5.0	62	120	55	120	3	4	2	3	< 1	< 1	< 1	1	2	3	2	2
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC												
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000 ^{EE}	NC	NC	NC	NC	149	222	141	386	1,560	1,490	1,630	2,670	9,150	9,650	9,150	8,550
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC												
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC												
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC												
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Zinc	ua/L	NA	2.400	5,000E	260	260	520	NC	NC												

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^A} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.

E - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

								Sa	mple Location:		MM	V-10			MM	/-12			MV	V-14	
									Sample Date:	7/27/2021	10/4/2021	2/28/2022	5/2/2022	7/27/2021	10/4/2021	2/28/2022	5/2/2022	7/27/2021	10/6/2021	2/28/2022	5/2/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^												
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	5,210	5,130	4,680	5,550	3,030	3,710	3,850	3,870	1,300	2,640	2,760	2,980
Calcium	mg/L	NA	NC	NC	500 ^{EE}	NC	NC	NC	NC	159	173	181	180	179	198	178	201	366	254	221	191
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	69.4	78.6	62.6	62.4	65.9	58.2	71.5	59.2	29	56.7	77.1	63.7
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	54.9	91.2	119	77.2	201	252	239	240	1,220	549	390	256
Total Dissolved Solids	mg/L	NA	500 ^E	500 ^E	500	NC	NC	NC	NC												
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.3	7.2	7.2	7.2	7.3	7.1	7.2	7.2	7.0	6.9	7.1	7.1
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC												
Arsenic	ug/L	211	10	10	10	340	680	100	680	589	1,040	616	621	384	403	537	389	47	197	358	352
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC												
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC												
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC												
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	1	1	< 1	< 1	< 1	< 1	< 1	< 1	1	1	1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC												
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC												
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	136	135	123	137	111	111	105	110	109	102	90	86
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC												
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5	12	5	7	15	7	10	19	7	27	13
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC												
Selenium	ug/L	50	50	50	5.0	62	120	55	120	< 1	5	3	3	2	4	4	5	8	7	10	10
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC												
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000 ^{EE}	NC	NC	NC	NC	2,780	5,990	5,120	5,150	2,900	2,520	2,380	3,140	245	1,630	3,270	2,770
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC												
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC												
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC												
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Zinc	ua/L	NA	2.400	5,000E	260	260	520	NC	NC												

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.

*** - Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 - Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^A} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.

 $^{\mathsf{E}}$ - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

								Sa	mple Location:		MV	V-16			MM	1-22			MM	1-23	
									Sample Date:	7/27/2021	10/6/2021	2/28/2022	5/2/2022	7/28/2021	10/6/2021	3/1/2022	5/3/2022	7/28/2021	10/6/2021	3/1/2022	5/3/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^		1.0/0/2021		0,2,2022			0, 1,2022	0,0,2022			0, 1, 2022	
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	891	1,310	1,110	1,120	6,900	6,800	6,590	7,450	6,620	7,030	6,700	6,840
Calcium	mg/L	NA	NC	NC	500 ^{EE}	NC	NC	NC	NC	243	304	381	378	69.7	77.6	87.8	75.4	147	150	150	154
Chloride	mg/L	NA	250E	250E	50	320,000	640,000	NC	NC	53.5	83.6	122	105	91.2	95.8	100	96.6	56.6	57.4	57.8	57.6
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Sulfate	mg/L	NA	250E	250E	500 ^{EE}	600,000	1,200,000	NC	NC	607	968	1,360	1,240	169	172	195	176	208	199	271	269
Total Dissolved Solids	mg/L	NA	500E	500E	500	NC	NC	NC	NC							565	535			948	898
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.3	7.1	7.2	7.2	7.5	6.6	6.4	7.2	6.8	6.9	7.0	6.9
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC												
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	1	2	3	2	385	552	656	574	29	64	32	92
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC												
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC												
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC												
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	1	1	< 1	< 1	< 1	2	< 1	< 1	3	2	11
Cobalt	ug/L	15	40	100	100	370	740	NC	NC												
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC												
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	81	117	115	127	134	129	106	133	125	129	94	112
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC												
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	20	32	18	20	1,070	1,110	1,380	1,180	49	57	45	53
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC												
Selenium	ug/L	50	50	50	5.0	62	120	55	120	4	3	6	7	2	2	4	3	2	4	3	5
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC												
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	302	331	209	268	< 20	162	746	263	20,700	30,600	31,800	48,500
Copper	ug/L	NA	1,000⋿	1,000E	20	33	66	NC	NC												
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC												
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC												
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	3	8	3	< 2	9	4	33
Zinc	ua/L	NA	2.400	5,000E	260	260	520	NC	NC												

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.

*** - Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 - Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^^} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.

 $^{\mathsf{E}}$ - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

								Sa	mple Location:		OV	V-10			OW	/-11			OM	/-12	
									Sample Date:	7/27/2021	10/7/2021	2/28/2022	5/3/2022	7/27/2021	10/7/2021	3/1/2022	5/3/2022	7/27/2021	10/7/2021	2/28/2022	5/3/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^		1										
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	872	1,400	955	1,180	3,190	3,580	3,310	3,370	721	1,060	914	917
Calcium	mg/L	NA	NC	NC	500 ^{EE}	NC	NC	NC	NC	127	140	90.7	98.3	9.32	9.44	7.97	8.26	62.4	91.8	72.5	90.3
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	86.2	87.5	51.7	68.7	63.9	64.6	61.7	61.3	57.6	56.1	57.8	64.9
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	2,610	3,310	3,250	2,790	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	250 ^E	250 ^E	500 ^{EE}	600,000	1,200,000	NC	NC	122	70.2	3.51	2.32	25.8	23.9	22	20.7	118	173	150	206
Total Dissolved Solids	mg/L	NA	500 ^E	500 ^E	500	NC	NC	NC	NC	626	668	448	545	205	227	219	229	443	585	533	663
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.0	7.0	7.3	7.1	9.4	9.5	9.5	9.5	7.1	7.2	7.3	7.1
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC	< 1	< 1	< 1	< 1	3	3	4	2	< 1	< 1	< 1	< 1
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	4	4	6	2	497	738	783	671	86	105	120	93
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC	169	167	157	136	33	25	30	27	56	81	87	98
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC	< 1	<1	< 1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.3	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	16	32	NC	NC	1	1	2	2	< 1	3	< 1	< 1	< 1	< 1	< 1	< 1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	2,610	3,310	3,250	2,790	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	23	38	19	30	< 10	< 10	< 10	< 10	20	32	33	35
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	9	< 5	< 5	< 5	253	236	231	197	16	17	17	14
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC		1.77		< 0.632		1.41		< 0.525		2.08		0.620
Selenium	ug/L	50	50	50	5.0	62	120	55	120	14	4	3	2	5	5	6	3	1	2	2	1
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	1,230	1,730	1,200	4,140	128	64	82	45	3,470	6,110	4,830	5,790
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC	3	2	2	2	2	< 1	< 1	2	< 1	< 1	< 1	1
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC	5	8	6	4	3	5	3	2	2	5	4	4
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	11	3	8	3	1,120	1,000	1,150	660	< 2	< 2	< 2	< 2
Zinc	ua/L	NA	2.400	5.000E	260	260	520	NC	NC	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.

*** - Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 - Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^^} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

- If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway

per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.

E - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

Table 2 Summary of Groundwater Sampling Results (Analytical): July 2021 - May 2022 DE Karn Nature and Extent GSI Monitoring Locations Essexville, Michigan

								Sa	mple Location:		T1-	3GSI			T2-	3GSI			T3-	3GSI	
									Sample Date:	7/26/2021	10/5/2021	2/28/2022	5/4/2022	7/26/201	10/5/2021	2/28/2022	5/4/2022	7/26/201	10/5/2021	2/28/2022	5/4/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^												
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	53	58		43	2,520	5,320		4,030	372	261		65
Calcium	mg/L	NA	NC	NC	500 ^{EE}	NC	NC	NC	NC	52.1	52.4		68.5	214	262		212	115	82.6		63.5
Chloride	mg/L	NA	250E	250E	50	320,000	640,000	NC	NC	54.2	41.4		45.6	3.81	66.8		49.2	50.5	37.3		46.5
Sulfate	mg/L	NA	250E	250E	500 ^{EE}	600,000	1,200,000	NC	NC	24.8	24		24.2	66.8	30.3		121	< 1	< 1		25
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.8	8.0		7.6	6.8	7.0		6.7	7.1	6.8		7.2
Appendix IV																					
Arsenic	ug/L	21 ¹	10	10	10	340	680	100 ²	680	3	2		2	12	18		< 1	65	34		8
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	< 1		1	3	2		2	3	2		2
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	< 10	< 10		< 10	110	136		102	16	11		< 10
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5		< 5	< 5	< 5		< 5	< 5	< 5		< 5
Selenium	ug/L	50	50	50	5.0	62	120	NC	NC	1	< 1		2	< 1	4		2	2	1		1
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	55	< 20		911	9,600	9,360		161	12,000	16,200		2,700
Vanadium	ug/L	NA	4.5	62	27	260	520	NC	NC	< 2	< 2		< 2	< 2	2		< 2	3	< 2		< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.

*** - Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 - Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and

SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^A} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

E - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result

Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

Transect samples were unable to be collected during the first quarter 2022 event due to site conditions.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated January 14, 2019.

² - Compliance demonstrated on a flux basis.

Table 2 Summary of Groundwater Sampling Results (Analytical): July 2021 - May 2022 DE Karn Nature and Extent GSI Monitoring Locations Essexville, Michigan

								Sa	mple Location:		T4-3	BGSI			T5-3	3GSI			T6-3	3GSI	
									Sample Date:	7/26/2021	10/5/2021	2/28/2022	5/4/2022	7/27/2021	10/5/2021	2/28/2022	5/4/2022	7/27/2021	10/5/2021	2/28/2022	5/4/2022
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^						-				-		
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	305	248		2,300	2,650	1,400		288	206	136		187
Calcium	mg/L	NA	NC	NC	500 ^{EE}	NC	NC	NC	NC	112	133		72.5	278	69.6		231	132	321		73.6
Chloride	mg/L	NA	250E	250E	50	320,000	640,000	NC	NC	46.8	67.9		42.2	80.5	40.7		61	33.4	49.4		32
Sulfate	mg/L	NA	250E	250E	500 ^{EE}	600,000	1,200,000	NC	NC	< 1	< 1		2.8	452	9.72		410	3.42	882		72.4
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.3	7.1		7.3	7.0	7.4		7.3	6.4	6.9		7.6
Appendix IV																					
Arsenic	ug/L	21¹	10	10	10	340	680	100²	680	128	141		14	501	482		352	4	2		< 1
Chromium	ug/L	100	100	100	11	16	32	NC	NC	2	3		1	4	2		1	2	4		1
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	23	25		36	92	53		49	25	16		18
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5		< 5	< 5	< 5		< 5	< 5	< 5		5
Selenium	ug/L	50	50	50	5.0	62	120	NC	NC	2	3		2	3	< 1		3	< 1	< 1		2
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	17,800	33,700		743	1,390	157		333	16,900	1,070		156
Vanadium	ug/L	NA	4.5	62	27	260	520	NC	NC	2	< 2		< 2	4	< 2		< 2	2	2		< 2

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

* - GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.

** - Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.

^ - Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.

*** - Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 - Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and

SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.

^{^A} - Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.

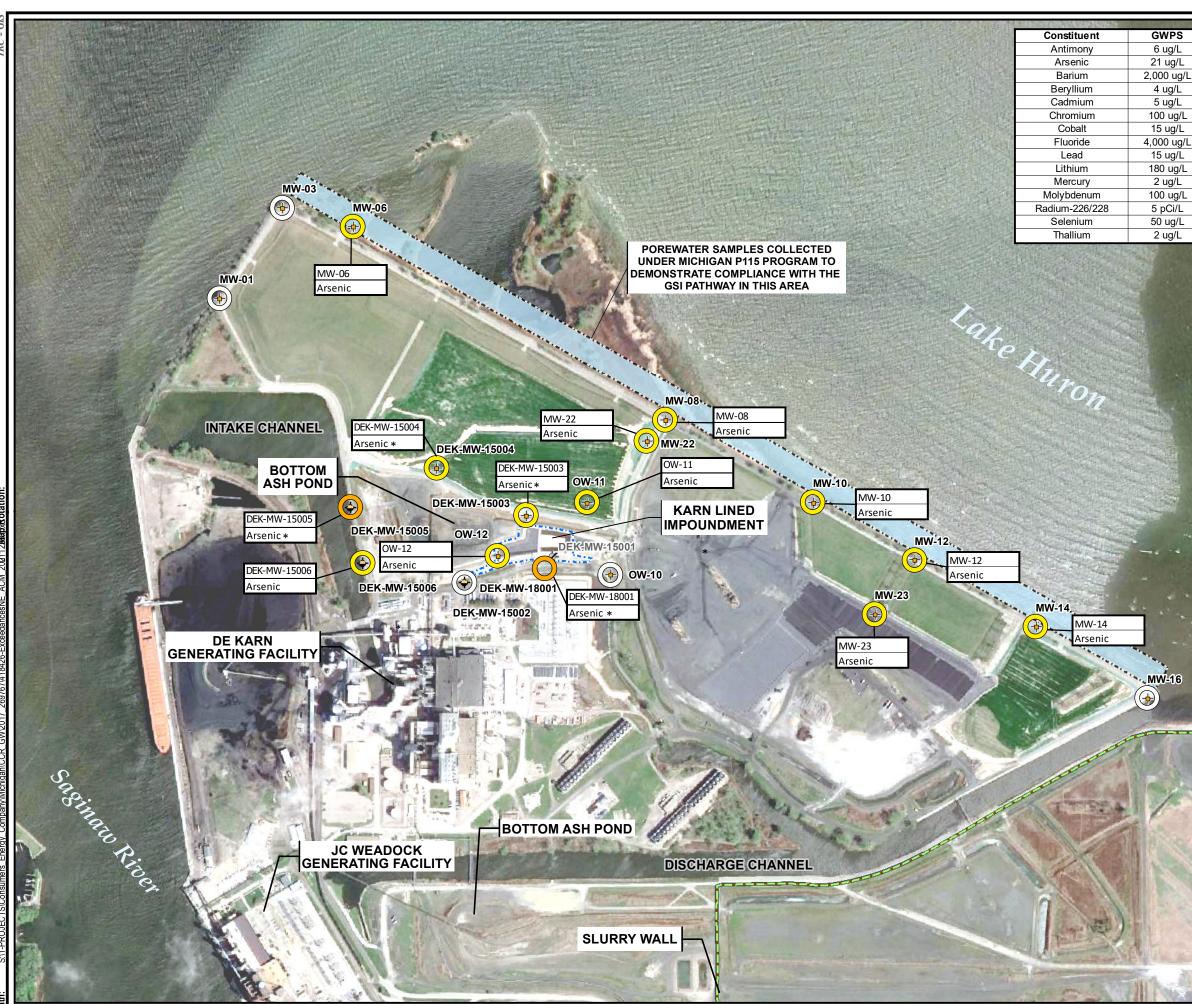
E - Criterion is the aesthetic drinking water value per footnote {E}.

EE - Criterion is based on the total dissolved solids GSI value per footnote {EE}.

BOLD font denotes concentrations detected above laboratory reporting limits.

Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result

Indicates an exceedance of acute-based GSI criteria. Result


All metals were analyzed as total unless otherwise specified.

Transect samples were unable to be collected during the first quarter 2022 event due to site conditions.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated January 14, 2019.

² - Compliance demonstrated on a flux basis.

Figures

And Street and And
GWPS
6 ug/L
21 ug/L
2,000 ug/L
4 ug/L
5 ug/L
100 ug/L
15 ug/L
4,000 ug/L
15 ug/L
180 ug/L
2 ug/L
100 ug/L
5 pCi/L
50 ug/L
2 ug/L

LEGEND

-

 \bigcirc

- DEK BOTTOM ASH POND MONITORING WELL
- DECOMMISSIONED MONITORING WELL
- NATURE AND EXTENT WELL
- NO EXCEEDANCES
- TWO OR MORE EXCEEDANCES (NOTES 4 + 5)
- STATISTICALLY SIGNIFICANT GWPS EXCEEDANCE (NOTE 6)
- SLURRY WALL (APPROXIMATE)

*

LINED IMPOUNDMENT (COVENANT BOUNDARY)

- POREWATER SAMPLING AREA
- GWPS EXCEEDANCE TRIGGERED ASSESSMENT OF CORRECTIVE MEASURES PURSUANT TO §257.96

WELL ID	
CONSTITUENT(S)	
EXCEEDING GWPS	

NOTES

- BASE MAP IMAGERY FROM GOOGLE EARTH PRO, 2018. 1
- MONITORING WELL AND SLURRY WALL LOCATIONS PROVIDED 2. BY CEC; SG21733SHT2 REVB.DWG DATED 11/21/2018.
- GWPS (GROUNDWATER PROTECTION STANDARD) IS THE 3. HIGHER OF THE MAXIMUM CONTAMINANT LEVEL (MCL)/REGIONAL SCREENING LEVEL FROM 83 FR 36435 (RSL) ÀND ÚPPER TOLERANCE LIMIT (UTL) AS ESTABLISHED IN TRC'S TECHNICAL MEMORANDUM DATED OCTOBER 15, 2018.
- GROUNDWATER DATA FROM JULY 2021 TO MAY 2022 ARE SCREENED AGAINST THE GWPS FOR EVALUATION PURPOSES ONLY. AN EXCEEDANCE IS DEFINED AS A SINGLE DETECTION ABOVE THE GWPS, HOWEVER, CONFIDENCE INTERVALS WILL BE USED TO DETERMINE COMPLIANCE PER THE CCR RULES.
- AN EXCEEDANCE OF THE GWPS DOES NOT INDICATE UNACCEPTABLE RISK FROM GROUNDWATER EXPOSURE; THE DRINKING WATER PATHWAY IS NOT COMPLETE ON THE PROPERTY, GROUNDWATER CONDITIONS CONTINUE TO BE MONITORED TO INFORM THE DEK BOTTOM ASH POND REMEDY SELECTION.
- LOWER CONFIDENCE LIMIT IS ABOVE GWPS. 6.

0	600	1,200 Feet			
1 " = 600 ' 1:7,200		Feel			
PROJECT:	DE KARN	ENERGY COMP/ POWER PLANT LLE, MICHIGAN	ANY		
NATURE AND EXTENT SUMMARY GWPS EXCEEDANCES					
DRAWN BY:	A. FOJTIK	PROJ NO.:	418425.00		
CHECKED BY:	K. LOWERY				
APPROVED BY:	D. LITZ	FIGURE 1 1540 Eisenhower Place Ann Arbor, MI 48108-3284 Phone: 734.971.7080 www.trccompanies.com			
DATE:	JULY 2022				
? T	RC				
FILE NO.:	418426-ExceedancesNE_ACM_20211229.mx				

Coordinate System: NAD 1983 StatePlane Michigan South FIPS 2113 Feet Intl (F

Plot Date: 7/22/2022, 09:11:51 AM by RSUEMNICHT - LAYOUT: ANSI B(11"X17")

LEGEND

• 0

 \bigcirc

 \bigcirc

- DECOMMISSIONED MONITORING WELL
- + NATURE AND EXTENT WELL
 - GSI TRANSECT LOCATION/POREWATER SAMPLE

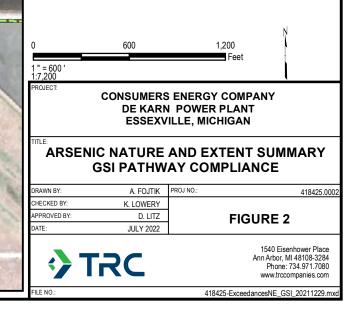
NO EXCEEDANCES

EXCEEDS CHRONIC MIXING ZONE GSI CRITERION (NOTES 3 + 4)

EXCEEDS ACUTE MIXING ZONE GSI CRITERION (FAV) (NOTES 3 + 4)

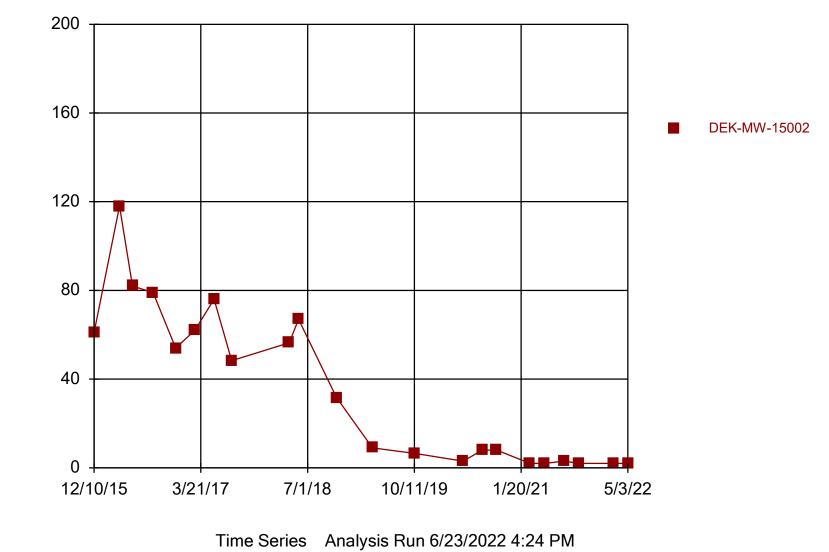
SLURRY WALL (APPROXIMATE)

LINED IMPOUNDMENT (COVENANT BOUNDARY)


POREWATER SAMPLING AREA

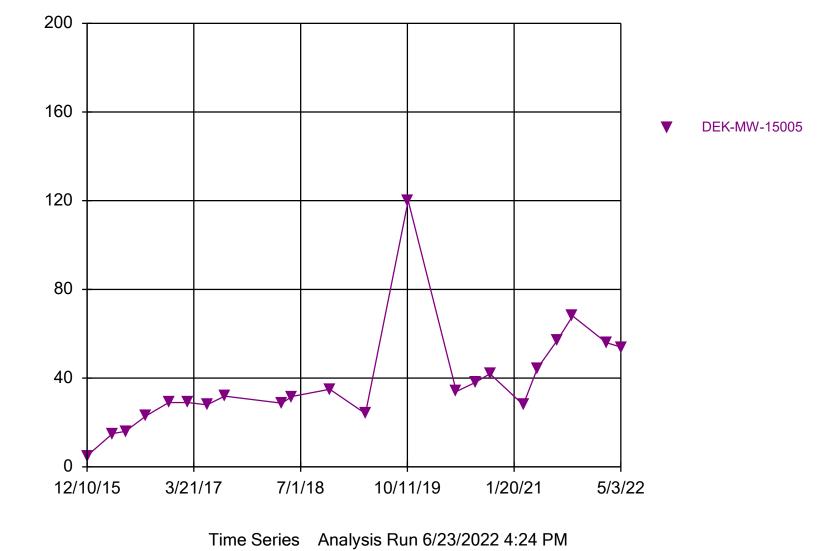
* GROUNDWATER PROTECTION STANDARD (GWPS) * EXCEEDANCE TRIGGERED ASSESSMENT OF CORRECTIVE MEASURES PURSUANT TO §257.96

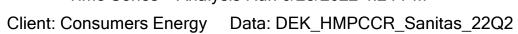
WELL ID CONSTITUENT(S) EXCEEDING GSI

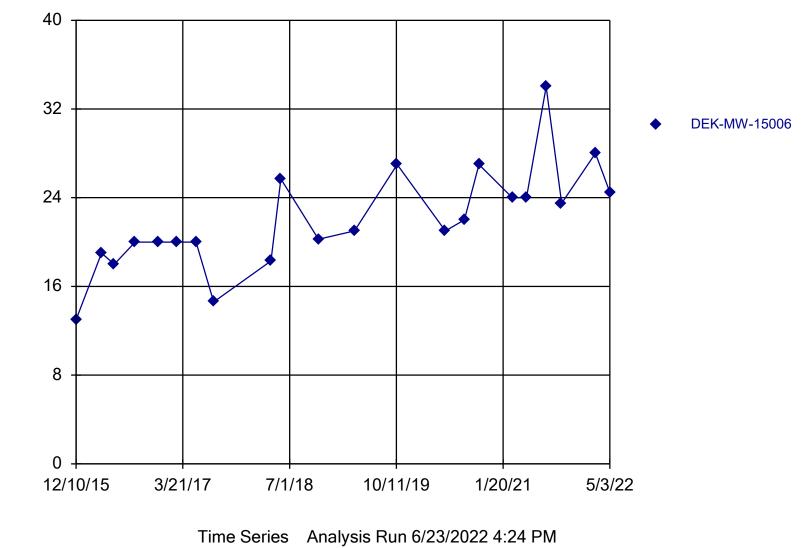

<u>NOTES</u>

- 1. BASE MAP IMAGERY FROM GOOGLE EARTH PRO, 2018.
- 2. MONITORING WELL AND SLURRY WALL LOCATIONS PROVIDED BY CEC; SG21733SHT2 REVB.DWG DATED 11/21/2018.
- MIXING ZONE GROUNDWATER SURFACE WATER INTERFACE (GSI) CRITERIA FROM MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY (MDEQ) APPROVAL LETTER DATED DECEMBER 23, 2015.
- 4. GROUNDWATER CONCENTRATION DATA FROM JULY 2021 THROUGH MAY 2022 ARE SCREENED AGAINST THE MIXING ZONE CRITERIA. AN EXCEEDANCE IS DEFINED AS TWO CONSECUTIVE DETECTIONS ABOVE CRITERIA. COMPLIANCE WITH THE CHRONIC MIXING ZONE CRITERIA CAN BE DEMONSTRATED ON A MASS FLUX BASIS.

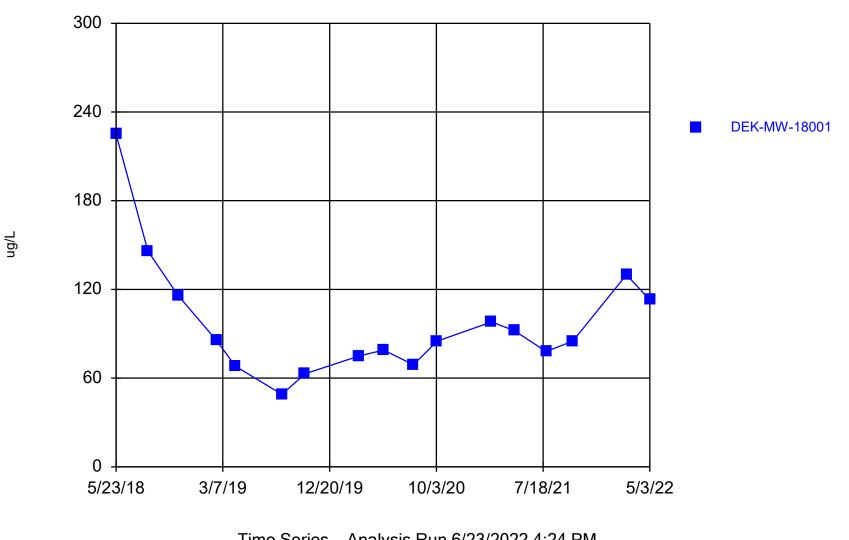
Attachment A Trend Evaluation ng/L

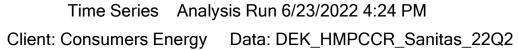

Arsenic, Total

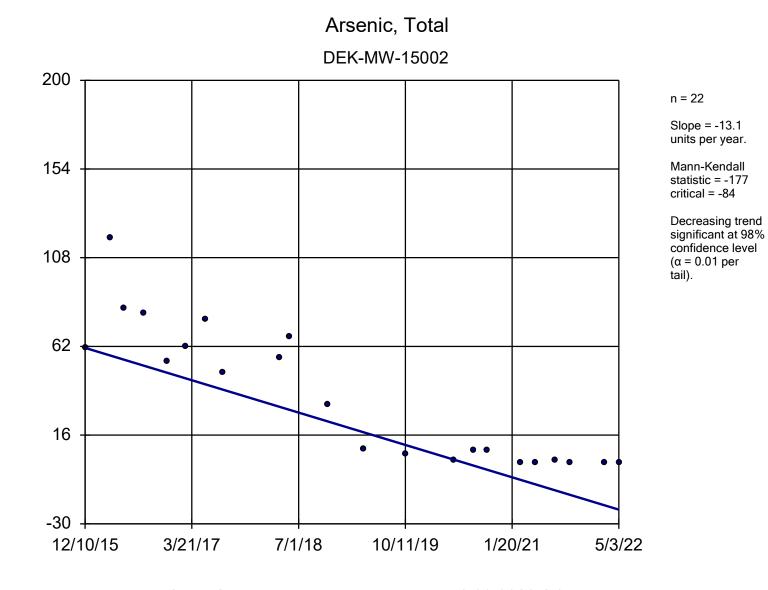



ng/L

Arsenic, Total


Arsenic, Total




Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

ng/L

Arsenic, Total

Sen's Slope Estimator Analysis Run 6/23/2022 4:27 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_22Q2

ng/L