

July 21, 2023

TRANSMITTAL VIA EMAIL 07/21/2023

Ms. Lori Babcock
Michigan Department of Environment, Great Lakes, and Energy
Materials Management Division
Bay City District Office
401 Ketchum St, Suite B
Bay City, Michigan 48708

SUBJECT: Semiannual Progress Report – Selection of Final Remedy pursuant to §257.97(a)

DE Karn Bottom Ash Pond Coal Combustion Residuals (CCR) Unit

Dear Ms. Babcock,

This Semiannual Progress Report, prepared as a requirement of §257.97(a) of the Federal Coal Combustion Residual (CCR) Rule, describes progress towards selecting and implementing the final remedy for the Karn Bottom Ash Pond after the completion of the <u>Assessment of Corrective Measures, DE Karn Bottom Ash Pond Coal Combustion Residual Unit</u>, dated September 11, 2019 (Karn Bottom Ash Pond ACM) (TRC, 2019). Groundwater management alternatives considered to be technically feasible following source removal activities that could potentially address the residual arsenic under <u>known</u> groundwater conditions were identified in the report as: 1) Source removal with post-remedy monitoring, 2) Source removal with groundwater capture/control, 3) Source removal with impermeable barrier, 4) Source removal with active geochemical sequestration, and 5) Source removal with passive geochemical sequestration.

Karn Bottom Ash Pond and Landfill Closure Activities

Consumers Energy prepared and submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) a closure work plan for the Karn Bottom Ash Pond (Karn Bottom Ash Pond Work Plan) and a Response Action Plan developed in accordance with Part 115 dated November 30, 2018 and March 15, 2019, respectively. These plans were developed in anticipation of supporting the Assessment of Corrective Measures that would be necessary for evaluating and selecting a final remedy for the Karn Bottom Ash Pond after Consumers Energy provided notification of exceeding Groundwater Protection Standard (GWPS) per §257.95(g) that arsenic was present at statistically significant levels above the federal GWPS in five of six downgradient wells at the Karn Bottom Ash Pond.

EGLE approved the Karn Bottom Ash Pond Work Plan on December 20, 2019 based on expectation that a report documenting the removal activities and certifying solid waste has been removed in accordance with the work plan would be submitted at the completion of activities. Consumers Energy submitted for review and approval, <u>D.E. Karn Generating Facility Bottom Ash Pond CCR Removal Documentation Report</u> (Karn Bottom Ash Pond Closure Report) on October 30, 2019 to satisfy requirements for completing the removal of solid waste so that

obtaining a solid waste operating license was unnecessary. The certification of solid waste removal was approved by EGLE on December 1, 2020. Subsequently, EGLE approved the Response Action Plan on May 14, 2020 based on submittal of the Assessment of Corrective Measures.

Closure by removal has been achieved pursuant to 324.11519b(9)(b) by documenting the removal of sources of contamination under the response action plan. However, concentrations of arsenic in groundwater exceeding the GWPS pursuant to 40 CFR 257.95(h) have persisted within the compliance monitoring well network after the source removal activities were completed. EGLE has approved a remedy consistent with R 299.4444 and R 299.4445 of the Part 115 rules through the approval of the DE Karn Hydrogeological Monitoring Plan, Rev. 03 that includes the determination of Groundwater Not in an Aquifer 0and groundwater mixing zone authorization. Additional steps needed to address residual groundwater contamination are discussed in the observations and results sections below.

Karn Bottom Ash Pond Assessment Activities for this Period

Consumers Energy instrumented the six new monitoring wells constructed within the former Karn Bottom Ash Pond area during the first week of March 2022 and the existing, certified Groundwater Monitoring System with mini-Troll™ pressure transducers that started collecting high-resolution groundwater elevation data starting on April 7 2023. These data will be summarized in the 2023 Annual Groundwater Monitoring and Corrective Action Report to be submitted in January 2024. Based on the evaluation of data from the May 2023 sampling event, the following general observations were noted:

- Groundwater flow and direction was found to confirm the lack of radial flow within the former bottom ash pond area and helped to refine the extent of the new potentiometric high;
- ➤ The Karn 1&2 Electrical Generating Units that contribute process water discharges to the unlined ditch located immediately northeast of the former bottom ash pond ceased operation on May 30, 2023; and
- ➤ The distribution of arsenic was confirmed to be below the site-specific chronic concentration of 100 ug/L at all six locations; however, several monitoring wells had arsenic observed at concentrations above the site-specific GWPS of 21 ug/L.

Results of May 2023 Sampling Event

Statistical analysis from the May 2023 semiannual groundwater monitoring event verified that the only constituent of concern that is present at statistically significant levels above the established GWPS is arsenic. Results are presented in <u>May 2023 Assessment Monitoring Data Summary and Statistical Evaluation Consumers Energy, DE Karn Site, Bottom Ash Pond CCR Unit</u> (TRC, 2023a). Additionally, monitoring performed under the Karn Groundwater Surface-Water Interface (GSI) Compliance Plan

DE Karn Semiannual Progress Report Ms. Lori Babcock July 21, 2023

demonstrates protection of human health and the environment with criteria determined to be protective at the point of exposure. These results are presented in the <u>Second Semiannual 2023 Nature</u> <u>and Extent Data Summary, DE Karn Bottom Ash Pond, Consumers Energy</u> (N&E Summary) (TRC, 2023b).

Significant observations from the event summaries are as follows:

- ➤ Groundwater potentiometric surface within the area of the former Karn Bottom Ash Pond exhibits flow primarily moving west towards the intake channel, or south towards the Karn Generating Plant rather than radially from within the pond area;
- Regionally, radial flow is observed with a new "high" point shifted to the east of the former Karn Bottom Ash Pond geographically centered between monitoring wells DEK-MW-15003 and OW-12;
- ➤ Based on changes in the groundwater potentiometric surface, Monitoring Wells DEK-MW-15003 and DEK-MW-15004 are no longer downgradient from the CCR unit and indicative of determining attainment of GWPS for arsenic or detecting new releases from the former Karn Bottom Ash Pond;
- No additional Appendix IV constituents have been observed at statistically significant levels above GWPS for the Karn Bottom Ash Pond groundwater monitoring system;
- ➤ Redox conditions continue to demonstrate that groundwater redox chemistry equilibrium is continuing to shift back to pre-source removal conditions as reflected in the trends for dissolved oxygen reverting back to primarily anoxic concentrations (e.g. less than 0.5 mg/L) and electrical potential primarily returning to negative potential; and
- Arsenic concentrations at DEK-MW-15002 has a statistically significant decreasing trend based on the previous eight events and arsenic concentrations have been below the GWPS since April 2019.

Conclusions

Source removal activities for the Karn Bottom Ash Pond have been completed and documented in the Karn Bottom Ash Pond Closure Report submitted to EGLE on October 30, 2019. Improvements in groundwater quality have been observed in the groundwater monitoring system, but observations of ongoing changes in groundwater potentiometric surface that may influence groundwater flow characteristics and/or alter groundwater redox conditions at monitoring locations that could influence constituent concentrations, still require further evaluation before a final remedy can be selected. To aid in the further evaluation, Consumers Energy installed six additional monitoring wells within the former Karn Bottom Ash Pond area that were integrated into the 2022 sampling schedule. Additionally, these groundwater monitoring wells have been instrumented with mini-Trolls™ that measure the groundwater elevation to a calibrated datum on frequent basis to better understand the relationships between groundwater elevation and potential flux. Subsequent sampling events to include the

DE Karn Semiannual Progress Report Ms. Lori Babcock July 21, 2023

additional monitoring wells will inform the on-going improvements and retention of monitoring-only, passive, or active remedial options following the source removal. As conditions continue to be evaluated post-source removal, the drinking water and groundwater-surface water interface (GSI) pathway are protected by quarterly monitoring performed under the Michigan-approved hydrogeological monitoring plan that includes a GSI Compliance Monitoring Program.

The final remedy for the Karn Bottom Ash Pond will be formally selected per §257.97 and Michigan Solid Waste requirements once the selected option is reviewed and commented on by EGLE and a public meeting is conducted at least 30-days prior to the final selection as required under §257.96(e).

The next semiannual progress report will be submitted in six months by January 31, 2024. Please feel free to contact me with any questions or clarifications.

s. Legiolis).

Sincerely,

Harold D. Register, Jr., P.E.

Sr. Principal Environmental Engineer

Risk Management Phone: (517) 788-2982

Email: harold.registerjr@cmsenergy.com

cc: Mr. John Ozoga, EGLE Bay City District Office

Mr. Mike Quigg, EGLE Bay City District Office

Ms. Margie Ring, EGLE Lansing Office Mr. Jim Arduin, EGLE Lansing Office Mr. Joe Firlit, Consumers Energy

Ms. Darby Litz, TRC

Enclosure: May 2023 Assessment Monitoring Data Summary and Statistical Evaluation Consumers

Energy, DE Karn Site, Bottom Ash Pond CCR Unit. (TRC, July 29, 2023a).

First Semiannual 2023 Nature and Extent Data Summary, DE Karn Bottom Ash Pond,

Consumers Energy. (TRC, July 29, 2023b).

Enclosures

May 2023 Assessment Monitoring Data Summary and Statistical Evaluation

DE Karn, Bottom Ash Pond CCR Unit

Essexville, Michigan

July 2023

Darby Litz/ Hydrogeologist/Project Manager **Prepared For:**

Consumers Energy Company

Prepared By:

TRC 1540 Eisenhower Place Ann Arbor, Michigan 48108

Andrew Whaley Project Geologist

TABLE OF CONTENTS

1.0	Intro	duction	.1
	1.1	Program Summary	. 1
	1.2	Site Overview	.3
	1.3	Geology/Hydrogeology	. 4
2.0	Grou	ındwater Monitoring	.5
	2.1	Monitoring Well Network	.5
	2.2	May 2023 Assessment Monitoring	.5
		2.2.1 Groundwater Flow Rate and Direction	. 6
		2.2.2 Data Quality	.7
3.0	Asse	essment Monitoring Statistical Evaluation	.8
	3.1	Establishing Groundwater Protection Standards	.8
	3.2	Data Comparison to Groundwater Protection Standards	. 8
4.0	Conc	clusions and Recommendations	10
5.0	Refe	rences	11
TAB	LES		
Table		Summary of Groundwater Elevation Data	
Table Table		Summary of Field Parameters Summary of Background Wells Groundwater Sampling Results (Analytical)	
Table		Summary of Groundwater Sampling Results (Analytical)	
Table	5	Summary of Assessment Monitoring Statistical Evaluation – May 2023	
FIGU	JRES		
Figur		Site Location Map	
Figure Figure		Karn and Weadock Complex Map Shallow Groundwater Contour Map – May 2023	
i igui	0 0	Chanow Croundwater Contour Map May 2023	
APP	ENDI	CES	
Appe	ndix A ndix B ndix C	3 Statistical Evaluation of May 2023 Assessment Monitoring Sampling Event	

1.0 Introduction

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) (the CCR Rule), as amended. Standards for groundwater monitoring and corrective action codified in the CCR Rule (40 CFR 257.90 – 257.98) apply to the DE Karn Bottom Ash Pond CCR Unit (Karn Bottom Ash Pond).

Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule for the Karn Bottom Ash Pond located in Essexville, Michigan. This report has been prepared to provide the summary of the May 2023 assessment groundwater monitoring results, data quality review, and statistical data evaluation for the Karn Bottom Ash Pond groundwater monitoring system.

1.1 Program Summary

Groundwater monitoring for the Karn Bottom Ash Pond commenced after the installation of the monitoring well network in December 2015 to establish background conditions. Detection monitoring was initiated on October 17, 2017 in conformance with the self-implementing schedule in the CCR Rule.

Consumers Energy first reported the potential for statistically significant increases (SSIs) for Appendix III constituents in the *Annual Groundwater Monitoring Report DE Karn Power Plant Bottom Ash Pond CCR Unit* (TRC, January 2018). The statistical evaluation of the Appendix III indicator parameters confirming statistically significant increases (SSIs) over background were as follows:

- Boron at DEK-MW-15001, DEK-MW-15002, DEK-MW-15003, DEK-MW-15004, DEK-MW-15005, DEK-MW-15006;
- Fluoride at DEK-MW-15001;
- Field pH at DEK-MW-15001, DEK-MW-15002, DEK-MW-15003, DEK-MW-15005, DEK-MW-15006; and
- Sulfate at DEK-MW-15006.

On April 25, 2018, Consumers Energy entered assessment monitoring upon determining that an Alternate Source Demonstration for the Appendix III constituents was not successful. After subsequent sampling for Appendix IV constituents, Consumers Energy provided notification that arsenic was present at statistically significant levels above the Ground Water Protection Standards (GWPS) established at 21 ug/L (Consumers Energy, January 2019) in five of the six downgradient monitoring wells at the Karn Bottom Ash Pond as follows:

Arsenic at DEK-MW-15001, DEK-MW-15002, DEK-MW-15003, DEK-MW-15004, and DEK-MW-15005.

The notification of the GWPS exceedance on January 14, 2019 was followed up with a Response Action Plan submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on March 15, 2019 laying out the preliminary understanding of water quality and

actions that were underway to mitigate or eliminate unacceptable risk associated with the identified release from the CCR unit. The *Assessment of Corrective Measures* (ACM) (TRC, September 2019) was initiated on April 14, 2019 and submitted on September 11, 2019 in accordance with the schedule in §257.96 and the requirements of the Response Action Plan.

The ACM documents that the groundwater nature and extent has been defined, as required in §257.95(g)(1). Although arsenic concentrations exceed the GWPS in on-site groundwater monitoring locations, arsenic is delineated within the limits of the property owned by Consumers Energy and there are **currently no adverse effects on human health or the environment** from either surface water or groundwater due to CCR management at the Karn Bottom Ash Pond. Per §257.96(b), Consumers Energy is continuing to monitor groundwater in accordance with the assessment monitoring program as specified in §257.95.

Evaluation of groundwater under the CCR Rule focused on the following constituents that were collected *unfiltered* in the field:

CCR Rule Monitoring Constituents

CON Naic Monitoring Constituents								
Appendix III	Apper	ndix IV						
Boron	Antimony	Mercury						
Calcium	Arsenic	Molybdenum						
Chloride	Barium	Radium 226/228						
Fluoride	Beryllium	Selenium						
рН	Cadmium	Thallium						
Sulfate	Chromium							
Total Dissolved Solids (TDS)	Cobalt							
	Fluoride							
	Lead							
	Lithium							

Prior to remedy selection, Consumers Energy will also collect a sufficient number of samples to evaluate Michigan state-specific constituents as follows:

Additional Monitoring Constituents (Michigan Part 115/PA 640)

Detection Monitoring	Assessment Monitoring
Iron	Copper
	Nickel
	Silver
	Vanadium
	Zinc

Consumers Energy will continue to evaluate corrective measures for the Karn Bottom Ash Pond per §257.96 and §257.97 and is continuing semiannual assessment monitoring in accordance with §257.95.

1.2 Site Overview

The Karn Bottom Ash Pond is located within the DE Karn Power Plant site, which is located north of the JC Weadock Power Plant, east of the Saginaw River, south and west of Saginaw Bay (Figure 1). Two coal-fired power generating units (Karn Units 1 & 2) began generating electricity in 1958 and 1959, respectively. Karn Units 3 & 4, co-located with the coal-fired generating units, are oil- and natural gas-fueled. Two other areas of coal ash management within the Karn site are the Karn Landfill and the Karn Lined Impoundment. The Karn Landfill has been certified closed and is now in post-closure care and is being monitored in accordance with the EGLE-approved *Hydrogeological Monitoring Plan, Rev. 3, DE Karn Solid Waste Disposal Area* (December 19, 2017). The Karn Lined Impoundment has been licensed to operate by the EGLE under Part 115 (License Number 9629) and is being monitored in accordance with the EGLE-approved *Karn Lined Impoundment Hydrogeological Monitoring Plan* (November 13, 2020). The locations of the Karn Landfill, the Karn Lined Impoundment, and the Karn Bottom Ash Pond are shown on Figure 2.

Previously, the Karn Bottom Ash Pond was used for wet ash dewatering and was the primary settling/detention structure for the National Pollutant Discharge Elimination System (NPDES) treatment system prior to discharge. Consumers Energy provided notification of initiation of closure on October 12, 2018 to implement the certified closure plan by removal of CCR under the self-implementing requirements and schedule of the CCR Rule. In preparation for removal of the Karn Bottom Ash Pond, a new lined impoundment (Karn Lined Impoundment) was constructed meeting the requirements of the CCR Rule and the operational needs at the Karn Power Plant. The Karn Lined Impoundment began receipt of CCR and non-CCR on June 7,

¹ On December 28, 2018, the State of Michigan enacted Public Act No. 640 of 2018 (PA 640) to amend the Natural Resources and Environmental Protection Act, also known as Part 115 of PA 451 of 1994, as amended (a.k.a., Michigan Part 115 Solid Waste Management). The December 2018 amendments to Part 115 were developed to provide the State of Michigan oversight of CCR impoundments and landfills and to better align existing state solid waste management rules and statutes with the CCR Rule.

2018 when it replaced the Karn Bottom Ash Pond operations.

Consumers Energy has completed the removal of CCR consistent with the timeline for closure of the Karn Bottom Ash Pond under the DE Karn Bottom Ash Pond Closure Plan (Golder, January 2018; Revised April 2018) and the CCR Rule's closure by removal provisions in §257.102(c). Consumers Energy ceased hydraulic loading to the Karn Bottom Ash Pond in June 2018 and allowed the area to dewater by gravity. Consumers Energy then operated a construction dewatering system to allow for excavation of the vertical and lateral extent of CCR that commenced on March 20, 2019 and has operated through the construction and restoration period. The excavation extended to six inches below known CCR elevations established from previous investigations. Excavated CCR has been placed in the neighboring Weadock Landfill that is constructed with of a fully encapsulation soil-bentonite slurry wall keyed into a competently confining clay unit. The Karn Bottom Ash Pond has been restored by backfilling and grading the surface with clean fill in accordance with the plan to promote stormwater drainage, minimize ponding of surface water, and to reduce the potential of infiltration and migration of residual arsenic and any future constituents of concern (COCs). With the CCR removal complete. Consumers Energy submitted the DE Karn Generating Facility Bottom Ash Pond CCR Removal Documentation Report (Golder, October 2019) on October 30, 2019. EGLE approved the documentation removal report on December 1, 2020. Groundwater conditions post-CCR removal continue to be monitored.

1.3 Geology/Hydrogeology

The majority of the Karn Bottom Ash Pond area is comprised of surficial CCR and sand fill. USGS topographic maps and aerial photographs dating back to 1938, in addition to field descriptions of subsurface soil at the site, indicate that the site was largely developed by reclaiming low-lands through construction of perimeter dikes and subsequent ash filling (AECOM, 2009).

The surficial fill consists of a mixture of varying percentages of ash, sand, and clay-rich fill ranging from 5 to 15 feet thick. Below the surficial fill, native alluvium and lacustrine soils are present at varying depths. Generally, there is a well graded sand unit present to depths of 10 to 30 feet below ground surface (ft bgs) overlying a clay till which is observed at depths ranging from 25 to 75 ft bgs. In general, the alluvium soils (sands) are deeper along the Saginaw River and there are shallower lacustrine deposits (clays, silts and sands deposited in or on the shores of glacial lakes) at other areas. The clay till acts as a hydraulic barrier that separates the shallow groundwater from the underlying sandstone. A sandstone unit, which is part of the Saginaw formation, was generally encountered at 80 to 90 ft bgs.

The DE Karn Power Plant site is bounded by several surface water features (Figure 1): the Saginaw River to the west, Saginaw Bay (Lake Huron) to the north and east, and a discharge channel to the south. In general, shallow groundwater is encountered at a similar or slightly higher elevation relative to the surrounding surface water features. Groundwater flow in the upper aquifer is largely controlled by the surface water elevations of Saginaw River and Saginaw Bay. In the vicinity of the Karn Bottom Ash Pond, the shallow groundwater flow is generally to the west, toward the intake channel.

2.0 Groundwater Monitoring

2.1 Monitoring Well Network

In accordance with 40 CFR 257.91, Consumers Energy established a groundwater monitoring system for the Karn Bottom Ash Pond, which consists of 10 monitoring wells (four background monitoring wells and six downgradient monitoring wells) that are screened in the uppermost aquifer. The monitoring well locations are shown on Figure 2.

Groundwater around the Karn Bottom Ash Pond was initially characterized as radial based on the eight initial background sampling events prior to commencing detection monitoring; therefore, the six downgradient wells (DEK-MW-15001 through DEK-MW-15006) that were installed and spaced along the circumference of the Karn Bottom Ash Pond continued to accurately represent the quality of groundwater passing the waste boundary that ensures detection of groundwater contamination such that all potential contaminant pathways are monitored. Monitoring well DEK-MW-15001 was decommissioned on April 18, 2018 due to the installation of the new Karn Lined Impoundment, which is a new double composite lined CCR unit constructed as a replacement to the Karn Bottom Ash Pond. Monitoring well DEK-MW-18001 was installed on May 21, 2018 approximately 80 feet southeast of DEK-MW-15001 to maintain the perimeter downgradient monitoring well network.

Groundwater flow direction near the former pond has changed as a result of the pond decommissioning and monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer located downgradient of the unit (Figure 3). These two wells were removed from the certified downgradient monitoring well network. The recertification was included in Appendix D of the October 2021 Assessment Monitoring Data Summary and Statistical Evaluation (TRC, January 2022).

Four monitoring wells located south of the Karn Bottom Ash Pond on the JC Weadock Power Plant site provide data on background groundwater quality that has not been affected by the CCR unit (MW-15002, MW-15008, MW-15016, and MW-15019). Analysis for the establishment of these wells as background is detailed in the *Groundwater Statistical Evaluation Plan* for the Karn Bottom Ash Pond, dated October 17, 2017.

2.2 May 2023 Assessment Monitoring

Per §257.95, all wells in the CCR unit groundwater monitoring program must be sampled semiannually. TRC conducted the first semiannual assessment monitoring event of 2023 for Appendix III and IV constituents at the Karn Bottom Ash Pond CCR Unit in accordance with the DE Karn Monitoring Program Sample Analysis Plan (ARCADIS, May 2016) (SAP). The semiannual assessment monitoring event was performed on May 1st 3 through 3, 2023.

The May 2023 sampling event included collection of static water level measurements from the Karn Bottom Ash Pond groundwater monitoring system and other site wells to support preparation of a groundwater contour map. Static water elevation data are summarized in Table 1 and groundwater elevation data are shown on Figure 3. The Karn Bottom Ash Pond monitoring wells (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006 and DEK-MW-18001) and

background monitoring wells (MW-15002, MW-15008, MW-15016, and MW-15019) were purged with peristaltic pumps utilizing low-flow sampling methodology. Field parameters were stabilized at each monitoring well prior to collecting groundwater samples. Stabilized field parameters for each monitoring well are summarized in Table 2.

The groundwater samples were analyzed by the Consumers Energy Trail Street Laboratory for Appendix III and IV constituents in accordance with the SAP. Radium analyses were completed by Eurofins Environment Testing. The analytical results for the background wells are summarized in Table 3, and the analytical results for the downgradient monitoring wells are summarized in Table 4. Analytical results from the May 2023 monitoring event are included in the attached laboratory reports (Appendix C).

2.2.1 Groundwater Flow Rate and Direction

Groundwater elevation data collected during the May 2023 assessment monitoring event are provided in Table 1. These data were used to construct the groundwater contour map (Figure 3). Groundwater elevations measured at the site in May 2023 are generally within the range of 578 to 587 feet above mean sea level (ft NAVD88) and groundwater is typically encountered at equal elevation relative to the surrounding surface water features measured by the NOAA gauging station or within approximately 6 feet higher, flowing toward the bounding surface water features.

Although historically the point source discharge of sluiced bottom ash into the Karn Bottom Ash Pond created localized mounding of the potentiometric surface, the new Karn Lined Impoundment went into service on June 7, 2018 and has been continuously collecting the process water and bottom ash that went into the former bottom ash pond. Since the former bottom ash pond is no longer being hydraulically loaded with sluiced ash and has been dewatered by gravity, the characteristic groundwater mound centered within the former surface pool area is no longer present. The groundwater elevation data collected from the groundwater monitoring system of the former Karn Bottom Ash Pond in May 2023demonstrate a reduction in groundwater elevation measurements by several feet when compared to groundwater elevations measured prior to June 2018. Due to the operational changes of the bottom ash pond and the completion of the landfill capping activities, the gradient between the bottom ash pond area and the surrounding surface water bodies is flattening out as compared to previous quarters as the groundwater elevations are reaching a new equilibrium, as expected. Groundwater at the Site is locally influenced by incidental infiltration from precipitation over the uncovered acreage and the unlined low volume miscellaneous wastewater conveyance associated with the permitted NPDES discharge system, which is located just north of the Karn Lined Impoundment. Monitoring Wells OW-11, OW-12, and DEK-MW-15003 delineate the newly established groundwater elevation high point with porewater flow generally flowing radially towards the adjacent surface water features from this newly established potentiometric "high", as illustrated in Figure 3. As such, the groundwater flow across the footprint of the former bottom ash pond is generally to the west.

The average hydraulic gradient observed on May 1, 2023 in the Karn Bottom Ash Pond area during these events is estimated at 0.0054 ft/ft. The gradient was calculated using the monitoring well pairs DEK-MW-15004/DEK-MW-15005 and DEK-MW-15003/DEK-MW-15006. Using the mean hydraulic conductivity of 15 ft/day (ARCADIS, 2016) and an assumed effective porosity of 0.3, the estimated average seepage velocity was 0.27 ft/day or 98 ft/year.

2.2.2 Data Quality

Analytical data were found to be usable for assessment monitoring and were generally consistent with previous sampling events. The Data Quality Reviews are included as Appendix A.

3.0 Assessment Monitoring Statistical Evaluation

Assessment monitoring is continuing at the Karn Bottom Ash Pond while Consumers Energy further evaluates corrective measures in accordance with §257.96 and §257.97 as outlined in the ACM. The following section summarizes the statistical approach applied to assess the May 2023 groundwater data in accordance with the assessment monitoring program.

3.1 Establishing Groundwater Protection Standards

The GWPSs are used to assess whether Appendix IV constituent concentrations are present in groundwater at unacceptable levels as a result of CCR Unit operations by statistically comparing concentrations in the downgradient wells to the GWPSs for each Appendix IV constituent. In accordance with §257.95(h) and the Stats Plan, GWPSs were established for the Appendix IV constituents following the preliminary assessment monitoring event as documented in the Groundwater Protection Standards technical memorandum (Appendix C of the 2018 Annual Groundwater Monitoring Report, TRC, January 2019). The GWPS is established as the higher of the EPA Maximum Contaminant Level (MCL) or statistically derived background level for constituents with MCLs and the higher of the EPA Regional Screening Levels (RSLs) or background level for constituents without an established MCL.

3.2 Data Comparison to Groundwater Protection Standards

The compliance well groundwater concentrations for Appendix IV constituents were compared to the GWPSs to determine if a statistically significant exceedance had occurred in accordance with §257.95. Consistent with the *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (Unified Guidance) (USEPA, 2009), the preferred method for comparisons to a fixed standard are confidence limits. An exceedance of the standard occurs when the 99 percent lower confidence level of the downgradient monitoring well data exceeds the GWPS of any Appendix IV constituent. As documented in the January 14, 2019 *Notification of Appendix IV Constituent Exceeding Groundwater Protection Standard per §257.95(g)*, arsenic was present at statistically significant levels above the federal GWPS in five of the six downgradient wells at the Karn Bottom Ash Pond.

Confidence intervals were established per the statistical methods detailed in the *Statistical Evaluation of May 2023 Assessment Monitoring Sampling Event* technical memorandum provided in Appendix B. For each Appendix IV constituent, the concentrations were first compared directly to their respective GWPS. Constituent-well combinations that included a direct exceedance of the GWPSs were retained for further statistical analysis using confidence limits.

Due to changes in groundwater flow direction on site, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer located downgradient of the unit and were determined to be no longer indicative of groundwater conditions influenced by the Karn Bottom Ash Pond. Therefore, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer included for assessment monitoring statistical analysis. The monitoring well network for statistical evaluation consists of the four monitoring wells located downgradient of the bottom ash pond (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001). Overall, the assessment

monitoring statistical evaluations have confirmed that arsenic is the only Appendix IV constituent present at statistically significant levels above the GWPS. The statistical evaluation of the May 2023 semiannual assessment monitoring event data indicate that arsenic is present at statistically significant levels exceeding the GWPS in downgradient monitoring wells at the Karn Bottom Ash Pond:

Constituent	GWPS	#Downgradient Wells Observed
Arsenic	21 ug/L	2 of 4

Previously, arsenic was present in downgradient well DEK-MW-15002 and DEK-MW-15006 at a statistically significant level; however, arsenic concentrations have declined since sluicing to the Karn Bottom Ash Pond ceased in June 2018 and the bottom ash and transport water was diverted to the Karn Lined Impoundment (Appendix B: Attachment 1). The statistical evaluation of the April 2019 through May 2023 data show that the lower confidence limit for arsenic is below the GWPS at DEK-MW-15002 and DEK MW-15006.

Concentrations of arsenic at DEK-MW-18001 have decreased since loading to the Karn Bottom Ash Pond ceased; however, arsenic remains above the GWPS at a statistically significant level. Arsenic at DEK-MW-15005 also remain above the GWPS at a statistically significant level. A summary of the confidence intervals for May 2023 is provided in Table 5. Although arsenic is present above the GWPS, the drinking water pathway is not complete as there are no drinking water wells on-site. Redox conditions, which affect contaminant transport, are still stabilizing in the Bottom Ash Pond Area following removal activities and will continue to be evaluated further.

4.0 Conclusions and Recommendations

Corrective action has been triggered and assessment monitoring is ongoing at the Karn Bottom Ash Pond CCR unit. A summary of the May 2023assessment monitoring event is presented in this report.

Overall, the statistical assessments have confirmed that arsenic is the only Appendix IV constituent present at statistically significant levels above the GWPS. Consumers Energy has completed the removal of CCR consistent with the timeline for closure of the Karn Bottom Ash Pond under the *DE Karn Bottom Ash Pond Closure Plan* (Golder, January 2018; Revised April 2018) and the CCR Rule's closure by removal provisions in §257.102(c).

The ACM Report provided a high-level assessment of groundwater remediation technologies that could potentially address site-specific COCs (i.e., arsenic) under known groundwater conditions. Groundwater chemistry appears to be improving in some areas as a result of discontinuing the hydraulic loading to the Karn Bottom Ash Pond and the completed source removal of CCR, as shown by the decreasing concentration of arsenic at DEK-MW-15002; however, attainment of the GWPS at all of the Bottom Ash Pond compliance wells may not be feasible due to influences other than the former pond, such as the presence and former operation of the nearby Karn Landfill. Redox conditions, which affect contaminant transport, are still stabilizing following pond removal and will continue to be evaluated further.

Consumers Energy will continue assessment monitoring and evaluate corrective measures in accordance with §257.96 and §257.97 as outlined in the Karn Bottom Ash Pond ACM. The groundwater management remedy for the Karn Bottom Ash Pond will be selected as soon as feasible to meet the federal standards of §257.96(b) of the CCR Rule. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98. The next semiannual monitoring event is tentatively scheduled for the fourth calendar quarter of 2023.

5.0 References

- AECOM. October 30, 2009. Potential Failure Mode Analysis (PFMA) Report. DE Karn Electric Generation Facility Ash Dike Risk Assessment Essexville, Michigan. Prepared for Consumers Energy Company
- ARCADIS. May 13, 2016. Summary of Monitoring Well Design, Installation, and Development. DE Karn Electric Generation Facility Essexville, Michigan. Prepared for Consumers Energy Company.
- ARCADIS. May 18, 2016. Electric Generation Facilities RCRA CCR Detection Monitoring Program. DE Karn Monitoring Program Sample Analysis Plan, Essexville, Michigan. Prepared for Consumers Energy Company.
- Consumers Energy Company. December 19, 2017. Hydrogeological Monitoring Plan Rev. 3: DE Karn Solid Waste Disposal Area.
- Consumers Energy Company. January 2019. Notification of Appendix IV Constituent Exceeding Groundwater Protection Standards per §257.95(g).
- Golder Associates Inc. January 2018. D.E. Karn Generating Facility Bottom Ash Pond Closure Plan, Essexville, Michigan. Prepared for Consumers Energy Company.
- Golder Associates Inc. April 2018. D.E. Karn Generating Facility Revised Bottom Ash Pond Closure Work Plan, Essexville, Michigan. Prepared for Consumers Energy Company.
- Golder Associates Inc. October 2019. D.E. Karn Generating Facility Bottom Ash Pond CCR Removal Documentation Report. Prepared for Consumers Energy Company.
- TRC. October 2017. Groundwater Statistical Evaluation Plan DE Karn Power Plant, Bottom Ash Pond, Essexville, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2018. Annual Groundwater Monitoring Report DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.
- TRC. January 2019. 2018 Annual Groundwater Monitoring Report DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.
- TRC. September 2019. Assessment of Corrective Measures DE Karn Bottom Ash Pond Coal Combustion Residual Unit. Prepared for Consumers Energy Company.
- TRC. November 2020. Karn Lined Impoundment Hydrogeological Monitoring Plan for the DE Karn Power Plant Lined Impoundment, Essexville, Michigan. Prepared for Consumers Energy Company.
- TRC. January 2022. October 2021 Assessment Monitoring Data Summary and Statistical Evaluation DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

- USEPA. April 2015. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. 80 Federal Register 74 (April 17, 2015), pp. 21301-21501 (80 FR 21301).
- USEPA. July 2018. 40 CFR Part 257. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One); Final Rule. 83 Federal Register 146 (July 30, 2018), pp. 36435-36456 (83 FR 36435).
- USEPA. April 2018. Barnes Johnson (Office of Resource Conservation and Recovery) to James Roewer (c/o Edison Electric Institute) and Douglas Green, Margaret Fawal (Venable LLP). Re: Coal Combustion Residuals Rule Groundwater Monitoring Requirements. April 30, 2018. United States Environmental Protection Agency, Washington, D.C. 20460. Office of Solid Waste and Emergency Response, now the Office of Land and Emergency Management.

Tables

Table 1

Summary of Groundwater Elevation Data DE Karn – RCRA CCR Monitoring Program Essexville, Michigan

	тос		Screen Interval	May 1, 2023		
Well Location	Elevation (ft)	Geologic Unit of Screen Interval	Elevation (ft)	Depth to Water	Groundwater Elevation	
				(ft BTOC)	(ft)	
DEK Bottom Ash Pon	d		<u> </u>		-	
DEK-MW-15002	590.87	Sand	578.3 to 575.3	6.35	584.52	
DEK-MW-15005	589.72	Sand	572.3 to 567.3	9.90	579.82	
DEK-MW-15006	589.24	Sand	573.0 to 568.0	9.44	579.80	
DEK Bottom Ash Pon	d & Karn Lined Im	poundment				
DEK-MW-18001	593.47	Sand	579.2 to 574.2	8.89	584.58	
Karn Lined Impoundr						
DEK-MW-15003	602.74	Sand	578.8 to 574.8	16.90	585.84	
OW-10	591.58	Silty Sand and Silty Clay	576.0 to 571.0	7.08	584.50	
OW-11	607.90	Silt/Fly Ash	587.5 to 582.5	22.30	585.60	
OW-12	603.10	Silty Sand	584.2 to 579.2	17.14	585.96	
DEK Nature and Exter						
DEK-MW-15004	611.04	Sand	576.6 to 571.6	28.25	582.79	
MW-01	597.02	Sand	573.0 to 570.0	17.20	579.82	
MW-03	597.30	Sand	569.8 to 566.8	17.58	579.72	
MW-06	589.44	Sand and Silty Sand	578.5 to 563.5	9.44	580.00	
MW-08	598.78	Sand and Silty Clay	580.9 to 570.9	17.68	581.10	
MW-10	596.97	Sand	582.5 to 572.5	16.75	580.22	
MW-12	598.60	Sand	583.9 to 573.9	18.63	579.97	
MW-14	594.37	Sand and Silty Clay	584.7 to 574.7	14.55	579.82	
MW-16	595.80	Sand and Sand/Bottom Ash	584.1 to 574.1	16.14	579.66	
MW-22	598.99	Ash/Sand	571.4 to 568.4	16.81	582.18	
MW-23	595.57	Ash/Sand	576.9 to 571.9	13.90	581.67	
DEK Static Water Lev						
MW-02	597.34	Sand and Silty Clay	572.5 to 567.5	17.50	579.84	
MW-04	598.01	NR	569.5 to 564.5	18.30	579.71	
MW-17	597.91	Sand	577.0 to 574.0	13.42	584.49	
MW-18	609.22	Silty Sand and Silty Clay	575.8 to 573.8	25.90	583.32	
MW-19	597.28	NR	572.1 to 567.1	19.15	578.13	
MW-20	632.75	Sand	582.3 to 579.3	52.67	580.08	
MW-21	632.91	Sand	587.1 to 584.1	51.10	581.81	
OW-01	631.33	NR	572.5 to 567.5	51.14	580.19	
OW-02	598.01	Fly Ash	579.4 to 576.4	15.70	582.31	
OW-03	597.94	Fly Ash and Sand	573.6 to 568.6	17.18	580.76	
OW-04	590.21	Sand and Bottom/Fly Ash	579.1 to 574.1	10.40	579.81	
OW-05	593.53	Sand	576.9 to 571.9	15.00	578.53	
OW-06	603.95	NR	580.9 to 575.9	17.20	586.75	
OW-07	596.41	Ash	583.3 to 580.3	15.11	581.30	
OW-08	593.93	NR	581.0 to 576.0	10.88	583.05	
OW-09	593.45	NR	585.5 to 580.5	10.33	583.12	
OW-13	588.52	NR	579.5 to 574.5	3.86	584.66	
OW-15	587.75	NR	572.8 to 567.8	3.40	584.35	

Notes:
Survey data from: Rowe Professional Services Company (Nov. 2015) and Consumers Energy Company drawings: SG-21733, Sheet 1, Rev. G (Karn, 11/27/18); and SG=21733, Sheet 2, Rev. C (Weadock, 11/27/18).

Elevation in feet relative to North American Vertical Datum 1988 (NAVD 88).

TOC: Top of well casing.

ft BTOC: Feet below top of well casing.

NR: Not Recorded

Table 2

Summary of Field Parameters DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Face will a Michigan

Essexville, Michigan

Sample Location	Sample Date	Dissolved Oxygen	Oxidation Reduction Potential	рН	Specific Conductivity	Temperature	Turbidity			
		(mg/L)	(mV)	(SU)	(umhos/cm)	(°C)	(NTU)			
Background										
MW-15002	5/1/2023	0.48	-80.3	7.2	413	9.0	3.1			
MW-15008	5/1/2023	0.22	-106.3	6.6	1,032	9.0	8.9			
MW-15016	5/2/2023	0.37	-43.9	6.9	914	8.1	3.0			
MW-15019	5/1/2023	0.49	-99.3	6.6	1,457	8.1	3.5			
Karn Bottom Ash Po	ond		•		•					
DEK-MW-15002	5/2/2023	0.39	-135.9	7.2	936	9.1	2.9			
DEK-MW-15005	5/2/2023	0.31	-106.4	7.4	830	9.3	2.9			
DEK-MW-15006	5/2/2023	0.33	-131.4	7.5	888	9.9	2.1			
DEK-MW-18001	5/3/2023	0.19	-228.5	7.6	858	9.6	9.9			

Notes:

mg/L - Milligrams per Liter.

mV - Millivolts.

SU - Standard units.

umhos/cm - Micromhos per centimeter.

°C - Degrees Celsius

NTU - Nephelometric Turbidity Unit.

Table 3

Summary of Groundwater Sampling Results (Analytical) DE Karn & JC Weadock Background – RCRA CCR Monitoring Program Essexville, Michigan

					Sample Location:	MW-15002	MW-15008	MW-15016	MW-15019
					Sample Date:	5/1/2023	5/1/2023	5/1/2023	5/1/2023
				MI Non-			Pooks	ground	
Constituent	Unit	EPA MCL	MI Residential*	Residential*	MI GSI^		Баск	ground	
Appendix III ⁽¹⁾									
Boron	ug/L	NC	500	500	4,000	< 20	107	347	211
Calcium	mg/L	NC	NC	NC	500 ^{EE}	48.4	108	175	159
Chloride	mg/L	250**	250 ^E	250 ^E	50	64.5	259	106	302
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	14.9	10.5	253	94.2
Total Dissolved Solids	mg/L	500**	500 ^E	500 ^E	500	351	877	889	1,170
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	7.2	6.6	6.9	6.6
Appendix IV ⁽¹⁾									
Antimony	ug/L	6	6.0	6.0	2.0	< 1.0	< 1.0	< 1.0	< 1.0
Arsenic	ug/L	10	10	10	10	< 1.0	1	2	1
Barium	ug/L	2,000	2,000	2,000	1,200	63	71	58	317
Beryllium	ug/L	4	4.0	4.0	33	< 1.0	< 1.0	< 1.0	< 1.0
Cadmium	ug/L	5	5.0	5.0	2.5	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	< 1.0	< 1.0	< 1.0	< 1.0
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	14	< 1.0	< 1.0	< 1.0	< 1.0
Lithium	ug/L	NC	170	350	440	< 10	24	64	13
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	120	< 5	< 5	< 5	< 5
Radium-226	pCi/L	NC	NC	NC	NC	< 0.183	< 0.249	< 0.127	0.31
Radium-228	pCi/L	NC	NC	NC	NC	< 0.547	< 1.16	< 1.01	< 0.859
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.547	< 1.16	< 1.01	< 0.859
Selenium	ug/L	50	50	50	5.0	< 1.0	< 1.0	< 1.0	< 1.0
Thallium	ug/L	2	2.0	2.0	2.0	< 2	< 2	< 2	< 2
Additional MI Part 11	15 ⁽²⁾								
Iron	ug/L	300**	300 ^E	300 ^E	500,000EE	729	17,900	1,970	21,500
Copper	ug/L	1,000**	1,000 ^E	1,000 ^E	20	1	< 1.0	< 1.0	< 1.0
Nickel	ug/L	NC	100	100	120	< 2	2	6	3
Silver	ug/L	100**	34	98	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Vanadium	ug/L	NC	4.5	62	27	< 2	5	< 2	< 2
Zinc	ug/L	5,000**	2,400	5,000E	260	< 10	< 10	< 10	< 10

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyzed.

- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.
- ^- Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- (1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.
- (2) Per Michigan Part 115 Amendment Public Act No. 640 of 2018 Section 11511a(3)(c) and 11519b(2) additional detection monitoring constituent (iron) and assessment monitoring constituents (copper, nickel, silver, vanadium, and zinc) are reported.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

Table 4

Summary of Groundwater Sampling Results (Analytical) JC Weadock Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

					gan		1		1
					Sample Location:	JCW-MW-15007	JCW-MW-15009	JCW-MW-15010	
					Sample Date:	5/2/2023	5/2/2023	5/2/2023	5/2/2023
				MI Non-					
Constituent	Unit	EPA MCL	MI Residential*	Residential*	MI GSI^				
Appendix III ⁽¹⁾									
Boron	ug/L	NC	500	500	4,000	212	170	1,100	508
Calcium	mg/L	NC	NC	NC	500 ^{EE}	207	526	199	198
Chloride	mg/L	250**	250 ^E	250 ^E	50	1,810	36.2	25	1,110
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250**	250 ^E	250 ^E	500EE	175	1,490	273	122
Total Dissolved Solids	mg/L	500**	500 ^E	500 ^E	500	3,630	2,260	936	2,520
pH, Field	SU	6.5 - 8.5**	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	7.0	5.8	7.1	7.6
Appendix IV ⁽¹⁾									
Antimony	ug/L	6	6.0	6.0	2.0	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	10	10	10	8	< 1	14	< 1
Barium	ug/L	2,000	2,000	2,000	1,200	189	19	285	381
Beryllium	ug/L	4	4.0	4.0	33	< 1	1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	2.5	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	< 1	< 1	< 1	< 1
Cobalt	ug/L	NC	40	100	100	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	4.0	4.0	14	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	170	350	440	55	79	78	56
Mercury	ug/L	2	2.0	2.0	0.20#	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	73	210	120	< 5	< 5	< 5	< 5
Radium-226	pCi/L	NC	NC	NC	NC	0.216	< 0.134	0.304	0.448
Radium-228	pCi/L	NC	NC	NC	NC	< 0.579	< 0.944	< 0.740	0.968
Radium-226/228	pCi/L	5	NC	NC	NC	< 0.579	< 0.944	< 0.740	1.42
Selenium	ug/L	50	50	50	5.0	3	2	< 1	< 1
Thallium	ug/L	2	2.0	2.0	2.0	< 2	< 2	< 2	< 2
Additional MI Part 11	15 ⁽²⁾								
Iron	ug/L	300**	300 ^E	300 ^E	500,000EE	1,460	13,900	417	585
Copper	ug/L	1,000**	1,000E	1,000E	20	< 1	1	< 1	< 1
Nickel	ug/L	NC	100	100	120	6	13	4	4
=	- · · ·				†				

0.2

27

260

< 0.2

17

< 0.2

< 2

< 10

< 0.2

< 2

< 10

< 0.2

8

< 10

Notes:

Zinc

Silver

Vanadium

ug/L - micrograms per liter; mg/L - milligrams per liter.

pCi/L - picocuries per liter; SU - standard units; pH is a field parameter.

ug/L

ug/L

ug/L

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April, 2012.

NC - no criteria; -- - not analyzed.

- * Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ** Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April, 2012.

100**

NC

5,000**

^- Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}

34

4.5

2,400

98

62

5,000E

- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway per Michigan Part 201 and MDEQ policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- (1) 40 CFR Part 257 Appendix III Detection Monitoring Constituents and Appendix IV Assessment Monitoring Constituents.
- (2) Per Michigan Part 115 Amendment Public Act No. 640 of 2018 Section 11511a(3)(c) and 11519b(2) additional detection monitoring constituent (iron) and assessment monitoring constituents (copper, nickel, silver, vanadium, and zinc) are reported.

BOLD value indicates an exceedance of one or more of the listed criteria.

RED value indicates an exceedance of the MCL.

All metals were analyzed as total unless otherwise specified.

Table 5

Summary of Assessment Monitoring Statistical Evaluation – May 2023 DE Karn Bottom Ash Pond – RCRA CCR Monitoring Program Essexville, Michigan

Constituent	Units	GWPS	DEW-MW-15002		DEK-MW-15005		DEK-MW-15006		DEK-MW-18001	
			LCL	UCL	LCL	UCL	LCL	UCL	LCL	UCL
Arsenic	ug/L	21	1.7	14	30	83	20	28	99	331

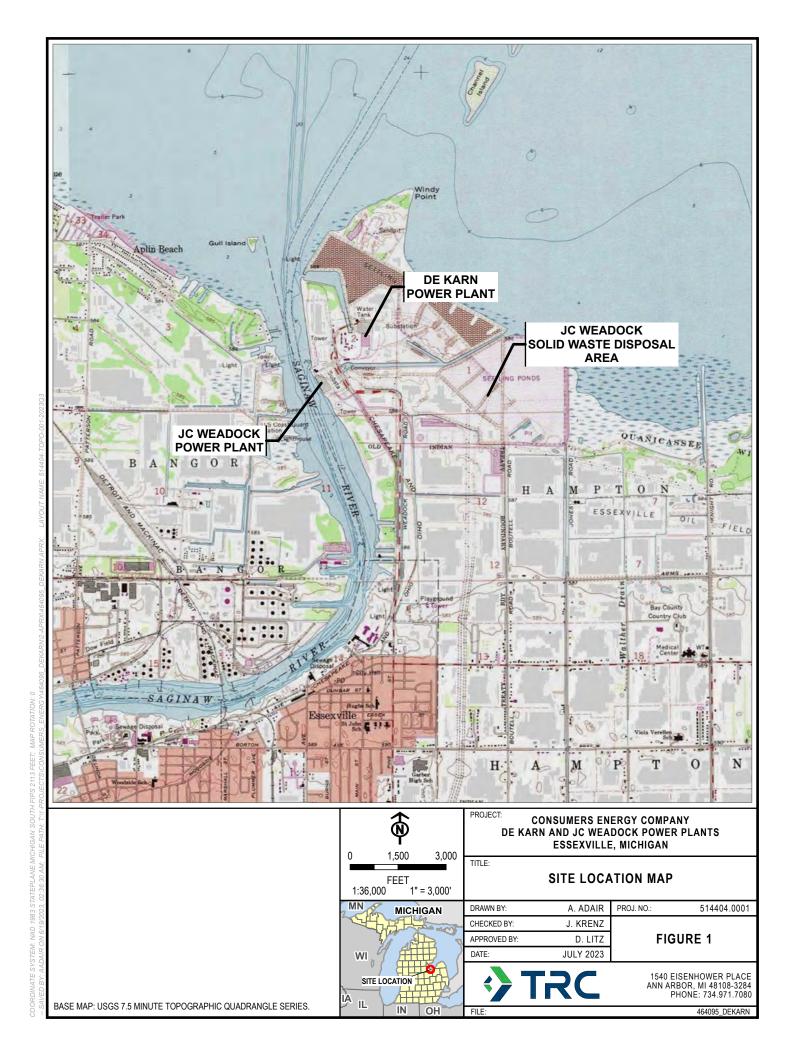
Notes:

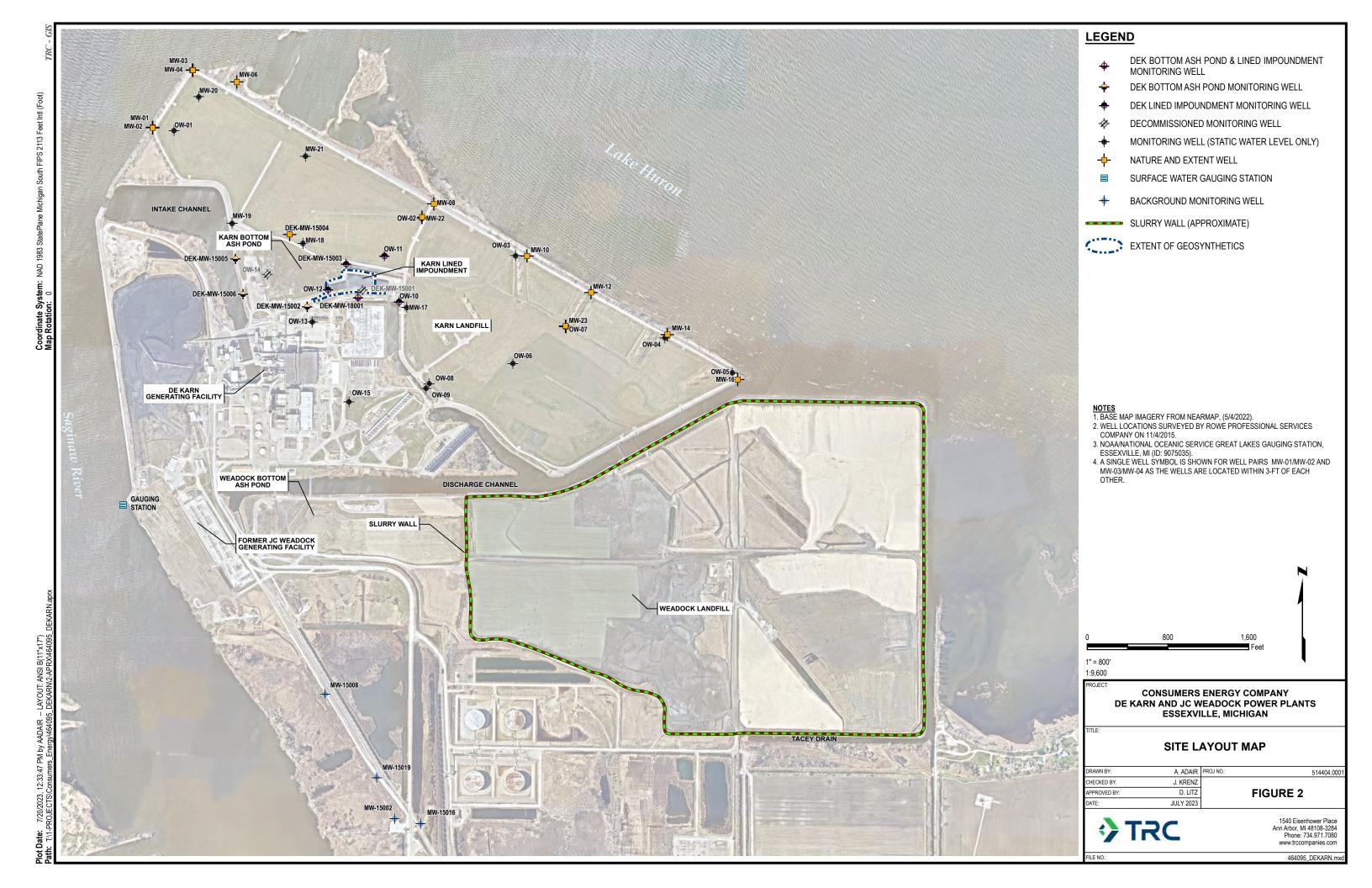
Only compliance well/constituent pairs with one or more concentrations exceeding the GWPS within

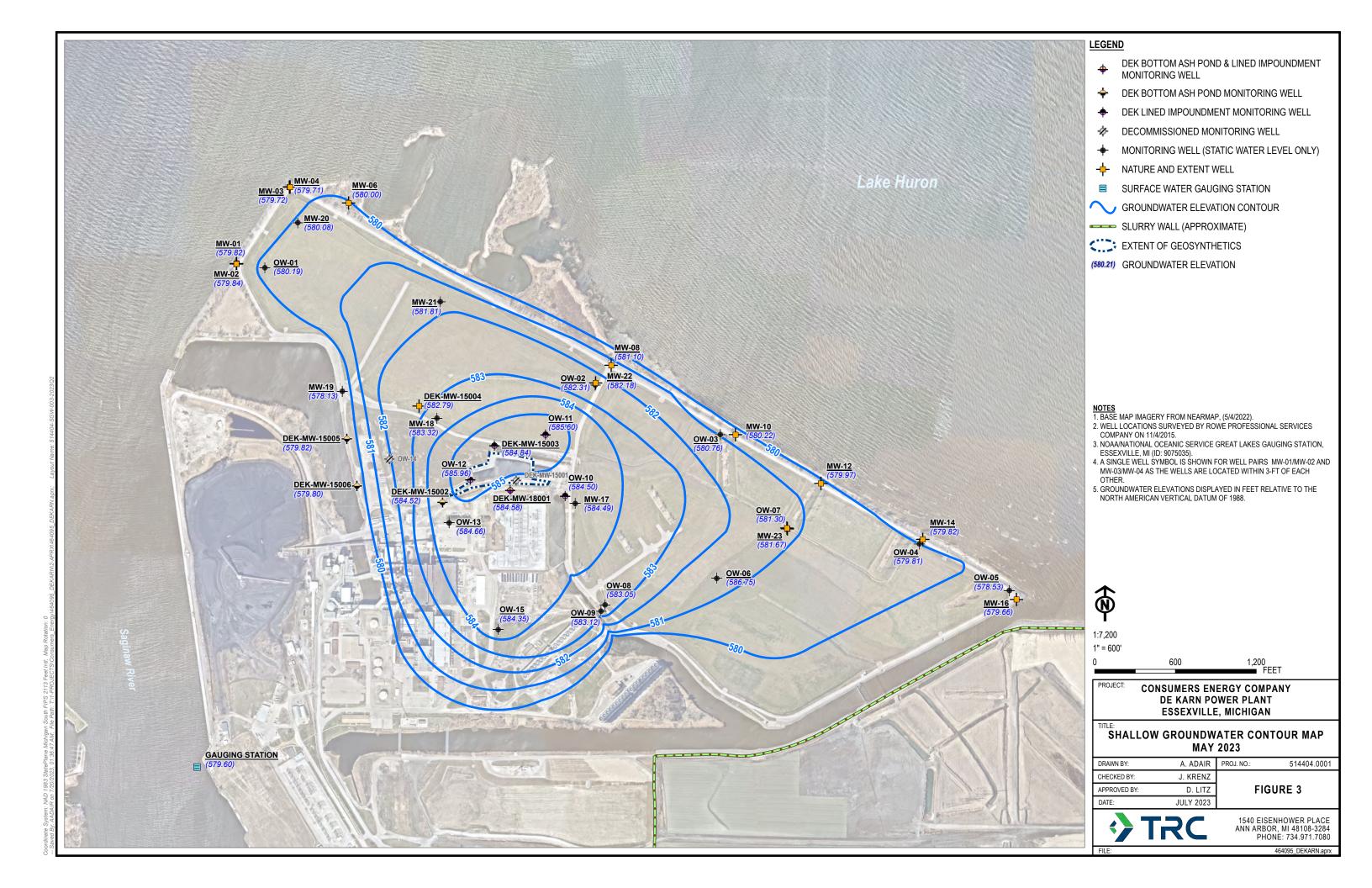
the 8 most recent semiannual sampling events are included on this table.

ug/L - micrograms per Liter.

GWPS - Groundwater Protection Standard as established in TRC's Technical Memorandum dated October 15, 2018.


UCL - Upper Confidence Limit ($\alpha = 0.01$) of the downgradient data set.


LCL - Lower Confidence Limit ($\alpha = 0.01$) of the downgradient data set.


Indicates a statistically significant exceedance of the GWPS. An exceedance occurs when the LCL is greater than the GWPS.

Figures

Appendix A Data Quality Reviews

Laboratory Data Quality Review Groundwater Monitoring Event May 2023 JC Weadock/DE Karn Background

Groundwater samples were collected by TRC for the May 2023 sampling event. Samples were analyzed for total metals, anions, and total dissolved solids by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The laboratory analytical results were reported in laboratory sample delivery group (SDG) 23-0404.

During the May 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-15002

■ MW-15008

MW-15016

MW-15019

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW-846 6020B/7470A

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative;
- Technical holding times for analyses:
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and laboratory control samples were not provided for review by CE Laboratory Services. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the metals, anions, and TDS analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, and additional Part 115 constituents, as well as magnesium, potassium, and sodium will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One field blank (FB-Background) was collected. Total metals were not detected in this blank sample.
- The field duplicate pair samples were DUP-Background and MW-15019; all criteria between the parent and duplicate samples were within the QC limits.
- Laboratory duplicate and MS/MSD analyses were not performed on a sample from this data set.

Laboratory Data Quality Review Groundwater Monitoring Event May 2023 DE Karn Bottom Ash Pond and Lined Impoundment

A groundwater sample was collected by TRC for the May 2023 sampling event. The sample was analyzed for total metals, anions, total dissolved solids, ammonia, and alkalinity by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The sulfide analysis was subcontracted to Merit Laboratories, Inc. (Merit) in East Lansing, Michigan. The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 23-0401R and S48227.01(01).

During the May 2023 sampling event, a groundwater sample was collected from the following well:

DEK-MW-18001

The sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate, Nitrate, Nitrite)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW-846 6020B/7470A
Alkalinity (Bicarbonate, Carbonate, and Total)	SM 2320B
Ammonia	SM 4500 NH3(h)
Sulfide	SM 4500 S2D

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;

- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates, when collected. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services and Merit. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total metals, anions, ammonia, TDS, alkalinity, and sulfide analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, optional Piper Diagram analyses, additional Part 115 constituents, and additional geochemistry parameters will be utilized for the purposes of a detection or assessment monitoring program.
- Data are usable for the purposes of the detection or assessment monitoring program.
- When the data are evaluated through a detection or assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- A field blank was not collected with this data set.
- An equipment blank was not collected with this data set.
- MS and MSD analyses were performed on sample DEK-MW-18001 for total metals, anions, ammonia, total alkalinity, and sulfide. The recoveries were within the acceptance limits. Relative percent differences (RPDs) were not provided by the laboratory for all parameters and therefore were not evaluated; further, with the exception of sulfide, MS/MSD

concentrations were not provided by the laboratory. However, since all recoveries were within the acceptance limits, there is no impact on data usability due to this issue.

- A field duplicate pair was not collected with this data set.
- Laboratory duplicate analyses were not performed on the sample in this data set.

Laboratory Data Quality Review Groundwater Monitoring Event May 2023 DE Karn Bottom Ash Pond

Groundwater samples were collected by TRC for the May 2023 sampling event. Samples were analyzed for total metals, anions, total dissolved solids, ammonia, and alkalinity by Consumers Energy (CE) Laboratory Services in Jackson, Michigan. The sulfide analyses were subcontracted to Merit Laboratories, Inc. (Merit) in East Lansing, Michigan. The laboratory analytical results were reported in laboratory sample delivery groups (SDGs) 23-0400 and S48155.01(01).

During the May 2023 sampling event, a groundwater sample was collected from each of the following wells:

DEK-MW-15002

DEK-MW-15005

■ DEK-MW-15006

Each sample was analyzed for the following constituents:

Analyte Group	Method
Anions (Fluoride, Chloride, Sulfate, Nitrate, and Nitrite)	EPA 300.0
Total Dissolved Solids (TDS)	SM 2540C
Total Metals	SW-846 6020B/7470A
Alkalinity (Bicarbonate, Carbonate, and Total)	SM 2320B
Ammonia	SM 4500 NH3(h)
Sulfide	SM 4500 S2D

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA, 2020). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;

- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

It should be noted that results for method blanks and LCSs were not provided for review by CE Laboratory Services and Merit. Therefore, potential contamination arising from laboratory sample preparation and/or analytical procedures and the accuracy of the analytical method using a clean matrix could not be evaluated for the total metals, anions, alkalinity, TDS, ammonia, and sulfide analyses.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed Appendix III, IV, optional Piper diagram analyses, additional Part 115 constituents, and additional geochemistry parameters will be utilized for the purposes of the detection monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- One field blank (FB-DEK-BAP) and one equipment blank (EB-DEK-BAP) were collected with this data set. Total metals, nitrate, nitrite, ammonia, and sulfide were not detected in these blanks.
- The field duplicate pair samples were DUP-DEK-BAP-01 with DEK-MW-15005; relative percent differences (RPDs) between the parent and duplicate sample were within the QC limits.
- Laboratory duplicate and MS/MSD analyses were not performed on a sample from this data set.

Laboratory Data Quality Review Groundwater Monitoring Event May 2023 JC Weadock/Karn DEK Background

Groundwater samples were collected by TRC for the May 2023 sampling event. Samples were analyzed for radium by Eurofins in St. Louis, Missouri (Eurofins – St. Louis). The laboratory analytical results were reported in laboratory sample delivery group (SDG) 240-184759-1 Revision 1.

During the May 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ MW-15002

■ MW-15008

MW-15016

MW-15019

Each sample was analyzed for the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0, EPA 904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;

- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;
- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- Target analytes were not detected in the method blanks (MBs) with the following exception.
 - Radium-226 was detected in MB 160-611074/1-A at 0.1185 +/- 0.0829 pCi/L. Potential false positive exists for radium-226 results with normalized absolute differences (NADs) <1.96. as summarized in attachment A.
- One field blank (FB-Background) was collected. Target analytes were not detected in the field blank sample.
- LCS/LCSD recoveries and relative percent differences for all target analytes were within laboratory control limits.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this SDG.
- The field duplicate pair samples were DUP-Background/MW-15019. All criteria were met.
- Carrier recoveries were within 40-110%.

Attachment A

Summary of Data Non-Conformances for Groundwater Analytical Data DE Karn/JC Weadock Background– CCR Monitoring Program Essexville, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
MW-15019 DUP-BACKGROUND	5/1/2023 5/1/2023	Radium 226	Detected result is potentially a false positive due to method blank contamination.

Laboratory Data Quality Review Groundwater Monitoring Event May 2023 DE Karn Bottom Ash Pond and Lined Impoundment

A groundwater sample was collected by TRC for the May 2023 sampling event. The sample was analyzed for radium by Eurofins in St. Louis, Missouri (Eurofins – St. Louis). The laboratory analytical results were reported in laboratory sample delivery group (SDG) 240-184761-1 Revision 1.

During the May 2023 sampling event, a groundwater sample was collected from the following well:

DEK-MW-18001

The sample was analyzed for the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0, EPA 904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;

- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data;
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- Target analytes were not detected in the method blanks (MBs) with the following exception.
 - Radium-226 was detected in MB 160-611074/1-A at 0.1185 +/- 0.0829 pCi/L. Potential false positive exists for radium-226 results with normalized absolute differences (NADs) <1.96, as summarized in attachment A.
- No equipment or field blanks were collected.
- LCS/LCSD recoveries and relative percent differences for all target analytes were within laboratory control limits.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this SDG.
- A field duplicate pair was not collected.
- Carrier recoveries were within 40-110%.

Attachment A

Summary of Data Non-Conformances for Groundwater Analytical Data

DE Karn Bottom Ash Pond and Lined Impoundment – CCR Monitoring Program

Essexville, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
DEK-MW-18001	5/3/2023	Radium 226	Detected result is potentially a false positive due to method blank contamination.

Laboratory Data Quality Review Groundwater Monitoring Event May 2023 DE Karn Bottom Ash Pond

Groundwater samples were collected by TRC for the May 2023 sampling event. Samples were analyzed for radium by Eurofins in St. Louis, Missouri (Eurofins – St. Louis). The laboratory analytical results were reported in laboratory sample delivery group (SDG) 240-184755-1.

During the May 2023 sampling event, a groundwater sample was collected from each of the following wells:

■ DEK-MW-15002

DEK-MW-15005

DEK-MW-15006

Each sample was analyzed for one or more of the following constituents:

Analyte Group	Method
Radium (Ra-226, Ra-228, Combined Ra-226 & Ra-228)	EPA 903.0, EPA 904.0

TRC reviewed the laboratory data to assess data usability. The following sections summarize the data review procedure and the results of the review.

Data Usability Review Procedure

The analytical data were reviewed using the Department of Energy Evaluation of Radiochemical Data Usability (USDOE, 1997). The following items were included in the evaluation of the data:

- Sample receipt, as noted in the cover page or case narrative
- Technical holding times for analyses;
- Reporting limits (RLs) compared to project-required RLs;
- Data for method blanks, equipment blanks, and field blanks, where applicable. Method blanks are used to assess potential contamination arising from laboratory sample preparation and/or analytical procedures. Field and equipment blanks are used to assess potential contamination arising from field procedures;
- Data for laboratory control samples (LCSs) and laboratory control sample duplicates (LCSDs), when performed. The LCSs and/or LCSDs are used to assess the accuracy of the analytical method using a clean matrix;
- Percent recoveries for matrix spike (MS) and matrix spike duplicates (MSD), when performed on project samples. Percent recoveries are calculated for each analyte spiked and used to assess bias due to sample matrix effects;
- Percent recoveries for carriers, where applicable, for radiochemistry only. Carriers are used to assess the chemical yield for the preparation and/or instrument efficiency;
- Data for laboratory duplicates, when performed on project samples. The laboratory duplicates are replicate analyses of one sample and are used to assess the precision of the analytical method;

- Data for blind field duplicates. Field duplicate samples are used to assess variability introduced by the sampling and analytical processes; and
- Overall usability of the data.

This data usability report addresses the following items:

- Usability of the data if quality control (QC) results suggest potential problems with all or some of the data:
- Actions regarding specific QC criteria exceedances.

Review Summary

The data quality objectives and laboratory completeness goals for the project were met, and the data are usable for their intended purpose. A summary of the data quality review, including non-conformances and issues identified in this evaluation, are noted below.

- The reviewed constituents will be utilized for the purposes of an assessment monitoring program.
- Data are usable for the purposes of the assessment monitoring program.
- When the data are evaluated through an assessment monitoring statistical program, findings below may be used to support the removal of outliers.

QA/QC Sample Summary

- Target analytes were not detected in the method blanks (MBs) with the following exception.
 - Radium-226 was detected in MB 160-611074/1-A at 0.1185 +/- 0.0829 pCi/L. Potential false positive exists for radium-226 results with normalized absolute differences (NADs) <1.96, as summarized in attachment A.
- One equipment blank (EB-DEK-BAP) was collected. Target analytes were not detected in the equipment blank sample.
- LCS/LCSD recoveries and relative percent differences (RPDs) for all target analytes were within laboratory control limits.
- MS/MSD and laboratory duplicate analyses were not performed on a sample from this SDG
- The field duplicate pair samples were DUP-DEK-BAP-01/DEK-MW-15005. All criteria were met.
- Carrier recoveries were within 40-110%.

Attachment A

Summary of Data Non-Conformances for Groundwater Analytical Data DE Karn Bottom Ash Pond – CCR Monitoring Program Essexville, Michigan

Samples	Collection Date	Analyte	Non-Conformance/Issue
DEK-MW-15002	5/2/2023		
DEK-MW-15005	5/2/2023	Radium 226	Detected result is potentially a false positive due to method blank contamination (normalized absolute difference
DEK-MW-15006	5/2/2023	Radiuiii 220	<1.96).
DUP-DEK-BAP-01	5/2/2023		

Appendix B Statistical Evaluation of May 2023 Assessment Monitoring Sampling Event

Date: June 20, 2023

To: J.R. Register, Consumers Energy

From: Darby Litz, TRC

Alex Eklund, TRC

Project No.: 514404.0001.0000Phase 002, Task 002

Subject: Statistical Evaluation of May 2023 Assessment Monitoring Sampling Event

DE Karn Bottom Ash Pond, Consumers Energy Company, Essexville, Michigan

During the statistical evaluation of the initial assessment monitoring event (May 2018), arsenic was present in one or more downgradient monitoring wells at statistically significant levels exceeding the Groundwater Protection Standard (GWPS). Therefore, Consumers Energy Company (Consumers Energy) initiated an Assessment of Corrective Measures (ACM) within 90 days from when the Appendix IV exceedance was determined. The ACM was completed on September 11, 2019. Currently, Consumers Energy is continuing semiannual assessment monitoring in accordance with §257.95 of the CCR Rule ¹ at the DE Karn Power Plant Bottom Ash Pond (Karn Bottom Ash Pond).

An assessment monitoring event was conducted between May 1st and 3rd, 2023. In accordance with §257.95, the assessment monitoring data must be compared to GWPSs to determine whether or not Appendix IV constituents are detected at statistically significant levels above the GWPSs. GWPSs were established in accordance with §257.95(h), as detailed in the October 15, 2018 Groundwater Protection Standards technical memorandum, which was also included in the 2018 Annual Groundwater Monitoring Report (TRC, January 2019).

The statistical evaluation of the assessment monitoring event data indicates the following constituent is present at statistically significant levels exceeding the GWPS in downgradient monitoring wells at the Karn Bottom Ash Pond:

Constituent	GWPS	#Downgradient Wells Observed
Arsenic	21 ug/L	2 of 4

The results of the assessment monitoring statistical evaluation for the downgradient wells are consistent with the results of the previous assessment monitoring data statistical evaluations, indicating that arsenic is the only constituent present at concentrations above the GWPS. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 -

¹ USEPA final rule for the regulation and management of Coal Combustion Residuals (CCR) under the Resource Conservation and Recovery Act (RCRA) published April 17, 2015, as amended per Phase One, Part One of the CCR Rule (83 FR 36435).

§257.98.

Assessment Monitoring Statistical Evaluation

When the initial assessment monitoring event was completed in May 2018, the compliance well network at the Karn Bottom Ash Pond included six wells encircling the unit (DEK-MW-15002 through DEK-MW-15006 and DEK-MW-18001). Due to changes in groundwater flow direction on site, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer located downgradient of the unit and were determined to be no longer indicative of groundwater conditions influenced by the Karn Bottom Ash Pond. Therefore, monitoring wells DEK-MW-15003 and DEK-MW-15004 are no longer included for statistical analysis. Starting with the May 2021 statistical evaluation, the compliance well network includes DEK-MW-15002, DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001.

Following the assessment monitoring sampling event, compliance well data for the Karn Bottom Ash Pond were evaluated in accordance with the Groundwater Statistical Evaluation Plan (Stats Plan) (TRC, October 2017). An assessment monitoring program was developed to evaluate concentrations of CCR constituents present in the uppermost aquifer relative to acceptable levels (i.e., GWPSs). To evaluate whether or not a GWPS exceedance is statistically significant, the difference in concentration observed at the downgradient wells during a given assessment monitoring event compared to the GWPS must be large enough, after accounting for variability in the sample data, that the result is unlikely to have occurred merely by chance. Consistent with the Unified Guidance ², the preferred method for comparisons to a fixed standard is confidence limits. Based on the number of historical observations in the representative sample population, the sample mean, the sample standard deviation, and a selected confidence level (i.e., 99 percent), an upper and lower confidence limit is calculated. The true mean concentration, with 99 percent confidence, will fall between the lower and upper confidence limits.

The concentrations observed in the downgradient wells are deemed to be a statistically significant exceedance when the 99 percent lower confidence limit of the downgradient data exceeds the GWPS. If the confidence interval straddles the GWPS (i.e., the lower confidence level is below the GWPS, but the upper confidence level is above), the statistical test result indicates that there is insufficient confidence that the measured concentrations are different from the GWPS and thus no compelling evidence that the measured concentration is a result of a release from the CCR unit versus the inherent variability of the sample data. This statistical approach is consistent with the statistical methods for assessment monitoring presented in §257.93(f) and (g). Statistical evaluation methodologies built into the CCR Rule, and numerous other federal rules, are key in determining whether or not individually measured data points represent a concentration increase over the baseline or a fixed standard (such as a GWPS in an assessment monitoring program).

For each detected Appendix IV constituent, the concentrations from each well were first compared directly to the GWPS, as shown on Table 1. Parameter-well combinations that included a direct exceedance of the GWPS within the past eight sampling events (October 2019 through May 2023) were retained for further analysis. Arsenic in DEK-MW-15005, DEK-MW-15006, and DEK-MW-18001

2

² USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Conservation and Recovery. EPA 530/R-09-007.

at the Karn Bottom Ash Pond had individual results exceeding the GWPS.

Groundwater data were then evaluated utilizing SanitasTM statistical software. SanitasTM is a software tool that is commercially available for performing statistical evaluation consistent with procedures outlined in the Unified Guidance. Within the SanitasTM statistical program, confidence limits were selected to perform the statistical comparison of compliance data to a fixed standard. Parametric and non-parametric confidence intervals were calculated for each of the CCR Appendix IV constituents using a using a per test³ 99 percent confidence level, i.e., a significance level (α) of 0.01. The following narrative describes the methods employed, the results obtained and the SanitasTM output files are included as an attachment.

The statistical data evaluation included the following steps:

- Review of data quality checklists for the data sets;
- Graphical representation of the monitoring data as time versus concentration by well/constituent pair;
- Outlier testing of individual data points that appear from the graphical representations as potential outliers;
- Evaluation of visual trends apparent in the graphical representations for statistical significance;
- Evaluation of percentage of non-detects for each well/constituent pair;
- Distribution of the data; and
- Calculation of the confidence intervals for each cumulative dataset.

The results of these evaluations are presented and discussed below.

Data from each round were evaluated for completeness, overall quality, and usability and were deemed appropriate for the purposes of the CCR assessment monitoring program. Initially, the assessment monitoring results were visually assessed for potential outliers or trends. No outliers were identified. Arsenic concentrations at DEK-MW-18001 appear to exhibit an upward trend on the time-series chart over the eight most recent sampling events (Attachment 1). This data set was tested further in Sanitas™ utilizing Sen's Slope to estimate the average rate of change in concentration over time and utilizing the Mann-Kendall trend test to test for significance of the trend at the 98% confidence level. The trend test showed that arsenic concentration at DEK-MW-18001 is generally increasing with time, as evidenced by the positive Sen's Slope. Additionally, the increase in concentration at DEK-MW-18001 was shown to be statistically significant (Attachment 1). Confidence bands are identified by the UG as the appropriate method for calculating confidence intervals on trending data. A confidence band calculates upper and lower confidence limits at each point along the trend to reduce variability and create a narrower confidence interval. At least 8 to 10 measurements should be available when computing a confidence band around a linear regression, and as of the May 2023 event, eight semiannual sampling events have been completed post-CCR removal.

The Sanitas[™] software was used to test compliance at the downgradient monitoring wells using the confidence interval method for the most recent 8 sampling events. Eight independent sampling events

³ Confidence level is assessed for each individual comparison (i.e. per well and per constituent).

provide the appropriate density of data as recommended per the UG yet are collected recently enough to provide an indication of current condition. The tests were run with a per-test significance of α = 0.01. The software outputs are included in Attachment 1 along with data reports showing the values used for the evaluation. The percentage of non-detect observations for well/constituent pairs with a direct GWPS exceedance are also included in Attachment 1. Non-detect data was handled in accordance with the Stats Plan for the purposes of calculating the confidence intervals.

The Sanitas™ software generates an output that includes graphs of the confidence bands and parametric or non-parametric confidence intervals for each well, along with notes on data transformations, as appropriate. Due to the increasing trend, a confidence band was calculated for the arsenic data set at DEK-MW-18001. The arsenic data set at DEK-MW-15006 was found to be normally distributed and the arsenic data set at DEK-MW-15005 was normalized using a square root transformation. The confidence bands and interval tests compare the lower confidence limit to the GWPS. The statistical evaluation of the Appendix IV parameters shows exceedances for arsenic at two of the four monitoring locations (DEK-MW-15005 and DEK-MW-18001). The results of the assessment monitoring statistical evaluation for the other downgradient wells are consistent with the results of the previous assessment monitoring data statistical evaluations, indicating that arsenic is the only constituent present at concentrations above the GWPS. Consumers Energy will continue to evaluate corrective measures per §257.96 and §257.97. Consumers Energy will continue executing the self-implementing groundwater compliance schedule in conformance with §257.90 - §257.98.

Attachments

Table 1 Comparison of Groundwater Sampling Results to Groundwater Protection Standards

Attachment 1 Sanitas™ Output Files

Table

				S	ample Location:					DEK-M	W-15002				
					Sample Date:	10/15/2019	5/13/2020	10/6/2020	10/6/2020	5/3/2021	10/4/2021	5/3/2022	10/4/2022	10/4/2022	5/2/2023
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS					downg	radient				
Appendix III									Field Dup					Field Dup	
Boron	ug/L	NC	NA	619	NA	1,600	1,390	1,580	1,600	1,420	1,530	1,100	1,340	1,370	1,270
Calcium	mg/L	NC	NA	302	NA	130	170	126	122	148	73.1	105	70.2	68	122
Chloride	mg/L	250*	NA	2,440	NA	410	130	106	102	148	102	99.3	105	103	81.7
Fluoride	ug/L	4,000	NA	1,000	NA	< 1,000	< 1,000	1,300	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250*	NA	407	NA	150	367	142	139	216	58.3	172	33.7	33.2	225
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	1,300	1,100	791	776	926	599	779	584	631	899
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.3	7.1	7.1		7.4	7.1	7.0	7.4		7.2
Appendix IV															
Antimony	ug/L	6	NA	1	6	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	NA	21	21	6.5	3	8	8	2	2	2	3	4	< 1
Barium	ug/L	2,000	NA	1,300	2,000	140	196	133	131	211	102	134	92	95	176
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	NA	3	100	< 1.0	< 1	1	1	< 1	1	1	1	1	< 1
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NA	1,000	4,000	<1,000	< 1,000	1,300	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	15	1	15	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	40	180	180	35	48	35	36	36	29	28	25	27	29
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	100	6	100	< 5.0	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Radium-226	pCi/L	NC	NA	NA	NA	0.334	0.673	< 0.430	< 0.577	0.582	1.47	< 0.423	0.219	0.287	0.431
Radium-228	pCi/L	NC	NA	NA	NA	0.987	0.899	1.06	< 0.577	0.811	2.29	< 0.530	1.81	2.70	< 1.5
Radium-226/228	pCi/L	5	NA	3.32	5	0.654	< 0.763	0.642	< 0.460	< 0.537	0.827	0.636	2.03	2.99	< 1.5
Selenium	ug/L	50	NA	2	50	< 1.0	< 1	< 1	1	< 1	3	1	< 1	1	< 1
Thallium	ug/L	2	NA	2	2	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the

GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

All metals were analyzed as total unless otherwise specified.

TRC | Consumers Energy
x:\\WPAAM\PJT2\514404\0001\1\SA23 BAP\T514404.1-Appx B2

Page 1 of 4

				Sa	ample Location:						DEK-M	W-15005					
					Sample Date:	10/15/2019	10/15/2019	5/13/2020	5/13/2020	10/7/2020	5/3/2021	5/3/2021	10/4/2021	5/3/2022	10/4/2022	5/2/2023	5/2/2023
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS						downg	gradient					
Appendix III							Field Dup		Field Dup			Field Dup					Field Dup
Boron	ug/L	NC	NA	619	NA	700	650	863	858	847	926	948	991	787	911	856	864
Calcium	mg/L	NC	NA	302	NA	60	59	71.0	72.1	155	95.6	97.6	102	127	130	106	107
Chloride	mg/L	250*	NA	2,440	NA	64	64	48.0	47.5	52.7	65.2	65.1	82.3	141	138	86.7	87.4
Fluoride	ug/L	4,000	NA	1,000	NA	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250*	NA	407	NA	5.2	5.0	18.9	18.9	102	50.8	50.2	57.2	151	130	189	189
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	390	400	419	425	687	534	561	546	909	894	767	764
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.6		8.1		7.7	7.6		7.1	7.1	7.5	7.4	
Appendix IV																	
Antimony	ug/L	6	NA	1	6	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	NA	21	21	120	120	34	34	42	45	44	68	54	54	32	32
Barium	ug/L	2,000	NA	1,300	2,000	110	100	127	127	248	173	170	192	305	312	228	224
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	NA	3	100	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2	< 1	< 1
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NA	1,000	4,000	<1,000	<1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	15	1	15	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	40	180	180	16	15	20	20	45	38	39	41	36	36	27	28
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	100	6	100	< 5.0	< 5.0	< 5	< 5	< 5	8	8	7	12	8	8	8
Radium-226	pCi/L	NC	NA	NA	NA	0.165	0.185	< 0.469	< 0.335	0.621	0.291	< 0.187	1.12	0.620	0.544	0.355	0.417
Radium-228	pCi/L	NC	NA	NA	NA	0.524	0.682	1.34	0.662	0.875	0.722	0.650	2.06	1.08	3.11	< 0.755	< 0.785
Radium-226/228	pCi/L	5	NA	3.32	5	< 0.456	0.497	1.14	< 0.554	< 0.502	< 0.459	0.479	0.940	1.70	3.66	< 0.755	< 0.785
Selenium	ug/L	50	NA	2	50	< 1.0	< 1.0	< 1	< 1	< 1	1	1	2	1	1	1	< 1
Thallium	ug/L	2	NA	2	2	< 2.0	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

All metals were analyzed as total unless otherwise specified.

TRC | Consumers Energy

x:\WPAAMPJT2\514404\0001\1\SA23 BAP\T514404.1-Appx B2

Page 2 of 4

				5	Sample Location:					DEK-M	W-15006				
					Sample Date:	10/14/2019	5/13/2020	10/7/2020	5/3/2021	10/4/2021	10/4/2021	5/3/2022	5/3/2022	10/4/2022	5/2/2023
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS					downg	gradient				
Appendix III											Field Dup		Field Dup		
Boron	ug/L	NC	NA	619	NA	1,200	1,090	1,220	938	1,050	1,080	893	888	871	944
Calcium	mg/L	NC	NA	302	NA	34	70.4	106	115	117	117	65.0	65.5	83.8	127
Chloride	mg/L	250*	NA	2,440	NA	45	71.5	102	63.5	78.9	74.7	68.6	67.9	70.6	61.2
Fluoride	ug/L	4,000	NA	1,000	NA	< 1,000	< 1,000	1,060	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	250*	NA	407	NA	74	316	296	324	209	196	173	168	254	385
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	450	833	1,010	790	712	708	597	609	720	847
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.8	8.1	7.7	7.5	7.3		7.4		7.8	7.5
Appendix IV															
Antimony	ug/L	6	NA	1	6	< 1.0	3	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic	ug/L	10	NA	21	21	27	21	27	24	23	24	25	24	26	16
Barium	ug/L	2,000	NA	1,300	2,000	51	86	141	139	125	126	68	67	94	137
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	NA	3	100	1.1	2	6	< 1	< 1	< 1	1	< 1	< 1	< 1
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NA	1,000	4,000	<1,000	< 1,000	1,060	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	NC	15	1	15	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	NC	40	180	180	11	15	22	21	19	19	16	15	18	19
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	NC	100	6	100	11	18	11	9	7	7	6	6	7	7
Radium-226	pCi/L	NC	NA	NA	NA	< 0.159	< 0.370	0.629	0.353	0.797	0.832	< 0.449	0.395	0.242	0.324
Radium-228	pCi/L	NC	NA	NA	NA	< 0.581	1.01	1.12	1.16	1.50	1.35	0.870	< 0.502	1.43	< 0.894
Radium-226/228	pCi/L	5	NA	3.32	5	< 0.581	0.780	0.492	0.804	0.704	0.518	1.29	0.742	1.67	< 0.894
Selenium	ug/L	50	NA	2	50	< 1.0	< 1	< 1	< 1	2	2	< 1	1	1	1
Thallium	ug/L	2	NA	2	2	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.

All metals were analyzed as total unless otherwise specified.

TRC | Consumers Energy
x:\\WPAAM\PJT2\514404\0001\1\SA23 BAP\T514404.1-Appx B2

Page 3 of 4

				S	ample Location:	DEK-MW-18001									
	_		1		Sample Date:	10/15/2019	5/14/2020	10/6/2020	5/3/2021	10/7/2021	5/3/2022	10/4/2022	5/3/2023		
Constituent	Unit	EPA MCL	EPA RSL	UTL	GWPS				downg	radient					
Appendix III															
Boron	ug/L	NC	NA	619	NA	2,200	1,670	1,740	1,180	1,370	869	1,060	931		
Calcium	mg/L	NC	NA	302	NA	84	72.1	71.7	65.2	71.0	63.7	58.3	54.6		
Chloride	mg/L	250*	NA	2,440	NA	81	64.7	60.7	51.6	55.2	65.9	62.5	62.2		
Fluoride	ug/L	4,000	NA	1,000	NA	1,000	1,090	1,240	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000		
Sulfate	mg/L	250*	NA	407	NA	31	51.1	91.9	121	118	187	140	148		
Total Dissolved Solids	mg/L	500*	NA	4,600	NA	500	484	476	486	494	555	551	575		
pH, Field	SU	6.5 - 8.5*	NA	6.5 - 7.3	NA	7.3	7.7	7.6	7.3	7.4	7.6	7.6	7.6		
Appendix IV															
Antimony	ug/L	6	NA	1	6	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Arsenic	ug/L	10	NA	21	21	63	79	85	92	85	113	109	304		
Barium	ug/L	2,000	NA	1,300	2,000	160	130	136	135	135	164	135	152		
Beryllium	ug/L	4	NA	1	4	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Cadmium	ug/L	5	NA	0.2	5	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Chromium	ug/L	100	NA	3	100	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Cobalt	ug/L	NC	6	15	15	< 6.0	< 6	< 6	< 6	< 6	< 6	< 6	< 6		
Fluoride	ug/L	4,000	NA	1,000	4,000	1,000	1,090	1,240	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000		
Lead	ug/L	NC	15	1	15	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1	< 1		
Lithium	ug/L	NC	40	180	180	36	27	26	25	24	22	23	20		
Mercury	ug/L	2	NA	0.2	2	< 0.20	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
Molybdenum	ug/L	NC	100	6	100	< 5.0	< 5	< 5	< 5	< 5	< 5	< 5	11		
Radium-226	pCi/L	NC	NA	NA	NA	0.206	< 0.608	< 0.473	0.189	0.873	0.294	0.264	0.268		
Radium-228	pCi/L	NC	NA	NA	NA	0.952	< 0.676	0.591	0.828	1.85	0.592	1.67	0.599		
Radium-226/228	pCi/L	5	NA	3.32	5	0.746	< 0.676	0.463	0.639	0.979	0.885	1.93	0.868		
Selenium	ug/L	50	NA	2	50	< 1.0	< 1	1	< 1	2	2	< 1	1		
Thallium	ug/L	2	NA	2	2	< 2.0	< 2	< 2	< 2	< 2	< 2	< 2	< 2		

Notes:

ug/L - micrograms per liter.

mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

pCi/L - picocuries per liter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

MCL - Maximum Contaminant Level, EPA Drinking Water Standards and Health Advisories, April 2012.

RSL - Regional Screening Level from 83 FR 36435.

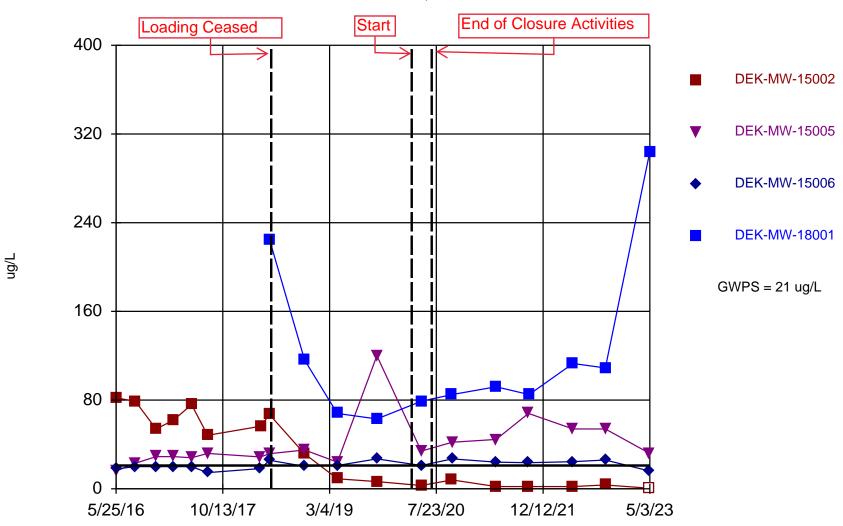
UTL - Upper Tolerance Limit (95%) of the background data set.

GWPS - Groundwater Protection Standard. GWPS is the higher of the MCL/RSL and UTL as established in

TRC's Technical Memorandum dated October 15, 2018.

* - Secondary Maximum Contaminant Level (SMCL), EPA Secondary Drinking Water Regulations (SDWR) April 2012.

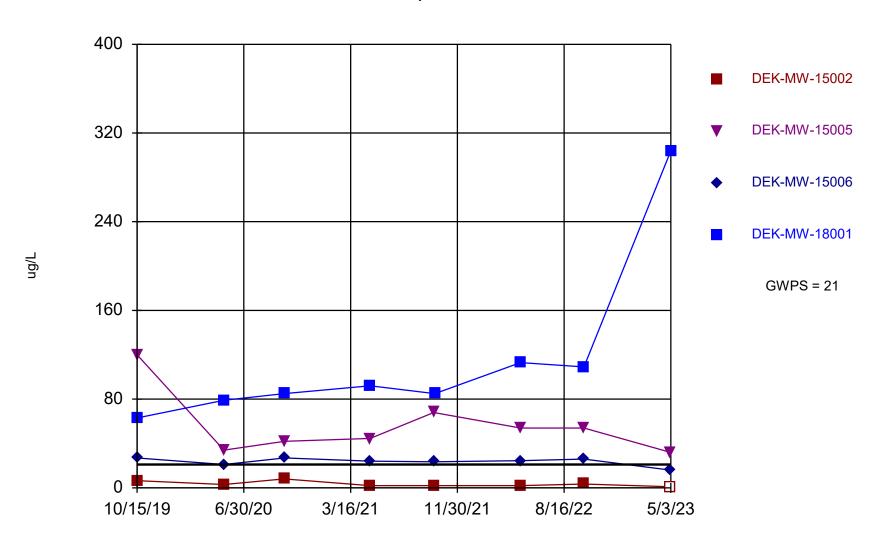
Bold value indicates an exceedance of the GWPS. Data from downgradient monitoring wells are screened against the GWPS for evaluation purposes only. Confidence intervals will be used to determine compliance per the CCR rules.


All metals were analyzed as total unless otherwise specified.

TRC | Consumers Energy
x:\\WPAAM\PJT2\514404\0001\1\SA23 BAP\T514404.1-Appx B2

Page 4 of 4

Attachment 1 Sanitas™ Output Files


Arsenic, Total

Time Series Analysis Run 6/29/2023 3:43 PM

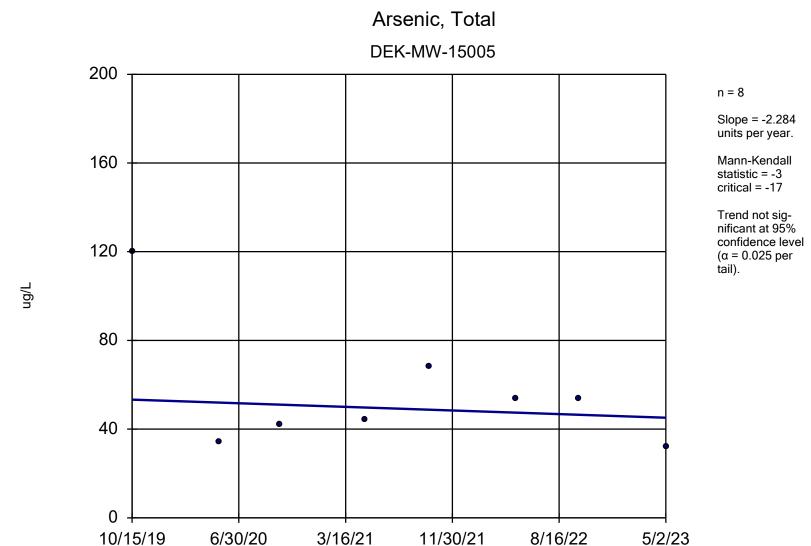
Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

Arsenic Comparison to GWPS

Time Series Analysis Run 5/26/2023 12:15 PM

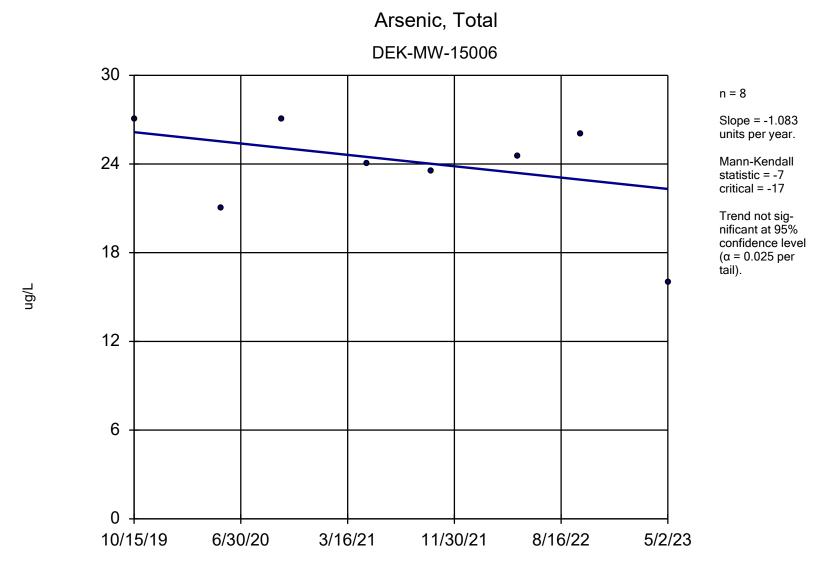
Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

Sanitas™ v.9.6.32 Sanitas software licensed to Consumers Energy. UG

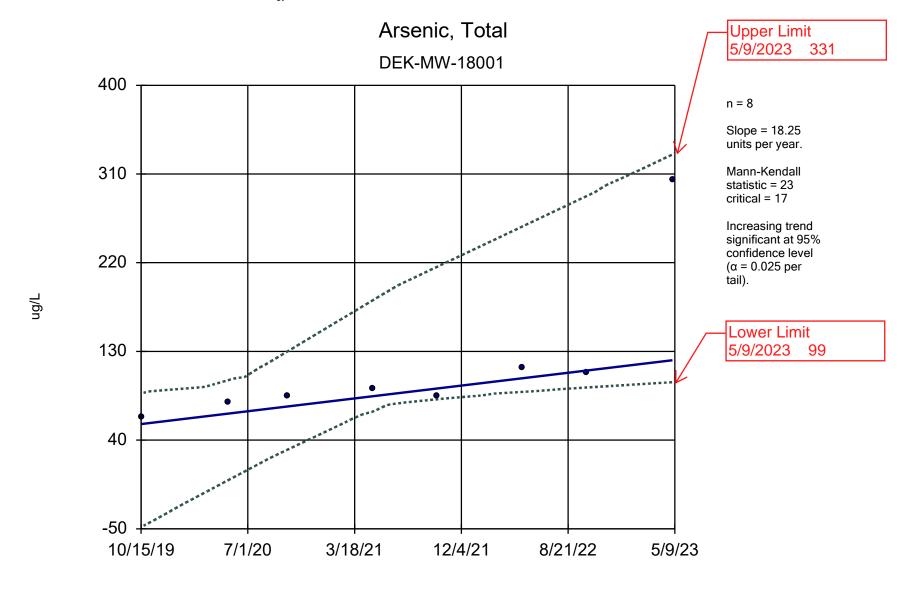

Summary Report

Constituent: Arsenic, Total Analysis Run 5/26/2023 12:28 PM
Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

For observations made between 10/15/2019 and 5/3/2023, a summary of the selected data set:

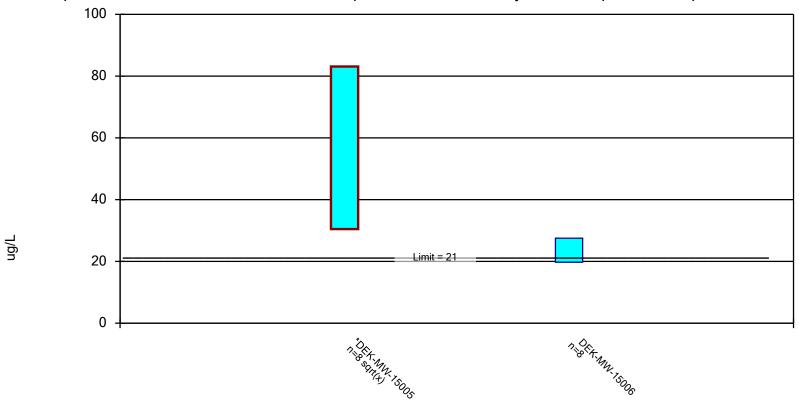

Observations = 32 ND/Trace = 1 Wells = 4 Minimum Value = 1 Maximum Value = 304 Mean Value = 49.86 Median Value = 29.5 Standard Deviation = 58.51 Coefficient of Variation = 1.173 Skewness = 2.691

<u>Well</u>	#Obs.	ND/Trace	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>Median</u>	Std.Dev.	CV	<u>Skewness</u>
DEK-MW-15002	8	1	1	8	3.5	2.5	2.464	0.704	0.9417
DEK-MW-15005	8	0	32	120	56.06	49.25	28.38	0.5061	1.565
DEK-MW-15006	8	0	16	27	23.63	24.25	3.672	0.1554	-1.143
DEK-MW-18001	8	0	63	304	116.3	88.5	77.53	0.6669	2.078


Sen's Slope Estimator Analysis Run 5/26/2023 12:31 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

Sen's Slope Estimator Analysis Run 5/26/2023 12:31 PM


Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

Sen's Slope and 98% Confidence Band Analysis Run 5/26/2023 12:44 PM Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

Parametric Confidence Interval

Compliance limit is exceeded.* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic, Total Analysis Run 5/26/2023 12:35 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

Confidence Interval

Constituent: Arsenic, Total (ug/L) Analysis Run 5/26/2023 12:35 PM
Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-15005	DEK-MW-15006
10/15/2019	120 (D)	27
5/13/2020	34 (D)	21
10/7/2020	42	27
5/3/2021	44.5 (D)	24
10/4/2021	68	23.5 (D)
5/3/2022	54	24.5 (D)
10/4/2022	54	26
5/2/2023	32 (D)	16
Mean	56.06	23.63
Std. Dev.	28.38	3.672
Upper Lim.	83.11	27.52
Lower Lim.	30.44	19.73

Appendix C Laboratory Analytical Reports

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: CDBatts, Karn/Weadock

From: EBlaj, T-258

Date: May 19, 2023

Subject: RCRA GROUNDWATER MONITORING – DEK BOTTOM ASH POND WELLS – 2023 Q2

CC: HDRegister, P22-521 Darby Litz, Project Manager

BLSwanberg, P22-119 TRC Companies, Inc.

1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 23-0400

TRC Environmental, Inc. conducted groundwater monitoring at the DEKarn Bottom Ash Pond Wells area during the week of 05/01/2023 for the 2nd Quarter requirement, as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 05/03/2023.

Samples for Total Sulfide have been subcontracted to Merit Laboratories, Inc. and the results are listed under the analyst initials "Merit". Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

With the exception noted above, the report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

<u>Acronym</u>	<u>Description</u>
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

Qualifier	<u>Description</u>
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
H	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: Karn/Weadock Complex

Work Order ID: Q2-2023 DEK Bottom Ash Pond Wells

Date Received: 5/3/2023 **Chemistry Project:** 23-0400

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
23-0400-01	DEK-MW-15002	Groundwater	05/02/2023 12:07	DEK Bottom Ash Pond
23-0400-02	DEK-MW-15005	Groundwater	05/02/2023 09:53	DEK Bottom Ash Pond
23-0400-03	DEK-MW-15006	Groundwater	05/02/2023 11:13	DEK Bottom Ash Pond
23-0400-04	DUP-DEK-BAP-01	Groundwater	05/02/2023 00:00	DEK Bottom Ash Pond
23-0400-05	FB-DEK-BAP	Water	05/02/2023 12:07	DEK Bottom Ash Pond
23-0400-06	EB-DEK-BAP	Water	05/02/2023 12:21	DEK Bottom Ash Pond

Report Date:

05/19/23

Sample Site:DEK Bottom Ash PondLaboratory Project:23-0400Field Sample ID:DEK-MW-15002Collect Date:05/02/2023Lab Sample ID:23-0400-01Collect Time:12:07 PM

Matrix: Groundwater

Parameter(s) Result Flag Units Antimony ND ug/L Arsenic ND ug/L Barium 176 ug/L Beryllium ND ug/L Boron 1270 ug/L Cadmium ND ug/L Calcium 122000 ug/L Chromium ND ug/L Chobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Sodium 99500 ug/L Sodium 99500 ug/L Vanadium ND ug/L Vanadium ND ug/L	RL 1.0 1.0 5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0 10.0 1000.0 5.0	Analysis Date 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	Tracking AB23-0510-13
Arsenic ND ug/L Barium 176 ug/L Beryllium ND ug/L Boron 1270 ug/L Cadmium ND ug/L Calcium 122000 ug/L Chromium ND ug/L Cobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lead ND ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Mercury by EPA 7470A, Total, Aqueous Flag Units	1.0 5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Barium 176 ug/L Beryllium ND ug/L Boron 1270 ug/L Cadmium ND ug/L Calcium 122000 ug/L Chromium ND ug/L Cobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Flag Units	5.0 1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Beryllium	1.0 20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Boron	20.0 0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Cadmium ND ug/L Calcium 122000 ug/L Chromium ND ug/L Cobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Flag Units	0.2 1000.0 1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Calcium 122000 ug/L Chromium ND ug/L Cobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous	1000.0 1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Chromium ND ug/L Cobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous	1.0 6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13 AB23-0510-13
Cobalt ND ug/L Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Result Flag Units	6.0 1.0 20.0 1.0 10.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13 AB23-0510-13
Copper 1 ug/L Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous	1.0 20.0 1.0 10.0 1000.0	05/09/2023 05/09/2023 05/09/2023 05/09/2023	AB23-0510-13 AB23-0510-13
Iron 1680 ug/L Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	20.0 1.0 10.0 1000.0	05/09/2023 05/09/2023 05/09/2023	AB23-0510-13
Lead ND ug/L Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	1.0 10.0 1000.0	05/09/2023 05/09/2023	
Lithium 29 ug/L Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	10.0 1000.0	05/09/2023	AB23-0510-13
Magnesium 39700 ug/L Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	1000.0		
Manganese 354 ug/L Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units		05/00/2022	AB23-0510-1
Molybdenum ND ug/L Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	5.0	05/09/2023	AB23-0510-13
Nickel 3 ug/L Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units		05/09/2023	AB23-0510-1
Potassium 10800 ug/L Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	5.0	05/09/2023	AB23-0510-1
Selenium ND ug/L Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	2.0	05/09/2023	AB23-0510-1
Silver ND ug/L Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Flag Units	100.0	05/09/2023	AB23-0510-1
Sodium 99500 ug/L Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Flag Units	1.0	05/09/2023	AB23-0510-1
Thallium ND ug/L Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	0.2	05/09/2023	AB23-0510-1
Vanadium ND ug/L Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	1000.0	05/09/2023	AB23-0510-1
Zinc 19 ug/L Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	2.0	05/09/2023	AB23-0510-1
Mercury by EPA 7470A, Total, Aqueous Parameter(s) Result Flag Units	2.0	05/09/2023	AB23-0510-1
Parameter(s) Result Flag Units	10.0	05/09/2023	AB23-0510-13
.,	Aliquot #: 23-0400-01-C01-A02		Analyst: CLI
Mercury ND ug/L	RL	Analysis Date	Tracking
	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous, NO2, NO3	Aliquot #: 23-0400-01-C02-A01		Analyst: KDI
Parameter(s) Result Flag Units	RL	Analysis Date	Tracking
Nitrate ND ug/L	100.0	05/03/2023	AB23-0503-0
Nitrite ND ug/L	100.0	05/03/2023	AB23-0503-0
Anions by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous	Aliquot #: 23-0	400-01-C02-A02	Analyst: KDI
Parameter(s) Result Flag Units	RL	Analysis Date	Tracking
Chloride 81700 ug/L	1000.0	05/05/2023	AB23-0505-06
23-0400 Page 5 of 33			

Report Date:

05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

 Field Sample ID:
 DEK-MW-15002
 Collect Date:
 05/02/2023

 Lab Sample ID:
 23-0400-01
 Collect Time:
 12:07 PM

Matrix: Groundwater

Anions by EPA 300.0 CCR Rule Ana	alyte List, CI, F,	SO4, Aqι	ieous	Aliquot #: 23-0	400-01-C02-A02	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/05/2023	AB23-0505-06
Sulfate	225000		ug/L	1000.0	05/05/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH3(h), Groundwater HL			Aliquot #: 23-0400-01-C03-A01		Analyst: CLE	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	5500		ug/L	25.0	05/12/2023	AB23-0512-02
Total Dissolved Solids by SM 2540C			Aliquot #: 23-0400-01-C04-A01		Analyst: LMO	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	899		mg/L	10.0	05/04/2023	AB23-0504-07
Alkalinity by SM 2320B		Aliquot #: 23-0400-01-C05-A01		Analyst: DLS		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	385000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Bicarbonate	385000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Carbonate	ND		ug/L	10000.0	05/05/2023	AB23-0505-09
Sulfide, Total by SM 4500 S2D		Aliquot #: 23-0	400-01-C07-A01	Analyst: Merit		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	100		ug/L	20.0	05/05/2023	AB23-0504-02

Report Date: 05/19/23

Sample Site: Laboratory Project: **DEK Bottom Ash Pond** 23-0400

Collect Date: Field Sample ID: **DEK-MW-15005** 05/02/2023 Lab Sample ID: 23-0400-02 Collect Time: 09:53 AM

Metals by EPA 6020B: CCR Rule	Appendix III-IV TO	tai Mctais	, <u></u>	Aliquot #: 23-0	400-02-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/09/2023	AB23-0510-1
Arsenic	32		ug/L	1.0	05/09/2023	AB23-0510-13
Barium	228		ug/L	5.0	05/09/2023	AB23-0510-13
Beryllium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Boron	856		ug/L	20.0	05/09/2023	AB23-0510-13
Cadmium	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Calcium	106000		ug/L	1000.0	05/09/2023	AB23-0510-13
Chromium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Cobalt	ND		ug/L	6.0	05/09/2023	AB23-0510-13
Copper	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Iron	695		ug/L	20.0	05/09/2023	AB23-0510-13
Lead	ND		ug/L	1.0	05/18/2023	AB23-0510-13
Lithium	27		ug/L	10.0	05/09/2023	AB23-0510-13
Magnesium	21400		ug/L	1000.0	05/09/2023	AB23-0510-13
Manganese	294		ug/L	5.0	05/09/2023	AB23-0510-13
Molybdenum	8		ug/L	5.0	05/09/2023	AB23-0510-13
Nickel	3		ug/L	2.0	05/09/2023	AB23-0510-13
Potassium	8560		ug/L	100.0	05/09/2023	AB23-0510-13
Selenium	1		ug/L	1.0	05/09/2023	AB23-0510-13
Silver	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Sodium	110000		ug/L	1000.0	05/09/2023	AB23-0510-13
Thallium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Vanadium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Zinc	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Total, A	queous			Aliquot #: 23-0	400-02-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous, I	NO2, NO3			Aliquot #: 23-0	400-02-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrite	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Anions by EPA 300.0 CCR Rule	Analyte List, Cl, F,	SO4, Aqu	eous	Aliquot #: 23-0	400-02-C02-A02	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(S)	Hoodil	· iug	Oilito	• • • •	7 y 0.0 2 a.c	

Report Date: 05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

 Field Sample ID:
 DEK-MW-15005
 Collect Date:
 05/02/2023

 Lab Sample ID:
 23-0400-02
 Collect Time:
 09:53 AM

Anions by EPA 300.0 CCR Rule Analy	te List, Cl, F,	SO4, Aqı	ieous	Aliquot #: 23-0	400-02-C02-A02	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/05/2023	AB23-0505-06
Sulfate	189000		ug/L	1000.0	05/05/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH3(h)	, Groundwate	r HL		Aliquot #: 23-0	400-02-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	3290		ug/L	25.0	05/12/2023	AB23-0512-02
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	400-02-C04-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	767		mg/L	10.0	05/04/2023	AB23-0504-07
Alkalinity by SM 2320B				Aliquot #: 23-0	400-02-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	329000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Bicarbonate	329000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Carbonate	ND		ug/L	10000.0	05/05/2023	AB23-0505-09
Sulfide, Total by SM 4500 S2D				Aliquot #: 23-0	400-02-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	60		ug/L	20.0	05/05/2023	AB23-0504-02

Report Date:

05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

 Field Sample ID:
 DEK-MW-15006
 Collect Date:
 05/02/2023

 Lab Sample ID:
 23-0400-03
 Collect Time:
 11:13 AM

Metals by EPA 6020B: CCR i	Tule Appelluix III-IV TO	tai wetais	- LAP	Aliquot #: 23-0	400-03-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Arsenic	16		ug/L	1.0	05/09/2023	AB23-0510-13
Barium	137		ug/L	5.0	05/09/2023	AB23-0510-13
Beryllium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Boron	944		ug/L	20.0	05/09/2023	AB23-0510-13
Cadmium	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Calcium	127000		ug/L	1000.0	05/09/2023	AB23-0510-13
Chromium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Cobalt	ND		ug/L	6.0	05/09/2023	AB23-0510-13
Copper	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Iron	985		ug/L	20.0	05/09/2023	AB23-0510-13
Lead	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Lithium	19		ug/L	10.0	05/09/2023	AB23-0510-13
Magnesium	17900		ug/L	1000.0	05/09/2023	AB23-0510-13
Manganese	454		ug/L	5.0	05/09/2023	AB23-0510-13
Molybdenum	7		ug/L	5.0	05/09/2023	AB23-0510-13
Nickel	3		ug/L	2.0	05/09/2023	AB23-0510-13
Potassium	8840		ug/L	100.0	05/09/2023	AB23-0510-13
Selenium	1		ug/L	1.0	05/09/2023	AB23-0510-13
Silver	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Sodium	103000		ug/L	1000.0	05/09/2023	AB23-0510-13
Thallium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Vanadium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Zinc	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Tota	ıl, Aqueous			Aliquot #: 23-0	400-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueo	us, NO2, NO3			Aliquot #: 23-0	400-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrite	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Anions by EPA 300.0 CCR R	ule Analyte List, Cl, F,	SO4, Aqu	ieous	Aliquot #: 23-0	400-03-C02-A02	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Report Date: 05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

 Field Sample ID:
 DEK-MW-15006
 Collect Date:
 05/02/2023

 Lab Sample ID:
 23-0400-03
 Collect Time:
 11:13 AM

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous A		Aliquot #: 23-0	400-03-C02-A02	Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/05/2023	AB23-0505-06
Sulfate	385000		ug/L	1000.0	05/06/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH3(h), Groundwate	er HL		Aliquot #: 23-0	400-03-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	3830		ug/L	25.0	05/12/2023	AB23-0512-02
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	400-03-C04-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	847		mg/L	10.0	05/04/2023	AB23-0504-07
Alkalinity by SM 2320B				Aliquot #: 23-0	400-03-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	197000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Bicarbonate	197000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Carbonate	ND		ug/L	10000.0	05/05/2023	AB23-0505-09
Sulfide, Total by SM 4500 S2D				Aliquot #: 23-0	400-03-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	40		ug/L	20.0	05/05/2023	AB23-0504-02

Report Date:

05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

 Field Sample ID:
 DUP-DEK-BAP-01
 Collect Date:
 05/02/2023

 Lab Sample ID:
 23-0400-04
 Collect Time:
 12:00 AM

Metals by EPA 6020B: CCR Rule	Appendix III-IV 10	tai wictais		Aliquot #: 23-0	400-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Arsenic	32		ug/L	1.0	05/09/2023	AB23-0510-13
Barium	224		ug/L	5.0	05/09/2023	AB23-0510-13
Beryllium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Boron	864		ug/L	20.0	05/09/2023	AB23-0510-13
Cadmium	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Calcium	107000		ug/L	1000.0	05/09/2023	AB23-0510-13
Chromium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Cobalt	ND		ug/L	6.0	05/09/2023	AB23-0510-13
Copper	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Iron	684		ug/L	20.0	05/09/2023	AB23-0510-13
Lead	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Lithium	28		ug/L	10.0	05/09/2023	AB23-0510-13
Magnesium	21000		ug/L	1000.0	05/09/2023	AB23-0510-13
Manganese	299		ug/L	5.0	05/09/2023	AB23-0510-13
Molybdenum	8		ug/L	5.0	05/09/2023	AB23-0510-13
Nickel	3		ug/L	2.0	05/09/2023	AB23-0510-13
Potassium	8530		ug/L	100.0	05/09/2023	AB23-0510-13
Selenium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Silver	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Sodium	111000		ug/L	1000.0	05/09/2023	AB23-0510-13
Thallium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Vanadium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Zinc	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Total, A	queous			Aliquot #: 23-0	400-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous,	NO2, NO3			Aliquot #: 23-0	400-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrite	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Anions by EPA 300.0 CCR Rule	Analyte List, CI, F,	SO4, Aqu	eous	Aliquot #: 23-0	400-04-C02-A02	Analyst: KDR
	Decult	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)	Result	Flay	Ullits	NL.	Alialysis Date	Hacking

Report Date: 05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

Field Sample ID: DUP-DEK-BAP-01 Collect Date: 05/02/2023
Lab Sample ID: 23-0400-04 Collect Time: 12:00 AM

Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous A		Aliquot #: 23-0	400-04-C02-A02	Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/05/2023	AB23-0505-06
Sulfate	189000		ug/L	1000.0	05/05/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH3(h), Groundwate	r HL		Aliquot #: 23-0	400-04-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	3310		ug/L	25.0	05/12/2023	AB23-0512-02
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	400-04-C04-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	764		mg/L	10.0	05/04/2023	AB23-0504-07
Alkalinity by SM 2320B				Aliquot #: 23-0	400-04-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	324000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Bicarbonate	324000		ug/L	10000.0	05/05/2023	AB23-0505-09
Alkalinity Carbonate	ND		ug/L	10000.0	05/05/2023	AB23-0505-09
Sulfide, Total by SM 4500 S2D				Aliquot #: 23-0	400-04-C07-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	60		ug/L	20.0	05/05/2023	AB23-0504-02

Report Date:

05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

Field Sample ID: FB-DEK-BAP Collect Date: 05/02/2023
Lab Sample ID: 23-0400-05 Collect Time: 12:07 PM

Matrix: Water

Metals by EPA 6020B: CCR Rule	Appendix III-IV To	tai Metais	s Exp	Aliquot #: 23-0	400-05-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Arsenic	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Barium	ND		ug/L	5.0	05/09/2023	AB23-0510-13
Beryllium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Boron	ND		ug/L	20.0	05/09/2023	AB23-0510-13
Cadmium	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Calcium	ND		ug/L	1000.0	05/09/2023	AB23-0510-13
Chromium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Cobalt	ND		ug/L	6.0	05/09/2023	AB23-0510-13
Copper	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Iron	ND		ug/L	20.0	05/09/2023	AB23-0510-13
Lead	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Lithium	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Magnesium	ND		ug/L	1000.0	05/09/2023	AB23-0510-13
Manganese	ND		ug/L	5.0	05/09/2023	AB23-0510-13
Molybdenum	ND		ug/L	5.0	05/09/2023	AB23-0510-13
Nickel	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Potassium	ND		ug/L	100.0	05/09/2023	AB23-0510-13
Selenium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Silver	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Sodium	ND		ug/L	1000.0	05/09/2023	AB23-0510-13
Thallium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Vanadium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Zinc	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Total, Ac	lueous			Aliquot #: 23-0	400-05-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous, N	IO2, NO3			Aliquot #: 23-0	400-05-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrite	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrogen-Ammonia by SM4500NI	H3(h), Groundwate	r HL		Aliquot #: 23-0	400-05-C03-A01	Analyst: CLE
	5			ъ.		To a delice of
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

A CENTURY OF EXCELLENCE

Analytical Report

Report Date: 05/19/23

Sample Site: **DEK Bottom Ash Pond**

Laboratory Project: 23-0400 Field Sample ID: FB-DEK-BAP Collect Date: 05/02/2023 Lab Sample ID: 23-0400-05 Collect Time: 12:07 PM

Matrix: Water

Sulfide, Total by SM 4500 S2D			liquot #: 23-0	Analyst: Merit	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Sulfide	ND	ug/L	20.0	05/05/2023	AB23-0504-02

Report Date: 05/19/23

23-0400

05/02/2023

12:21 PM

Laboratory Project:

Collect Date:

Collect Time:

Sample Site: **DEK Bottom Ash Pond**

Field Sample ID: **EB-DEK-BAP**Lab Sample ID: 23-0400-06

Matrix: Water

Metals by EPA 6020B: CCR Rule Apper	ndix III-IV	Total Metals	s Exp	Aliquot #: 23-0	400-06-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Arsenic	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Barium	ND		ug/L	5.0	05/09/2023	AB23-0510-13
Beryllium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Boron	ND		ug/L	20.0	05/09/2023	AB23-0510-13
Cadmium	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Calcium	ND		ug/L	1000.0	05/09/2023	AB23-0510-13
Chromium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Cobalt	ND		ug/L	6.0	05/09/2023	AB23-0510-13
Copper	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Iron	ND		ug/L	20.0	05/09/2023	AB23-0510-13
Lead	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Lithium	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Magnesium	ND		ug/L	1000.0	05/09/2023	AB23-0510-13
Manganese	ND		ug/L	5.0	05/09/2023	AB23-0510-13
Molybdenum	ND		ug/L	5.0	05/09/2023	AB23-0510-13
Nickel	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Potassium	ND		ug/L	100.0	05/09/2023	AB23-0510-13
Selenium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Silver	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Sodium	ND		ug/L	1000.0	05/09/2023	AB23-0510-13
Thallium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Vanadium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Zinc	ND		ug/L	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Total, Aqueous	3			Aliquot #: 23-0	400-06-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous, NO2, N	О3			Aliquot #: 23-0	400-06-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrite	ND		ug/L	100.0	05/03/2023	AB23-0503-05
Nitrogen-Ammonia by SM4500NH3(h),	Groundwa	ater HL		Aliquot #: 23-0	400-06-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	ND		ug/L	25.0	05/12/2023	AB23-0512-02

A CENTURY OF EXCELLENCE

Field Sample ID: EB-DEK-BAP

Analytical Report

Report Date: 05/19/23

Sample Site: **DEK Bottom Ash Pond** Laboratory Project: **23-0400**

Collect Date: 05/02/2023 Collect Time: 12:21 PM

Lab Sample ID: 23-0400-06 Matrix: Water

Sulfide, Total by SM 4500 S2D			Aliquot #: 23-	Analyst: Merit	
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Sulfide	ND	ug/L	20.0	05/05/2023	AB23-0504-02

Report Date: 05/19/23

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 4 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Project Log-In Number: 2	3-0100				
Inspection Date: 5.03.23		_	Inspection By:	10	
Sample Origin/Project Name	Q2-2	023 DEN	Bottom Ash	Pond Wells	
Shipment Delivered By: Ente	er the type of	f shipment ca	rrier.		
A STATE OF THE PARTY OF THE PAR			SUSPS_	Airl	oorne
Other/Hand Carry (wh					
			08 Shipping Form At		No
Shipping Containers: Enter the		1 100 20			
Cooler ★ (e/Mailer
Loose/Unpackaged Co			Other		
Condition of Shipment: Ente					90.7
Damaged Shipment O			Dented	Leal	king
Shipment Security: Enter if a	ny of the shi	ipping contai	ners were opened before re	ceipt.	
Shipping Containers R	Received: O	pened	Sealed X	_	
Enclosed Documents: Enter t	he type of de	ocuments end	closed with the shipment.		
CoC ★ Wo	rk Request_		Air Data Sheet	Other	
Temperature of Containers: 1					
				A	
As-Received Tempera	ture Range	2.1-3.4	Samples Received o	n ice: Yes_ N	lo
M&TE # and Expiration	on 27723	5.25.23			
Number and Type of Contain	ers: Enter t	the total num	ber of sample containers re-	ceived.	
Container Type	Water	Soil	Other	Broken	Leaking
VOA (40mL or 60mL)	8				
Quart/Liter (g/p)		_	_		_
9-oz (amber glass jar)		_			-
2-oz (amber glass)					
125 mL (plastic)	24	_		-	
24 mL vial (glass)		_		_	-
256 500 mL (plastic)	4	\rightarrow		-	-
Other		_			

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY - LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page 1 of (

SAMPLING SITE / CUSTOMER: Q2-2023 DEK Bottom Ash Pond Wells					PROJECT NUMBER:	SAP CC or WO	_	Jd R	Pegi	ster			ANALYSIS REQUESTED (Attach List if More Space is Needed)					d)	QA REQUIREMENT:		
SAMPLING TEAM:					TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ STA			//u I	Cogi	Ster											□ NPDES □ TNI
SEN	D REPORT TO:	Caleb Batts			email: phone:			1								☐ ISO 17025					
	COPY TO:	Harold Regis	ter		MATRIX CODES: GW = Groundwater WW = Wastewater OX = Other SL = Sludge			CONTAINERS PRESERVATIVE				1								☐ 10 CFR 50 APP. B	
		TRC										PRESERVATIVE		PRESERVATIVE		SERVATIVE		25			
	LAB	SAMPLE COLI	LECTION	×	W = Water / Aqueous Liquid A = Air S = Soil / General Solid WP = Wipe O = Oil WT = Gene	ral Waste	AL#						Met	ns	Ammonia		linity	e e			□ OTHER
S	AMPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / LOC	CATION	ATION I Waste	Nome HNO3 H3SO4 H3SO4 HACI HCI HCI HCI HCI HCI HCI HCI HCI HCI H	Anions	Amn	TDS	Alkalinity	Sulfide			REMARKS					
1	23-0400-01	5-2-23	1207	GW	DEK-MW-15002		7	4	ı	1 1			x	x	x	x	x	x			
	-02	5-2-23	0953	GW	DEK-MW-15005		7	4	1	1 1			x	x	x	x	x	x			
	-03	5-2-23	1113	GW	DEK-MW-15006		7	4	1	1 1			x	x	x	x	x	x			
	-04	5-2-23	_	GW	DUP-DEK-BAP-01		7	4	1	1 1			x	x	x	x	x	x			
	-05	5-2-23	1207	w	FB-DEK-BAP		4	1	1	1	i I		x	x	x			x			
E	-06	5-2-23	1221	W	EB-DEK-BAP		4	1	1	1			x	x	x			x			
								+		+	+		H								
RELINQUISHED BY: DATE				TIME: RECEIVED BY: 2-23 / 1600 Fedex				С	COMMENTS:												
RELINQUISHED BY: DATE				5-03.23 10:20	ECEIVED BY:												i □ N • °C			:_27723 Date;_5-25-23	
					<u>2</u>	3-0400 Page 19 c	or 33														

Report ID: S48155.01(01) Generated on 05/05/2023

Report to

Attention: Emil Blaj

Consumers Energy Company

135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 C:517-684-9467 FAX:

Email: emil.blaj@cmsenergy.com

Report produced by

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: John Laverty (johnlaverty@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Summary

Lab Sample ID(s): S48155.01-S48155.06

Project: 23-0400 PR#23050668 Collected Date(s): 05/02/2023

Submitted Date/Time: 05/03/2023 16:41

Sampled by: Unknown P.O. #: 4400114090

Table of Contents

Cover Page (Page 1)

General Report Notes (Page 2)

Report Narrative (Page 2)

Laboratory Certifications (Page 3)

Qualifier Descriptions (Page 3)

Glossary of Abbreviations (Page 3)

Method Summary (Page 4)

Sample Summary (Page 5)

Maya Murshak Technical Director

Naya Mushah

General Report Notes

Analytical results relate only to the samples tested, in the condition received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

When MDL results are provided, then 'Not detected' indicates that parameter was not found at a level equal to or greater than the MDL.

40 CFR Part 136 Table II Required Containers, Preservation Techniques and Holding Times for the Clean Water Act specify that samples

for acrolein and acrylonitrile, and 2-chloroethylvinyl ether need to be preserved at a pH in the range of 4 to 5 or if not preserved, analyzed within 3 days of sampling.

QA/QC corresponding to this analytical report is a separate document with the same Merit ID reference and is available upon request.

Full accreditation certificates are available upon request. Starred (*) analytes are not NELAP accredited.

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc.

Limits for drinking water samples, are listed as the MCL Limits (Maximum Contaminant Level Concentrations)

PFAS requirement: Section 9.3.8 of U.S. EPA Method 537.1 states "If the method analyte(s) found in the Field Sample is present in the

FRB at a concentration greater than 1/3 the MRL, then all samples collected with that FRB are invalid and must be recollected and reanalyzed."

Samples submitted without an accompanying FRB may not be acceptable for compliance purposes.

Wisconsin PFAs analysis: MDL = LOD; RL = LOQ. LOD and LOQ are adjusted for dilution.

Report Narrative

There is no additional narrative for this analytical report

Laboratory Certifications

Authority	Certification ID
Michigan DEQ	#9956
DOD ELAP/ISO 17025	#69699
WBENC	#2005110032
Ohio VAP	#CL0002
Indiana DOH	#C-MI-07
New York NELAC	#11814
North Carolina DENR	#680
North Carolina DOH	#26702
Alaska CSLAP	#17-001
Pennsylvania DEP	#68-05884
Wisconsin DNR	FID# 399147320

Qualifier Descriptions

Qualifier	Description
!	Result is outside of stated limit criteria
В	Compound also found in associated method blank
E	Concentration exceeds calibration range
F	Analysis run outside of holding time
G	Estimated result due to extraction run outside of holding time
Н	Sample submitted and run outside of holding time
1	Matrix interference with internal standard
J	Estimated value less than reporting limit, but greater than MDL
L	Elevated reporting limit due to low sample amount
М	Result reported to MDL not RDL
0	Analysis performed by outside laboratory. See attached report.
R	Preliminary result
S	Surrogate recovery outside of control limits
T	No correction for total solids
X	Elevated reporting limit due to matrix interference
Υ	Elevated reporting limit due to high target concentration
b	Value detected less than reporting limit, but greater than MDL
е	Reported value estimated due to interference
j	Analyte also found in associated method blank
p	Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.
x	Preserved from bulk sample

Glossary of Abbreviations

Abbreviation	Description
RL/RDL	Reporting Limit
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
SW	EPA SW 846 (Soil and Wastewater) Methods
E	EPA Methods
SM	Standard Methods
LN	Linear
BR	Branched

Method Summary

Method Version

SM4500-S2 D

Standard Method 4450 S2 D 2011

Report to Consumers Energy Company Project: 23-0400 PR#23050668

Page 400 Page 23 of 33

Sample Summary (6 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S48155.01	23-0400-01 (DEK-MW-15002)	Groundwater	05/02/23 12:07
S48155.02	23-0400-02 (DEK-MW-15005)	Groundwater	05/02/23 09:53
S48155.03	23-0400-03 (DEK-MW-15006)	Groundwater	05/02/23 11:13
S48155.04	23-0400-04 (DUP-DEK-BAP-01)	Groundwater	05/02/23 00:01
S48155.05	23-0400-05 (FB-DEK-BAP)	Groundwater	05/02/23 12:07
S48155.06	23-0400-06 (EB-DEK-BAP)	Groundwater	05/02/23 12:21

Lab Sample ID: S48155.01

Sample Tag: 23-0400-01 (DEK-MW-15002) Collected Date/Time: 05/02/2023 12:07

Matrix: Groundwater COC Reference:

Sample Containers

#	туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	I nermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	4.1	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 15:06, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.10	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S48155.02

Sample Tag: 23-0400-02 (DEK-MW-15005) Collected Date/Time: 05/02/2023 09:53

Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	4.1	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 15:08, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.06	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S48155.03

Sample Tag: 23-0400-03 (DEK-MW-15006) Collected Date/Time: 05/02/2023 11:13

Matrix: Groundwater COC Reference:

Sample Containers

#	туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	I nermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	4.1	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 15:16, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.04	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S48155.04

Sample Tag: 23-0400-04 (DUP-DEK-BAP-01)
Collected Date/Time: 05/02/2023 00:01

Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	4.1	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 15:18, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.06	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S48155.05

Sample Tag: 23-0400-05 (FB-DEK-BAP)
Collected Date/Time: 05/02/2023 12:07

Matrix: Groundwater COC Reference:

Sample Containers

#	туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	I nermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	4.1	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 15:20, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S48155.06

Sample Tag: 23-0400-06 (EB-DEK-BAP) Collected Date/Time: 05/02/2023 12:21

Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	4.1	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 15:22, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Merit Laboratories Login Checklist

Lab Set ID:S48155

Client: CONSUMERS (Consumers Energy Company)

Project: 23-0400 PR#23050668

Submitted: 05/03/2023 16:41 Login User: MMC

Attention: Emil Blaj

Address: Consumers Energy Company 135 West Trail Street

Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Selec	tion			Description	Note
Samp	ole Receiv	/ing			
01.	X Yes	☐ No	□ N/A	Samples are received at 4C +/- 2C Thermometer #	IR 4.1
02.	X Yes	No	□ N/A	Received on ice/ cooling process begun	
03.	Yes	X No	□ N/A	Samples shipped	_
04.	Yes	X No	□ N/A	Samples left in 24 hr. drop box	_
05.	Yes	No	X N/A	Are there custody seals/tape or is the drop box locked	
Chair	n of Custo	ody			
06.	X Yes	No	□ N/A	COC adequately filled out	
07.	X Yes	No	N/A	COC signed and relinquished to the lab	
08.	X Yes	No	N/A	Sample tag on bottles match COC	
09.	Yes	X No	□ N/A	Subcontracting needed? Subcontacted to:	
Prese	ervation				
10.	X Yes	No	□ N/A	Do sample have correct chemical preservation	
11.	X Yes	No	N/A	Completed pH checks on preserved samples? (no VOAs)	
12.	Yes	X No	N/A	Did any samples need to be preserved in the lab?	
Bottle	e Conditio	ons			
13.	X Yes	No	N/A	All bottles intact	
14.	X Yes	No	N/A	Appropriate analytical bottles are used	
15.	X Yes	No	N/A	Merit bottles used	
16.	X Yes	No	□ N/A	Sufficient sample volume received	
17.	Yes	X No	□ N/A	Samples require laboratory filtration	
18.	X Yes	No	□ N/A	Samples submitted within holding time	
19.	Yes	No	X N/A	Do water VOC or TOX bottles contain headspace	_
Corre	ective action	on for all	exceptions	is to call the client and to notify the project manager.	
Clien	t Review I	3y:		Date:	

Merit Laboratories Bottle Preservation Check

Lab Set ID: S48155 Submitted: 05/03/2023 16:41

Client: CONSUMERS (Consumers Energy Company)

Project: 23-0400 PR#23050668

Initial Preservation Check: 05/04/2023 08:44 MMC

Preservation Recheck (E200.8): N/A

Attention: Emil Blaj

Address: Consumers Energy Company 135 West Trail Street

Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Sample ID	Bottle / Preservation	pH (Orig)	Add ml	pH (New)	Notes
S48155.01	125ml Plastic NaOH/Zn Acetate	>12			
S48155.02	125ml Plastic NaOH/Zn Acetate	>12			
S48155.03	125ml Plastic NaOH/Zn Acetate	>12			
S48155.04	125ml Plastic NaOH/Zn Acetate	>12			
S48155.05	125ml Plastic NaOH/Zn Acetate	>12			
S48155.06	125ml Plastic NaOH/Zn Acetate	>12			

2680 East Lansing Dr., East Lansing, MI 48823 Phone (517) 332-0167 Fax (517) 332-4034 www.meritlabs.com

		1		1
C.O.C. PAGE	#	1	OF.	1

REPOR		,	Laboratories, Inc.	CHAIN	OF	cu	ST	TOD	YR	ECC	ORE)					1	NVOIC	ETO
CONTACT NAME E	mil Blaj							CONTACT NAME											
COMPANY Con	sumers E	energy						COMP	ANY										
ADDRESS 135 V	W. Trail S	Street						ADDRE	SS										
Jackson				STATE MI ZIP	CODE 4	920	1	СПУ									STATE	ZIP CODE	
PHONE NO. 517-	788-5888		FAX NO. 517-788-2533	P.O. NO. 4400114	1090		1	PHONE	NO.				E-MA	L ADDRESS					
E-MAIL ADDRESS	emil.blaj(a)cmsen		QUOTE NO.			Ti					ANALYS	IS (ATT	ACH LIST	IF MORI	E SPAC	E IS REQUIR	ED)	
PROJECT NO./NAM				SAMPLER(S) - PLEASE F	PRINT/SK	SN NA	ME			N/	7		TT	TT	T		Certificat		
			□1 DAY □2 DAYS □3 DA	AYS STANDARD	Поть	HER .				19/3							□ OHIO W	AP Drink	
			TO X LEVEL II LEVEL III				3 _				1	0					□D ₀ D	NPD	ES
	GW=GROUN SL=SLUDG	IDWATER	WW=WASTEWATER S=SC		D=SOLI				ntaine servati		- Series	puinc					Project Lo	ocations New	York
MERIT	MERIT YEAR SAMPLE TAG ₩ 49			N.	5 5	0 2	Naon Naon OTHER Total					11		Other _					
LAB NO. FOR LAB USE ONLY	DATE	TIME	IDENTIFICATION-DE	SCRIPTION		# OF BOTTLE	NONE	E E	H,50,	Ne	Ē E	-	+	++	+	-	Special Ir	structions	
48 55.01	05/02/23	1207	23-0400-01 (DEK-MW-)	5002)	GW	1	Ц		1		1		11	1				with NaOH/2	ZnAcetate
.0-	05/02/23	0953	23-0400-02 (DEK-MW-)	5005)	GW	1	Ц		1	11	1						"		
.03	05/02/23	1113	23-0400-03 (DEK-MW-)	5006)	GW	1	Ц		1		1						"		
.04	05/02/23		23-0400-04 (DUP-DEK-	BAP-01)	GW	1			1		1						n-		
.05	05/02/23	1207	23-0400-05 (FB-DEK-B	AP)	GW	1			1		1						"		
.06	05/02/23	1221	23-0400-06 (EB-DEK-B.	AP)	GW	1	Ц		1		V						"		
4-					1		Ц		Ш		1		11	11	11				
					-		Н	1	H	\sqcup	1			11					
					+		Н	-	H	H	+		\sqcup	++	\perp	4			
					+		Н	1	+	H	+	++-	++	++	++	-			
					-			-	H	++	+		++	1	++				
RELINQUISHED BY SIGNATURE/ORGA		CON	SUMERS ENERGY	Sampler DATE 05-05-23	16	IME 4			QUISHE TURE/0		ZATIO	N						DATE	TIME
RECEIVED BY: SIGNATURE/ORGA	ANIZATION	0 1	n ailcolo	5/3/23 DATE		ME 41			VED BY:		ZATIO	N						DATE	TIME
RELINQUISHED BY SIGNATURE/ORG/ RECEIVED BY:				DATE	T	IME		SEAL				SEAL INTAC	NO	INMALS	N	OTES:	TEMP. ON	ARRIVAL	1
SIGNATURE/ORGA	ANIZATION			DATE		IME .		SEAL	NO.			SEAL INTAC	NOE	INITIALS				7.	

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: CDBatts, Karn/Weadock

From: EBlaj, T-258

Date: May 19, 2023

Subject: RCRA GROUNDWATER MONITORING – KARN BAP & LINED IMP. WELLS – 2023 Q2

CC: HDRegister, P22-521 Darby Litz, Project Manager

BLSwanberg, P22-119 TRC Companies, Inc.

1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 23-0401R

TRC Environmental, Inc. conducted groundwater monitoring at the DEKarn Bottom Ash Pond and Lined Impoundment Wells area during the week of 05/01/2023, for the 2nd Quarter requirement, as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 05/04/2023.

Samples for Total Sulfide have been subcontracted to Merit Laboratories, Inc. and the results are listed under the analyst initials "Merit". Please note that the subcontracted work is not reported under the CE laboratory scope of accreditation.

With the exception noted above, the report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. <u>Sample Receipt</u>

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

<u>Acronym</u>	<u>Description</u>
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

Qualifier	<u>Description</u>
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PΙ	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: Karn/Weadock Complex

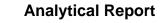
Work Order ID: Q2-2023 DEK Bottom Ash Pond & Lined Impoundment

Date Received: 5/4/2023 **Chemistry Project:** 23-0401

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
23-0401-01	DEK-MW-18001	Groundwater	05/03/2023 06:40	DEK Bottom Ash Pond & Lined Impoundment
23-0401-02	DEK-MW-18001 MS	Groundwater	05/03/2023 06:40	DEK Bottom Ash Pond & Lined Impoundment
23-0401-03	DEK-MW-18001 MSD	Groundwater	05/03/2023 06:40	DEK Bottom Ash Pond & Lined Impoundment

Report Date:

05/19/23


A CENTURY OF EXCELLENCE

Sample Site: **DEK Bottom Ash Pond & Lined Impoundment** Laboratory Project: **23-0401**

 Field Sample ID:
 DEK-MW-18001
 Collect Date:
 05/03/2023

 Lab Sample ID:
 23-0401-01
 Collect Time:
 06:40 AM

					401-01-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Arsenic	304		ug/L	1.0	05/09/2023	AB23-0510-13
Barium	152		ug/L	5.0	05/09/2023	AB23-0510-13
Beryllium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Boron	931		ug/L	20.0	05/09/2023	AB23-0510-13
Cadmium	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Calcium	54600		ug/L	1000.0	05/09/2023	AB23-0510-13
Chromium	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Cobalt	ND		ug/L	6.0	05/09/2023	AB23-0510-13
Copper	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Iron	875		ug/L	20.0	05/09/2023	AB23-0510-13
Lead	ND		ug/L	1.0	05/09/2023	AB23-0510-13
Lithium	20		ug/L	10.0	05/09/2023	AB23-0510-13
Magnesium	10600		ug/L	1000.0	05/09/2023	AB23-0510-13
Manganese	144		ug/L	5.0	05/09/2023	AB23-0510-13
Molybdenum	11		ug/L	5.0	05/09/2023	AB23-0510-13
Nickel	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Potassium	5960		ug/L	100.0	05/09/2023	AB23-0510-13
Selenium	1		ug/L	1.0	05/09/2023	AB23-0510-13
Silver	ND		ug/L	0.2	05/09/2023	AB23-0510-13
Sodium	112000		ug/L	1000.0	05/09/2023	AB23-0510-13
Thallium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Vanadium	ND		ug/L	2.0	05/09/2023	AB23-0510-13
Zinc	12		ug/L	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Total, Aqueou	S			Aliquot #: 23-0	401-01-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous, NO2, NO3				Aliquot #: 23-0	Analyst: KDR	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	ND		ug/L	100.0	05/04/2023	AB23-0504-05
Nitrite	ND		ug/L	100.0	05/04/2023	AB23-0504-05
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 23-0	401-01-C02-A02	Analyst: KDR
	Result	Flag	Units	RL	Analysis Date	Tracking
Parameter(s)	Nosuit	9	•		/ inaryoro Dato	

Report Date: 05/19/23

Sample Site: **DEK Bottom Ash Pond & Lined Impoundment** Laboratory Project: **23-0401**

 Field Sample ID:
 DEK-MW-18001
 Collect Date:
 05/03/2023

 Lab Sample ID:
 23-0401-01
 Collect Time:
 06:40 AM

Anions by EPA 300.0 CCR Rule Analyte List, Cl, F, SO4, Aqueous		Aliquot #: 23-0401-01-C02-A02		Analyst: KDR		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	ND		ug/L	1000.0	05/05/2023	AB23-0505-06
Sulfate	148000		ug/L	1000.0	05/05/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH3(h	ı), Groundwate	r HL		Aliquot #: 23-0	401-01-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	1740		ug/L	25.0	05/12/2023	AB23-0512-02
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	401-01-C04-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	575		mg/L	10.0	05/05/2023	AB23-0505-05
Alkalinity by SM 2320B				Aliquot #: 23-0	401-01-C05-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	192000		ug/L	10000.0	05/10/2023	AB23-0510-02
Alkalinity Bicarbonate	192000		ug/L	10000.0	05/10/2023	AB23-0510-02
Alkalinity Carbonate	ND		ug/L	10000.0	05/10/2023	AB23-0510-02
Sulfide, Total by SM 4500 S2D				Aliquot #: 23-0	Analyst: Merit	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	ND		ug/L	20.0	05/05/2023	AB23-0505-10

Report Date:

05/19/23

Laboratory Services A CENTURY OF EXCELLENCE

DEK Bottom Ash Pond & Lined Impoundment Sample Site: Laboratory Project: 23-0401

Field Sample ID: DEK-MW-18001 MS

Collect Date: 05/03/2023 Lab Sample ID: 23-0401-02 Collect Time: 06:40 AM

Metals by EPA 6020B: CCR R	uie Appendix III-IV To	tai Metais	⊨xp	Aliquot #: 23-0	401-02-C01-A01	Analyst: E
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Trackin
Antimony	109		%	1.0	05/09/2023	AB23-0510-1
Arsenic	92		%	1.0	05/09/2023	AB23-0510-1
Barium	111		%	5.0	05/09/2023	AB23-0510-1
Beryllium	104		%	1.0	05/09/2023	AB23-0510-1
Boron	99		%	20.0	05/09/2023	AB23-0510-1
Cadmium	105		%	0.2	05/09/2023	AB23-0510-1
Calcium	101		%	1000.0	05/09/2023	AB23-0510-1
Chromium	91		%	1.0	05/09/2023	AB23-0510-1
Cobalt	96		%	6.0	05/09/2023	AB23-0510-1
Copper	94		%	1.0	05/09/2023	AB23-0510-1
Iron	110		%	20.0	05/09/2023	AB23-0510-1
Lead	99		%	1.0	05/09/2023	AB23-0510-1
Lithium	99		%	10.0	05/09/2023	AB23-0510-1
Magnesium	103		%	1000.0	05/09/2023	AB23-0510-1
Manganese	96		%	5.0	05/09/2023	AB23-0510-1
Molybdenum	114		%	5.0	05/09/2023	AB23-0510-1
Nickel	94		%	2.0	05/09/2023	AB23-0510-1
Potassium	100		%	100.0	05/09/2023	AB23-0510-1
Selenium	98		%	1.0	05/09/2023	AB23-0510-1
Silver	93.9		%	0.2	05/09/2023	AB23-0510-1
Sodium	105		%	1000.0	05/09/2023	AB23-0510-1
Thallium	99		%	2.0	05/09/2023	AB23-0510-1
Vanadium	99		%	2.0	05/09/2023	AB23-0510-1
Zinc	93		%	10.0	05/09/2023	AB23-0510-1
Mercury by EPA 7470A, Tota	, Aqueous			Aliquot #: 23-0	401-02-C01-A02	Analyst: CL
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Trackin
Mercury	104		%	0.2	05/11/2023	AB23-0511-0
Anions by EPA 300.0 Aqueou	Aliquot #: 23-0	Analyst: KD				
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Trackin
Nitrate	85		%	100.0	05/04/2023	AB23-0504-0
Nitrite	92		%	100.0	05/04/2023	AB23-0504-0
Anions by EPA 300.0 CCR Ru	ıle Analyte List, Cl, F,	SO4, Aque	eous	Aliquot #: 23-0	401-02-C02-A02	Analyst: KD
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Trackin
Chloride	99		%	1000.0	05/05/2023	AB23-0505-0

Analytical Report

Report Date: 05/19/23

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: **DEK Bottom Ash Pond & Lined Impoundment** Laboratory Project: **23-0401**

 Field Sample ID:
 DEK-MW-18001 MS
 Collect Date:
 05/03/2023

 Lab Sample ID:
 23-0401-02
 Collect Time:
 06:40 AM

Anions by EPA 300.0 CCR Rule A	nalyte List, CI, F,	SO4, Aqı	ieous	Aliquot #: 23-0	401-02-C02-A02	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	94		%	1000.0	05/05/2023	AB23-0505-06
Sulfate	102		%	1000.0	05/05/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH	3(h), Groundwate	r HL		Aliquot #: 23-0	401-02-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	102		%	25.0	05/12/2023	AB23-0512-02
Alkalinity by SM 2320B				Aliquot #: 23-0	401-02-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	97.9		%	10000.0	05/10/2023	AB23-0510-02
Sulfide, Total by SM 4500 S2D				Aliquot #: 23-0	401-02-C06-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	92		%	20.0	05/05/2023	AB23-0505-10

Report Date:

05/19/23

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: **DEK Bottom Ash Pond & Lined Impoundment** Laboratory Project: **23-0401**

 Field Sample ID:
 DEK-MW-18001 MSD
 Collect Date:
 05/03/2023

 Lab Sample ID:
 23-0401-03
 Collect Time:
 06:40 AM

Metals by EPA 6020B: CCR Rule App			•	Aliquot #: 23-0	401-03-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	110		%	1.0	05/09/2023	AB23-0510-13
Arsenic	104		%	1.0	05/09/2023	AB23-0510-13
Barium	112		%	5.0	05/09/2023	AB23-0510-13
Beryllium	106		%	1.0	05/09/2023	AB23-0510-13
Boron	98		%	20.0	05/09/2023	AB23-0510-13
Cadmium	106		%	0.2	05/09/2023	AB23-0510-13
Calcium	97.8		%	1000.0	05/09/2023	AB23-0510-13
Chromium	93		%	1.0	05/09/2023	AB23-0510-13
Cobalt	97		%	6.0	05/09/2023	AB23-0510-13
Copper	92		%	1.0	05/09/2023	AB23-0510-13
Iron	104		%	20.0	05/09/2023	AB23-0510-13
Lead	97		%	1.0	05/09/2023	AB23-0510-13
Lithium	98		%	10.0	05/09/2023	AB23-0510-13
Magnesium	101		%	1000.0	05/09/2023	AB23-0510-13
Manganese	97		%	5.0	05/09/2023	AB23-0510-13
Molybdenum	113		%	5.0	05/09/2023	AB23-0510-13
Nickel	94		%	2.0	05/09/2023	AB23-0510-13
Potassium	102		%	100.0	05/09/2023	AB23-0510-13
Selenium	97		%	1.0	05/09/2023	AB23-0510-13
Silver	96.3		%	0.2	05/09/2023	AB23-0510-13
Sodium	103		%	1000.0	05/09/2023	AB23-0510-13
Thallium	98		%	2.0	05/09/2023	AB23-0510-13
Vanadium	100		%	2.0	05/09/2023	AB23-0510-13
Zinc	94		%	10.0	05/09/2023	AB23-0510-13
Mercury by EPA 7470A, Total, Aqued	ous			Aliquot #: 23-0	401-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	108		%	0.2	05/11/2023	AB23-0511-02
Anions by EPA 300.0 Aqueous, NO2	, NO3			Aliquot #: 23-0	Analyst: KDF	
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Nitrate	86		%	100.0	05/04/2023	AB23-0504-05
Nitrite	93		%	100.0	05/04/2023	AB23-0504-05
Anions by EPA 300.0 CCR Rule Anal	yte List, Cl, F,	SO4, Aqı	ieous	Aliquot #: 23-0	401-03-C02-A02	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Analytical Report

Report Date: 05/19/23

Laboratory Services
A CENTURY OF EXCELLENCE

Sample Site: **DEK Bottom Ash Pond & Lined Impoundment**

Laboratory Project: 23-0401

Field Sample ID: **DEK-MW-18001 MSD**

Collect Date: 05/03/2023 Collect Time: 06:40 AM

Lab Sample ID: 23-0401-03 Matrix: Groundwater

Anions by EPA 300.0 CCR Rule Anal	Aliquot #: 23-0	Analyst: KDR				
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Fluoride	93		%	1000.0	05/05/2023	AB23-0505-06
Sulfate	102		%	1000.0	05/05/2023	AB23-0505-06
Nitrogen-Ammonia by SM4500NH3(h	ı), Groundwate	er HL		Aliquot #: 23-0	401-03-C03-A01	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Ammonia	101		%	25.0	05/12/2023	AB23-0512-02
Alkalinity by SM 2320B				Aliquot #: 23-0	401-03-C04-A01	Analyst: DLS
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Alkalinity Total	101		%	10000.0	05/10/2023	AB23-0510-02
Sulfide, Total by SM 4500 S2D				Aliquot #: 23-0	401-03-C06-A01	Analyst: Merit
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Sulfide	91		%	20.0	05/05/2023	AB23-0505-10

Data Qualifiers	Exception Summary
	No exceptions occurred.

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 4 ATTACHMENT A

General Standard Operating Procedure

TITLE:	SAMPLE LOG-IN – SHIPMENT INSPECTION FORM

Project Log-In Number: 2	3-0401					
Inspection Date: 5.04.2	3		Inspection E	By: MO		
Sample Origin/Project Name	Q2-202	3 Rotton	Ash Pa	and + Lun	ed Impa	nd
Shipment Delivered By: Ente	er the type of sh	ipment carrie	N.			
Pony I Other/Hand Carry (wh	FedEx				Airb	orne
Tracking Number:					ned: Yes	_ No
Shipping Containers: Enter t	he type and nur	nber of shippi	ng container	s received.		
Cooler <u>\(\strict{\sinct{\strict{\stilit{\stilitit{\sinte\sintitit{\sintititit{\sintititit{\s</u>						e/Mailer
Condition of Shipment: Ente						
Damaged Shipment O	bserved: None	<u>×</u>		ted	Leak	cing
Shipping Containers F Enclosed Documents: Enter to	Leceived: Open	ed	Seal	led <u></u>	t.,	
CoC _★_ Wo	rk Request		Air Data S	heet	Other	
Temperature of Containers: It As-Received Tempera M&TE # and Expiration	ture Range 1. C	2-1	Samples I	e containers. Received on Ico	e: Yes X N	o
Number and Type of Contain	ers: Enter the	total number	of sample con	ntainers receiv	ed.	
Container Type VOA (40mL or 60mb)	Water	Soil .	Othe		Broken	Leaking
Quart/Liter (g/p)	_				_	
9-oz (amber glass jar)	=	_				+
2-oz (amber glass)	12			_	_	-
125 mL (plastic)	10	_	-		_	
24 mL vial (glass) 300 mL (plastic)	1					
Other		_	-		-	

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY - LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page ____ of ____

SAMPLING SITE / CUSTOMER:				PROJECT NUMBER:	SAP CC or WC	SAP CC or WO#:							A	NAI	YSI	SRE	OUE	STEI	D	QA REQUIREMENT:		
Q2-2023 DEK Bot	tom A	Ash P	ond & 1	ined Impo	ound.	23-0401	REQUESTER:	REQUESTER: Harold Register					(Attach List if More Space is Needed)								QA REQUIREMENT:	
SAMPLING TEAM:						TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ S	TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ STANDARD ☒ OTHER											□ NPDES ⊠ TNI				
SEND REPORT TO): C	Caleb	Batts			email:	phone:	phone:														□ ISO 17025
COPY TO: Harold Register TRC		MATRIX CODES: GW = Groundwater OX = Other WW = Wastewater SL = Sluce		CONTAINERS PRESERVATIVE						sli								☐ 10 CFR 50 APP. B☐ INTERNAL INFO				
LAB	- 1	-	E COLL	ECTION	MATRIX	W = Water / Aqueous Liquid A = Air S = Soil / General Solid WP = Wi O = Oil WT = Ge	pe neral Waste	LAL#	TOTAL # None HNO3 H ₂ SO3 NaOH HCI MeOH		al Metals	Anions	Ammonia	rs.	Alkalinity	Sulfide			□ OTHER			
SAMPLE ID		DA	TE	TIME	MAT	FIELD SAMPLE ID / LOCATION		TO	None HNO ₃	HNC	NaO	HCI	MeOF	Total	Ani	Am	TDS	Alk	Sull			REMARKS
23-0401-01	7	5/3	153	auc	GW	DEK-MW-18001		7	4	1 1	1			x	x	x	x	x	x			
-02		11	1	dello	GW	DEK-MW-18001 MS		6	3	1 1	į			x	x	х	Ī	x	x			
-03		1	111	deile	, GW	DEK-MW-18001 MSD		6	3	1 1	1			х	x	x		x	x			
									Ц			H										111
											-	L										
	1									-				-							Ш	
	-									-				L								
	4				-					+	+		4									8
RELINQUISHED B	Y:	_	_		DATE/	TIME:	RECEIVED BY:		Ш					CC	MME	ENTS	8					**
			_	1		6769ce Y	۷.							1	13131	,,,,						÷
RELINQUISHED B	Y/			1	DATE/	TIME:	RECEIVED BY:								ceived							ue Date: 5- 25-23

General Standard Operating Procedure

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Project Log-In Number: 23-64	01			
Inspection Date: 5.04.23		Inspection By: LMO	l.	
Sample Origin/Project Name: 62	-2023 ROTH	om Ash Pond of U	uned Impai	nd
Shipment Delivered By: Enter the ty	pe of shipment car	rier.		
Pony FedEx _	UPS	SUSPS_	Airt	orne
Other/Hand Carry (whom)				
Tracking Number:		Shipping Form Att	ached: Yes	_ No
Shipping Containers: Enter the type	and number of shi	pping containers received.		
Cooler 🔀 Cardboa	ard Box	Custom Case	Envelope	e/Mailer
Loose/Unpackaged Container				
Condition of Shipment: Enter the as-				
Damaged Shipment Observed	2.7			aC D
Other			_ Lea	cing
Shipment Security: Enter if any of th	e shipping contain			
Shipping Containers Received	d: Opened	_ Sealed —	_	
Enclosed Documents: Enter the type	of documents encl	osed with the shipment.		
CoC Work Requ	iest	Air Data Sheet	Other	
Temperature of Containers: Measure	the temperature of	f several sample containers	(4.	
As-Received Temperature Ra				lo
M&TE # and Expiration _ LS	0611123 5.1	2.73		
Number and Type of Containers: En	nter the total numb	er of sample containers rec	eived.	
Container Type Water	c Soil	Other	Broken	Leaking
VOA (40mL or 60m)				
Quart/Liter (g/p)	_			-
9-oz (amber glass jar)	-			-
2-oz (amber glass)	_			_
125 mL (plastic) 12	_			_
24 mL vial (glass)	-			-
Other	_		-	
Omer	_			

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY - LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page _____ of ____

SAMPLING SITE / CUSTOMER:				PROJECT NUMBER:	SAP CC or WO	SAP CC or WO#:							A	NAL	YSI)	QA REQUIREMENT:				
Q2-202	3 DEK Botto	m Ash Pond &	Lined Impo	ound.	23-0401	REQUESTER:	REQUESTER: Harold Register						= 1	(Attac	th Lis	st if N	fore S	pace	is Nee	ded)	Q/ (IEQUINEIVI)
SAMPL	ING TEAM:				TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ STANDARD ☒ OTHER												☐ NPDES ☑ TNI				
SEND REPORT TO: Caleb Batts				email:	phone:	phone:														□ ISO 17025	
COPY TO: Harold Register TRC			MATRIX CODES: GW = Groundwater OX = Oth	er	CONTAINERS														☐ 10 CFR 50 APP. B		
			WW = Wastewater SL = Sludge W = Water / Aqueous Liquid A = Air		PRESERVATIVE					als								☐ INTERNAL INFO			
	LAB	SAMPLE COLL	ECTION	XIX	S = Soil / General Solid WP = W	ipe eneral Waste	AL#					_	Total Metals	Su	ionia		inity	Je			□ OTHER
SA	MPLE ID	DATE	TIME	MATRIX	FIELD SAMPLE ID / LO	OCATION	TOTAL#		None HNO ₃ H ₂ SO ₄		HCI	MeOF	Tota	Anions	Ammonia	TDS	Alkalinity	Sulfide			REMARKS
23	-0401-01	5/3/53	carc	GW	DEK-MW-18001		7	4	1 1	1			x	x	x	x	x	x			
	-02	11 1	dello	GW	DEK-MW-18001 MS		6	3	1 1	1			x	x	х	14	x	x			
,	-03	1111	deile	GW	DEK-MW-18001 MSD		6	3	1 1	1			x	x	x		x	x			
																					11
																					8
																					8
RELING	QUISHED BY		1		TIME: 1576900 7	RECEIVED BY:							CC	MME	ENTS	Ċ.					2
RELING	QUISHED BY				TIME:	RECEIVED BY:								mpera							#: <u>LS627723</u> ue Date: <u>5-25-23</u>
						22 0401 Dogg 15 c	4 00						_							_	

Report ID: S48227.01(01) Generated on 05/08/2023

Report to

Attention: Emil Blaj

Consumers Energy Company

135 West Trail Street Jackson, MI 49201

Phone: D:517-788-5888 C:517-684-9467 FAX:

Email: emil.blaj@cmsenergy.com

Report produced by

Merit Laboratories, Inc. 2680 East Lansing Drive East Lansing, MI 48823

Phone: (517) 332-0167 FAX: (517) 332-6333

Contacts for report questions: John Laverty (johnlaverty@meritlabs.com) Barbara Ball (bball@meritlabs.com)

Report Summary

Lab Sample ID(s): S48227.01-S48227.03

Project: 23-0401 PR#23050668 Collected Date(s): 05/03/2023

Submitted Date/Time: 05/04/2023 16:41

Sampled by: Unknown P.O. #: 4400114090

Table of Contents

Cover Page (Page 1)

General Report Notes (Page 2)

Report Narrative (Page 2)

Laboratory Certifications (Page 3)

Qualifier Descriptions (Page 3)

Glossary of Abbreviations (Page 3)

Method Summary (Page 4)

Sample Summary (Page 5)

Maya Murshak Technical Director

Naya Mushah

General Report Notes

Analytical results relate only to the samples tested, in the condition received by the laboratory.

Methods may be modified for improved performance.

Results reported on a dry weight basis where applicable.

'Not detected' indicates that parameter was not found at a level equal to or greater than the reporting limit (RL).

When MDL results are provided, then 'Not detected' indicates that parameter was not found at a level equal to or greater than the MDL.

40 CFR Part 136 Table II Required Containers, Preservation Techniques and Holding Times for the Clean Water Act specify that samples

for acrolein and acrylonitrile, and 2-chloroethylvinyl ether need to be preserved at a pH in the range of 4 to 5 or if not preserved, analyzed within 3 days of sampling.

QA/QC corresponding to this analytical report is a separate document with the same Merit ID reference and is available upon request.

Full accreditation certificates are available upon request. Starred (*) analytes are not NELAP accredited.

Samples are held by the lab for 30 days from the final report date unless a written request to hold longer is provided by the client.

Report shall not be reproduced except in full, without the written approval of Merit Laboratories, Inc.

Limits for drinking water samples, are listed as the MCL Limits (Maximum Contaminant Level Concentrations)

PFAS requirement: Section 9.3.8 of U.S. EPA Method 537.1 states "If the method analyte(s) found in the Field Sample is present in the

FRB at a concentration greater than 1/3 the MRL, then all samples collected with that FRB are invalid and must be recollected and reanalyzed."

Samples submitted without an accompanying FRB may not be acceptable for compliance purposes.

Wisconsin PFAs analysis: MDL = LOD; RL = LOQ. LOD and LOQ are adjusted for dilution.

Report Narrative

There is no additional narrative for this analytical report

Laboratory Certifications

Authority	Certification ID
Michigan DEQ	#9956
DOD ELAP/ISO 17025	#69699
WBENC	#2005110032
Ohio VAP	#CL0002
Indiana DOH	#C-MI-07
New York NELAC	#11814
North Carolina DENR	#680
North Carolina DOH	#26702
Alaska CSLAP	#17-001
Pennsylvania DEP	#68-05884
Wisconsin DNR	FID# 399147320

Qualifier Descriptions

Qualifier	Description Description
!	Result is outside of stated limit criteria
В	Compound also found in associated method blank
E	Concentration exceeds calibration range
F	Analysis run outside of holding time
G	Estimated result due to extraction run outside of holding time
Н	Sample submitted and run outside of holding time
1	Matrix interference with internal standard
J	Estimated value less than reporting limit, but greater than MDL
L	Elevated reporting limit due to low sample amount
M	Result reported to MDL not RDL
0	Analysis performed by outside laboratory. See attached report.
R	Preliminary result
S	Surrogate recovery outside of control limits
Т	No correction for total solids
X	Elevated reporting limit due to matrix interference
Υ	Elevated reporting limit due to high target concentration
b	Value detected less than reporting limit, but greater than MDL
е	Reported value estimated due to interference
j	Analyte also found in associated method blank
р	Benzo(b)Fluoranthene and Benzo(k)Fluoranthene integrated as one peak.
х	Preserved from bulk sample

Glossary of Abbreviations

Abbreviation	Description
RL/RDL	Reporting Limit
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
SW	EPA SW 846 (Soil and Wastewater) Methods
E	EPA Methods
SM	Standard Methods
LN	Linear
BR	Branched

Method Summary

Method Version

SM4500-S2 D

Standard Method 4450 S2 D 2011

Report to Consumers Energy Company Project: 23-0401 PR#23050668

P3-09-40-10 | Page 19 of 26

Sample Summary (3 samples)

Sample ID	Sample Tag	Matrix	Collected Date/Time
S48227.01	23-0401-01 (DEK-MW-18001)	Groundwater	05/03/23 06:40
S48227.02	23-0401-02 (DEK-MW-18001 Field MS)	Groundwater	05/03/23 06:40
S48227.03	23-0401-03 (DEK-MW-18001 Field MSD)	Groundwater	05/03/23 06:40

Lab Sample ID: S48227.01

Sample Tag: 23-0401-01 (DEK-MW-18001) Collected Date/Time: 05/03/2023 06:40

Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	3.7	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 16:26, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	Not detected	0.02	0.005	mg/L	1	18496-25-8	

Lab Sample ID: S48227.02

Sample Tag: 23-0401-02 (DEK-MW-18001 Field MS)

Collected Date/Time: 05/03/2023 06:40

Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	3.7	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 16:30, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.183	0.02	0.005	mg/L	1	18496-25-8	1

1-* Sample spike @ 0.20 mg/L

Lab Sample ID: S48227.03

Sample Tag: 23-0401-03 (DEK-MW-18001 Field MSD)

Collected Date/Time: 05/03/2023 06:40

Matrix: Groundwater COC Reference:

Sample Containers

#	Туре	Preservative(s)	Refrigerated?	Arrival Temp. (C)	Thermometer #
1	125ml Plastic	NaOH/Zn Acetate	Yes	3.7	IR

Inorganics

Method: SM4500-S2 D, Run Date: 05/05/23 16:32, Analyst: JDP

Parameter	Result	RL	MDL	Units	Dilution	CAS#	Flags
Sulfide	0.182	0.02	0.005	ma/L	1	18496-25-8	1

1-* Sample spike @ 0.20 mg/L

Merit Laboratories Login Checklist

Lab Set ID:S48227

Client: CONSUMERS (Consumers Energy Company)

Project: 23-0401 PR#23050668

Submitted: 05/04/2023 16:41 Login User: MMC

Attention: Emil Blaj

Address: Consumers Energy Company 135 West Trail Street

Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Selec	tion			Description	Note
Samı	ole Receiv	/ing			
01.	X Yes	☐ No	□ N/A	Samples are received at 4C +/- 2C Thermometer #	IR 3.7
02.	X Yes	☐ No	□ N/A	Received on ice/ cooling process begun	
03.	Yes	X No	□ N/A	Samples shipped	
04.	Yes	X No	□ N/A	Samples left in 24 hr. drop box	
05.	Yes	No	X N/A	Are there custody seals/tape or is the drop box locked	
Chair	n of Custo	ody			
06.	X Yes	☐ No	□ N/A	COC adequately filled out	
07.	X Yes	No	□ N/A	COC signed and relinquished to the lab	
08.	X Yes	No	□ N/A	Sample tag on bottles match COC	
09.	Yes	X No	□ N/A	Subcontracting needed? Subcontacted to:	
Pres	ervation				
10.	X Yes	No	□ N/A	Do sample have correct chemical preservation	
11.	X Yes	No	□ N/A	Completed pH checks on preserved samples? (no VOAs)	
12.	Yes	X No	□ N/A	Did any samples need to be preserved in the lab?	
Bottl	e Conditio	ons			
13.	X Yes	No	□ N/A	All bottles intact	
14.	X Yes	No	□ N/A	Appropriate analytical bottles are used	
15.	Yes	X No	□ N/A	Merit bottles used	
16.	X Yes	No	□ N/A	Sufficient sample volume received	
17.	Yes	X No	□ N/A	Samples require laboratory filtration	
18.	X Yes	No	□ N/A	Samples submitted within holding time	
19.	Yes	No	X N/A	Do water VOC or TOX bottles contain headspace	
Corr	active acti	on for all	oveentions	is to call the client and to notify the project manager.	
Clien	t Review I	Зу:		Date:	

Merit Laboratories Bottle Preservation Check

Lab Set ID: S48227 Submitted: 05/04/2023 16:41

Client: CONSUMERS (Consumers Energy Company)

Project: 23-0401 PR#23050668

Initial Preservation Check: 05/05/2023 08:42 MMC

Preservation Recheck (E200.8): N/A

Attention: Emil Blaj

Address: Consumers Energy Company 135 West Trail Street

Jackson, MI 49201

Phone: D:517-788-5888 FAX: Email: emil.blaj@cmsenergy.com

Sample ID	Bottle / Preservation	pH (Orig)	Add ml	pH (New)	Notes
S48227.01	125ml Plastic NaOH/Zn Acetate	>12			
S48227.02	125ml Plastic NaOH/Zn Acetate	>12			
S48227.03	125ml Plastic NaOH/Zn Acetate	>12			

2680 East Lansing Dr., East Lansing, MI 48823 Phone (517) 332-0167 Fax (517) 332-4034 www.meritlabs.com

	1 1
C.O.C. PAGE #	OF_1

REPOR	т то)	Laboratories, Inc.	CHAIN		cu	ST	TOD	YR	ECO	RD						INV	OICE	ТО
CONTACT NAME E	Emil Blaj						1	CONTACT NAME SAME											
001101101	sumers E						COMPANY												
ADDRESS 135 V	W. Trail S	Street					1	ADDRE	SS										
Jackson			-40	STATE MI ZIP C	ODE 4	9201	1	СПУ									STATE ZIP	CODE	
PHONE NO. 517-	788-5888		FAX NO. 517-788-2533	P.O. NO. 4400114	090		1	PHONE	NO.				E-MA	L ADDRESS					
E-MAIL ADDRESS	emil.blaj(@cmsen	ergy.com	QUOTE NO.			٦i				AN	IALYS	IS (ATT	ACH LIST	IF MOR	E SPAC	E IS REQUIRED)		
PROJECT NO./NAM				SAMPLER(S) - PLEASE PE	RINT/SK	IN NA	ME			N/A	1 1		H			T	Certifications		
TURNAROUND TIME REQUIRED 1 DAY 2 DAYS 3 DAYS STANDARD OTHER												M	OHIO VAP		-				
DELIVERABLE	S REQUIR	ED S	TD X LEVEL II LEVEL III	LEVEL IV EDD		THER	۱_				9							NPDES	6.
MATRIX (CODE:	GW=GROUN SL=SLUDG		WW=WASTEWATER S=SC DRINKING WATER 0=OIL		=SOLII V=WAS				ntaine		Sulfide						Project Locati	ons ⊒New Yo	ork
MERIT LAB NO. FOR LAB USE ONLY	DATE	AR	SAMPLE IDENTIFICATION-DE		MATRIX	# OF OTTLES	NONE	E S	a				OtherSpecial Instructions		_				
48227.01	05/03/23	0640	23-0401-01 (DEK-MW-)	8001)	GW	1			1		1					3 1	preserved with 1		Acetate
	05/03/23	0640	23-0401-02 (DEK-MW-1		GW	1	П		1	T	1		\Box				·		
.03	05/03/23	0640	23-0401-03 (DEK-MW-1	8001 Field MSD)	GW	1	П		1	\Box	1						"		
																	Please spike MS	/MSD and	report
																	spike concentra	ation and	or rec.
							Ц												
					L		Ц		Ш										
<u> </u>					1		Н		H			-							
					\vdash		H	-	1	H		+			-	-			
					\vdash		H		H	H		+	-		-	-			
					-	\vdash	H		+	1	-	+	-		-				
				*			Ц		Ш										
RELINQUISHED BY SIGNATURE/ORGA		4.0	DUSUMERS ENERGY	Sampler DATE	16	ME ()	11	SIGNA	DUISHEI TURE/O		ATION							ATE	TIME
RECEIVED BY: SIGNATURE/ORGA	ANIZATION	0	M dilcott	5/4/23	10	741			VED BY: TURE/O	RGANIZ	ATION							MATE	TIME
RELINQUISHED BY SIGNATURE/ORG/				DATE	1	IME		SEAL	NO.			AL INTAC	NO	INITIALS	1	NOTES:	TEMP. ON ARRIV		7
RECEIVED BY: DATE TIME SIGNATURE/ORGANIZATION						SEAL NO. SEAL INTACT INITIALS YESD NOD 3.7					r								

135 W. Trail St. Jackson, MI 49201 phone 517-788-1251 fax 517-788-2533

To: CDBatts, Karn/Weadock

From: EBlaj, T-258

Date: May 19, 2023

Subject: RCRA GROUNDWATER MONITORING – DEK-JCW BACKGROUND WELLS – 2023 Q2

CC: HDRegister, P22-521 Darby Litz, Project Manager

BLSwanberg, P22-119 TRC Companies, Inc.

1540 Eisenhower Place Ann Arbor, MI 48108

Chemistry Project: 23-0404

TRC Environmental, Inc. conducted groundwater monitoring at the Karn/Weadock Background Wells area during the week of 05/01/2023 for the 2nd Quarter requirement, as specified in the Sampling and Analysis Plan for the site. The samples were received for analysis by the Chemistry department of Laboratory Services on 05/03/2023.

The report that follows presents the results of the requested analytical testing; the results apply only to the samples as received. All samples have been analyzed in accordance with the 2016 TNI Standard and the applicable A2LA accreditation scope for Laboratory Services. Any exceptions to applicable test method criteria and standard compliance are noted in the Case Narrative, or flagged with applicable qualifiers in the analytical results section.

Reviewed and approved by:

Emil Blaj Sr. Technical Analyst Project Lead

Testing performed in accordance with the A2LA scope of accredidation specified in the listed certificate.

The information contained in this report is the sole property of Consumers Energy. It cannot be reproduced except in full, and with consent from Consumers Energy, or the customer for which this report was issued.

CASE NARRATIVE

I. Sample Receipt

All samples were received within hold time and in good conditions; no anomalies were noted on the attached Sample Log-In Shipment Inspection Form during sample check-in. Identification of all samples included in the work order/project is provided in the sample summary section. All sample preservation and temperature upon receipt was verified by the sample custodian and confirmed to meet method requirements.

II. Methodology

Unless otherwise indicated, sample preparation and analysis was performed in accordance with the corresponding test methods from "Methods for the Determination of Inorganic Substances in Environmental Samples (EPA/600/R-93/100); SW-846, "Test Methods for Evaluating Solid Waste – Physical/Chemical Methods", USEPA (latest revisions), and Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 22nd Edition, 2012.

III. Results/Quality Control

Analytical results for this report are presented by laboratory sample ID, container, & aliquot number. Results for the field blanks, field duplicates, and recoveries of the field matrix spike & matrix spike duplicate samples are included in the results section, when applicable; all other quality control data is listed in the Quality Control Summary associated with the particular test method, as appropriate. Unless specifically noted in the case narrative, all method quality control requirements have been met. If any results are qualified, the corresponding data flags/qualifiers are listed on the last page of the results section. Any additional information on method performance, when applicable, is presented in this section of the case narrative. When data flags are not needed, the qualifiers text box on the last page is left blank, and a statement confirms that no exceptions occurred.

DEFINITIONS / QUALIFIERS

The following qualifiers and/or acronyms are used in the report, where applicable:

<u>Acronym</u>	<u>Description</u>
RL	Reporting Limit
ND	Result not detected or below Reporting Limit
NT	Non TNI analyte
LCS	Laboratory Control Sample
LRB	Laboratory Reagent Blank (also referred to as Method Blank)
DUP	Duplicate
MS	Matrix Spike
MSD	Matrix Spike Duplicate
RPD	Relative Percent Difference
MDL	Method Detection Limit
PQL	Practical Quantitation Limit
TDL	Target Detection Limit
SM	Standard Methods Compendium

<u>Qualifier</u>	<u>Description</u>
*	Generic data flag, applicable description added in the corresponding notes section
В	The analyte was detected in the LRB at a level which is significant relative to sample result
D	Reporting limit elevated due to dilution
E	Estimated due to result exceeding the linear range of the analyzer
Н	The maximum recommended hold time was exceeded
I	Dilution required due to matrix interference; reporting limit elevated
J	Estimated due to result found above MDL but below PQL (or RL)
K	Reporting limit raised due to matrix interference
M	The precision for duplicate analysis was not met; RPD outside acceptance criteria
N	Non-homogeneous sample made analysis questionable
PI	Possible interference may have affected the accuracy of the laboratory result
Q	Matrix Spike or Matrix Spike Duplicate recovery outside acceptance criteria
R	Result confirmed by new sample preparation and reanalysis
X	Other notation required; comment listed in sample notes and/or case narrative

Work Order Sample Summary

Customer Name: Karn/Weadock Complex

Work Order ID: Q2-2023 DEK-JCW Background Wells

Date Received: 5/3/2023 **Chemistry Project:** 23-0404

Sample #	Field Sample ID	<u>Matrix</u>	Sample Date	<u>Site</u>
23-0404-01	MW-15002	Groundwater	05/01/2023 15:01	DEK JCW Background
23-0404-02	MW-15008	Groundwater	05/01/2023 12:40	DEK JCW Background
23-0404-03	MW-15016	Groundwater	05/01/2023 08:40	DEK JCW Background
23-0404-04	MW-15019	Groundwater	05/01/2023 13:43	DEK JCW Background
23-0404-05	DUP-Background	Groundwater	05/01/2023 00:00	DEK JCW Background
23-0404-06	FB- Background	Water	05/01/2023 12:40	DEK JCW Background

Sample Site: **DEK JCW Background** Laboratory Project: **23-0404**

 Field Sample ID:
 MW-15002
 Collect Date:
 05/01/2023

 Lab Sample ID:
 23-0404-01
 Collect Time:
 03:01 PM

Matrix: Groundwater

				Aliquot #. 20 0	404-01-C01-A01	Analyst: EE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Arsenic	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Barium	63		ug/L	5.0	05/10/2023	AB23-0510-14
Beryllium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Boron	ND		ug/L	20.0	05/10/2023	AB23-0510-14
Cadmium	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Calcium	48400		ug/L	1000.0	05/10/2023	AB23-0510-14
Chromium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Cobalt	ND		ug/L	6.0	05/10/2023	AB23-0510-14
Copper	1		ug/L	1.0	05/10/2023	AB23-0510-14
Iron	729		ug/L	20.0	05/10/2023	AB23-0510-14
Lead	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Lithium	ND		ug/L	10.0	05/10/2023	AB23-0510-14
Magnesium	5950		ug/L	1000.0	05/10/2023	AB23-0510-14
Molybdenum	ND		ug/L	5.0	05/10/2023	AB23-0510-14
Nickel	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Potassium	834		ug/L	100.0	05/10/2023	AB23-0510-14
Selenium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Silver	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Sodium	72000		ug/L	1000.0	05/10/2023	AB23-0510-14
Thallium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Vanadium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Zinc	ND		ug/L	10.0	05/10/2023	AB23-0510-14
Mercury by EPA 7470A, Total, Aqueou	us			Aliquot #: 23-0	404-01-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/12/2023	AB23-0512-06
Anions by EPA 300.0 CCR Rule Analy	rte List, Cl, F,	SO4, Aqu	ieous	Aliquot #: 23-0	404-01-C02-A01	Analyst: KDF
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	64500		ug/L	1000.0	05/11/2023	AB23-0511-03
Fluoride	ND		ug/L	1000.0	05/11/2023	AB23-0511-03
Sulfate	14900		ug/L	1000.0	05/11/2023	AB23-0511-03
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	404-01-C03-A01	Analyst: LMC
				<u> </u>		
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking

Sample Site: **DEK JCW Background** Laboratory Project: **23-0404**

 Field Sample ID:
 MW-15008
 Collect Date:
 05/01/2023

 Lab Sample ID:
 23-0404-02
 Collect Time:
 12:40 PM

Matrix: Groundwater

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	tal Metals	s Ехр	Aliquot #: 23-0	404-02-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Arsenic	1		ug/L	1.0	05/10/2023	AB23-0510-14
Barium	71		ug/L	5.0	05/10/2023	AB23-0510-14
Beryllium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Boron	107		ug/L	20.0	05/10/2023	AB23-0510-14
Cadmium	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Calcium	108000		ug/L	1000.0	05/10/2023	AB23-0510-14
Chromium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Cobalt	ND		ug/L	6.0	05/10/2023	AB23-0510-14
Copper	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Iron	17900		ug/L	20.0	05/10/2023	AB23-0510-14
Lead	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Lithium	24		ug/L	10.0	05/10/2023	AB23-0510-14
Magnesium	15400		ug/L	1000.0	05/10/2023	AB23-0510-14
Molybdenum	ND		ug/L	5.0	05/10/2023	AB23-0510-14
Nickel	2		ug/L	2.0	05/10/2023	AB23-0510-14
Potassium	3180		ug/L	100.0	05/10/2023	AB23-0510-14
Selenium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Silver	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Sodium	163000		ug/L	1000.0	05/10/2023	AB23-0510-14
Thallium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Vanadium	5		ug/L	2.0	05/10/2023	AB23-0510-14
Zinc	ND		ug/L	10.0	05/10/2023	AB23-0510-14
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 23-0	404-02-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/12/2023	AB23-0512-06
Anions by EPA 300.0 CCR Rule Analyt	e List, CI, F,	SO4, Aqı	ieous	Aliquot #: 23-0	404-02-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	259000		ug/L	1000.0	05/11/2023	AB23-0511-03
Fluoride	ND		ug/L	1000.0	05/11/2023	AB23-0511-03
Sulfate	10500		ug/L	1000.0	05/11/2023	AB23-0511-03
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	404-02-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	877		mg/L	10.0	05/04/2023	AB23-0504-07
	23-	0404 Page (6 of 13			

Sample Site: **DEK JCW Background** Laboratory Project: **23-0404**

 Field Sample ID:
 MW-15016
 Collect Date:
 05/01/2023

 Lab Sample ID:
 23-0404-03
 Collect Time:
 08:40 AM

Matrix: Groundwater

Metals by EPA 6020B: CCR Rule Appe	endix III-IV To	tal Metals	s Ехр	Aliquot #: 23-0	404-03-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Arsenic	2		ug/L	1.0	05/10/2023	AB23-0510-14
Barium	58		ug/L	5.0	05/10/2023	AB23-0510-14
Beryllium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Boron	347		ug/L	20.0	05/10/2023	AB23-0510-14
Cadmium	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Calcium	175000		ug/L	1000.0	05/10/2023	AB23-0510-14
Chromium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Cobalt	ND		ug/L	6.0	05/10/2023	AB23-0510-14
Copper	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Iron	1970		ug/L	20.0	05/10/2023	AB23-0510-14
Lead	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Lithium	64		ug/L	10.0	05/10/2023	AB23-0510-14
Magnesium	23900		ug/L	1000.0	05/10/2023	AB23-0510-14
Molybdenum	ND		ug/L	5.0	05/10/2023	AB23-0510-14
Nickel	6		ug/L	2.0	05/10/2023	AB23-0510-14
Potassium	10300		ug/L	100.0	05/10/2023	AB23-0510-14
Selenium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Silver	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Sodium	84800		ug/L	1000.0	05/10/2023	AB23-0510-14
Thallium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Vanadium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Zinc	ND		ug/L	10.0	05/10/2023	AB23-0510-14
Mercury by EPA 7470A, Total, Aqueo	us			Aliquot #: 23-0	404-03-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/16/2023	AB23-0516-03
Anions by EPA 300.0 CCR Rule Analy	rte List, CI, F,	SO4, Aqı	ieous	Aliquot #: 23-0	404-03-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	106000		ug/L	1000.0	05/11/2023	AB23-0511-03
Fluoride	ND		ug/L	1000.0	05/11/2023	AB23-0511-03
Sulfate	253000		ug/L	1000.0	05/11/2023	AB23-0511-03
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	404-03-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	889		mg/L	10.0	05/04/2023	AB23-0504-07
	22	0404 Page :	7 of 12			

Laboratory Project:

Collect Date: 05/01/2023

Report Date:

05/19/23

23-0404

Collect Time: 01:43 PM

Sample Site: **DEK JCW Background**

Field Sample ID: MW-15019 Lab Sample ID: 23-0404-04 Matrix: Groundwater

Metals by EPA 6020B: CCR Rule Appe	ndix III-IV To	tal Metals	s Ехр	Aliquot #: 23-0	404-04-C01-A01	Analyst: EB
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Antimony	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Arsenic	1		ug/L	1.0	05/10/2023	AB23-0510-14
Barium	317		ug/L	5.0	05/10/2023	AB23-0510-14
Beryllium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Boron	211		ug/L	20.0	05/10/2023	AB23-0510-14
Cadmium	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Calcium	159000		ug/L	1000.0	05/10/2023	AB23-0510-14
Chromium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Cobalt	ND		ug/L	6.0	05/10/2023	AB23-0510-14
Copper	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Iron	21500		ug/L	20.0	05/10/2023	AB23-0510-14
Lead	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Lithium	13		ug/L	10.0	05/10/2023	AB23-0510-14
Magnesium	35900		ug/L	1000.0	05/10/2023	AB23-0510-14
Molybdenum	ND		ug/L	5.0	05/10/2023	AB23-0510-14
Nickel	3		ug/L	2.0	05/10/2023	AB23-0510-14
Potassium	1770		ug/L	100.0	05/10/2023	AB23-0510-14
Selenium	ND		ug/L	1.0	05/10/2023	AB23-0510-14
Silver	ND		ug/L	0.2	05/10/2023	AB23-0510-14
Sodium	200000		ug/L	1000.0	05/10/2023	AB23-0510-14
Thallium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Vanadium	ND		ug/L	2.0	05/10/2023	AB23-0510-14
Zinc	ND		ug/L	10.0	05/10/2023	AB23-0510-14
Mercury by EPA 7470A, Total, Aqueou	s			Aliquot #: 23-0	404-04-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Mercury	ND		ug/L	0.2	05/16/2023	AB23-0516-03
Anions by EPA 300.0 CCR Rule Analyt	te List, CI, F,	SO4, Aqı	ieous	Aliquot #: 23-0	404-04-C02-A01	Analyst: KDR
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Chloride	302000		ug/L	1000.0	05/11/2023	AB23-0511-03
Fluoride	ND		ug/L	1000.0	05/11/2023	AB23-0511-03
Sulfate	94200		ug/L	1000.0	05/11/2023	AB23-0511-03
Total Dissolved Solids by SM 2540C				Aliquot #: 23-0	404-04-C03-A01	Analyst: LMO
Parameter(s)	Result	Flag	Units	RL	Analysis Date	Tracking
Total Dissolved Solids	1170		mg/L	10.0	05/04/2023	AB23-0504-07
	23-	-0404 Page	8 of 13			

Report Date:

05/19/23

Laboratory Project: 23-0404

Collect Date: 05/01/2023 Collect Time: 12:00 AM

Field Sample ID: **DUP-Background**Lab Sample ID: 23-0404-05

Groundwater

DEK JCW Background

Sample Site:

Matrix:

Metals by EPA 6020B: CCR Rule Appendix III-IV Total Metals Exp Aliquot #: 23-0404-05-C01-A01 Analyst: EB Parameter(s) Result Flag Units RL Analysis Date Tracking ND ug/L 1.0 05/10/2023 AB23-0510-14 **Antimony** ND ug/L Arsenic 1.0 05/10/2023 AB23-0510-14 **Barium** 326 ug/L 5.0 05/10/2023 AB23-0510-14 Beryllium ND ug/L 1.0 05/10/2023 AB23-0510-14 **Boron** 207 ug/L 20.0 05/10/2023 AB23-0510-14 Cadmium ND ug/L 0.2 05/10/2023 AB23-0510-14 157000 Calcium ug/L 1000.0 05/10/2023 AB23-0510-14 ND Chromium ug/L 1.0 05/10/2023 AB23-0510-14 Cobalt ND ug/L 6.0 05/10/2023 AB23-0510-14 Copper ND ug/L 1.0 05/10/2023 AB23-0510-14 Iron 21700 ug/L 20.0 05/10/2023 AB23-0510-14 Lead ND ug/L 1.0 05/10/2023 AB23-0510-14 Lithium 12 ug/L 10.0 05/10/2023 AB23-0510-14 Magnesium 36400 ug/L 1000.0 05/10/2023 AB23-0510-14 Molybdenum ND ug/L 5.0 05/10/2023 AB23-0510-14 Nickel 3 ug/L 2.0 05/10/2023 AB23-0510-14 Potassium 1800 ug/L 100.0 05/10/2023 AB23-0510-14 Selenium ND ug/L 1.0 05/10/2023 AB23-0510-14 Silver ND ug/L 0.2 05/10/2023 AB23-0510-14 Sodium 203000 ug/L 1000.0 05/10/2023 AB23-0510-14 2.0 Thallium ND ug/L 05/10/2023 AB23-0510-14 05/10/2023 Vanadium ND ug/L 2.0 AB23-0510-14 ND Zinc ug/L 10.0 05/10/2023 AB23-0510-14 Mercury by EPA 7470A, Total, Aqueous Aliquot #: 23-0404-05-C01-A02 Analyst: CLE Result Flag Units RL Parameter(s) Analysis Date Tracking ND 0.2 05/16/2023 AB23-0516-03 Mercury ug/L Anions by EPA 300.0 CCR Rule Analyte List, CI, F, SO4, Aqueous Aliquot #: 23-0404-05-C02-A01 Analyst: KDR Parameter(s) Result Flag Units RL **Analysis Date** Tracking Chloride 304000 05/11/2023 AB23-0511-03 ug/L 1000.0 Fluoride ND ug/L 1000.0 05/11/2023 AB23-0511-03 Sulfate 93300 ug/L 1000.0 05/11/2023 AB23-0511-03 **Total Dissolved Solids by SM 2540C** Aliquot #: 23-0404-05-C03-A01 Analyst: LMO Result RL Parameter(s) Flag Units **Analysis Date Tracking Total Dissolved Solids** 1170 mg/L 10.0 05/04/2023 AB23-0504-07

Sample Site: **DEK JCW Background**

Laboratory Project: 23-0404 Collect Date: Field Sample ID: FB- Background 05/01/2023 Lab Sample ID: 23-0404-06 Collect Time: 12:40 PM

Matrix: Water

Metals by EPA 6020B: CCR	Rule Appendix III-IV To	tal Metals Exp	Aliquot #: 23-0)404-06-C01-A01	Analyst: EB
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Antimony	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Arsenic	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Barium	ND	ug/L	5.0	05/10/2023	AB23-0510-14
Beryllium	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Boron	ND	ug/L	20.0	05/10/2023	AB23-0510-14
Cadmium	ND	ug/L	0.2	05/10/2023	AB23-0510-14
Calcium	ND	ug/L	1000.0	05/10/2023	AB23-0510-14
Chromium	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Cobalt	ND	ug/L	6.0	05/10/2023	AB23-0510-14
Copper	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Iron	ND	ug/L	20.0	05/10/2023	AB23-0510-14
Lead	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Lithium	ND	ug/L	10.0	05/10/2023	AB23-0510-14
Magnesium	ND	ug/L	1000.0	05/10/2023	AB23-0510-14
Molybdenum	ND	ug/L	5.0	05/10/2023	AB23-0510-14
Nickel	ND	ug/L	2.0	05/10/2023	AB23-0510-14
Potassium	ND	ug/L	100.0	05/10/2023	AB23-0510-14
Selenium	ND	ug/L	1.0	05/10/2023	AB23-0510-14
Silver	ND	ug/L	0.2	05/10/2023	AB23-0510-14
Sodium	ND	ug/L	1000.0	05/10/2023	AB23-0510-14
Thallium	ND	ug/L	2.0	05/10/2023	AB23-0510-14
Vanadium	ND	ug/L	2.0	05/10/2023	AB23-0510-14
Zinc	ND	ug/L	10.0	05/10/2023	AB23-0510-14
Mercury by EPA 7470A, Tota	al, Aqueous		Aliquot #: 23-0)404-06-C01-A02	Analyst: CLE
Parameter(s)	Result	Flag Units	RL	Analysis Date	Tracking
Mercury	ND	ug/L	0.2	05/16/2023	AB23-0516-03

Data Qualifiers	Exception Summary
	No exceptions occurred.

CONSUMERS ENERGY

Chemistry Department

General Standard Operating Procedure

PROC CHEM-1.2.01 PAGE 1 OF 2 REVISION 4 ATTACHMENT A

TITLE: SAMPLE LOG-IN - SHIPMENT INSPECTION FORM

Project Log-In Number: 2	3-0404				
Inspection Date: 5.04.1	-3		Inspection By: LM	0	
Sample Origin/Project Name	02-202	3 JCW -	DEK Backgrow	nd Weus	
Shipment Delivered By: Ente	er the type of s	hipment carrie	r.		
Pony I	edEx	UPS	USPS	A	irborne
Other/Hand Carry (wh Tracking Number: 2	997 802	40844	3 Shipping Form	Attached: Yes	No
Shipping Containers: Enter the	he type and nu	34 7116 mber of shipp) ing containers receive	d.	
Cooler	Cardboard Box		Custom Case	Envelo	ppe/Mailer
Loose/Unpackaged Co	ontainers		Other		
Condition of Shipment: Ente					
Damaged Shipment O	bserved: None		Dented	Le	aking
Other					
Shipment Security: Enter if a Shipping Containers R Enclosed Documents: Enter th CoC Wo	teceived: Ope	ned	Sealed	=	
Temperature of Containers: 1	Measure the te	mperature of s	everal sample contain	iers.	
As-Received Tempera	ture Range O	4-2.3	Samples Received	on Ice: Yes X	No
M&TE # and Expiration			i a contract.	and the same of th	
Number and Type of Contain	ers: Enter the	total number	of sample containers	received.	
Container Type	Water	Soil	Other	Broken	Leaking
VOA (40mL or 60mL)					-
Quart/Liter (g/p)	-	_		-	-
9-oz (amber glass jar)		_		-	
2-oz (amber glass)				-	-
125 mL (plastic)	4	_		-	-
24 mL vial (glass)	-	_		-	-
ڪُ00 mL (plastic) Other	\$	_			-

CHAIN OF CUSTODY

CONSUMERS ENERGY COMPANY - LABORATORY SERVICES

135 WEST TRAIL ST., JACKSON, MI 49201 • (517) 788-1251

Page 1 of

1	PLING SITE / CU				PROJECT NUMBER:	SAP CC or W	O#:												STED		QA REQUIREMENT:
Q2-20	023 JCW-DEK	Background W	/ells		23-0404	REQUESTER	: Harc	ld F	Regis	ster			= 3	(Atta	ch Lis	t if N	fore S	pace i	s Need	ied)	QA REQUIREMENT.
SAME	PLING TEAM:				TURNAROUND TIME REQUIRED: □ 24 HR □ 48 HR □ 3 DAYS □ ST	TANDARD ⊠ OT	HER_														☐ NPDES ☑ TNI
SEN	D REPORT TO:	Caleb Batts			email:	phone:															□ ISO 17025
1	COPY TO:	Harold Regis	rold Register		MATRIX CODES: GW = Groundwater OX = Othe	r		CC	NT.	AINI	ERS										☐ 10 CFR 50 APP, B
		TRC				WW = Wastewater SL = Sludge		P	RES	ESERVATIVE											☐ INTERNAL INFO
	LAB	SAMPLE COL	LECTION	MATRIX	S = Soil / General Solid WP = Wip	neral Waste	AL#						Metals	sui	6						□ OTHER
SA	AMPLE ID	DATE	DATE TIME		FIELD SAMPLE ID / LO	CATION	TOTAL	None	HNO	NaOH	HCI	Other	Total	Anions	TDS						REMARKS
	23-0404-01	5-1-23	1501	GW	MW-15002		3	2	i				x	x	x						
+	-02	5-1-23	1240	GW	MW-15008		3	2	1				x	x	x						
	-03	5-2-23	0840	GW	MW-15016		3	2	1				x	x	x						
	-04	5-1-27	1343	GW	MW-15019		3	2	1				x	x	x						
	-05	5-1-23		GW	DUP-Background		3	2	1				x	x	x						
	-06	5-1-23	1240	W	FB- Background		1						x								
	NOUISHED BY:	My		DATE/	-2-23/1600 8	RECEIVED BY:									ENTS		/.	i 🗆 N		MOTE	#:_27723
ALDEIT	V	Fel Ex			5-03-25 10:20	23-0404 Page 13	of 13						100					3 °C			ue Date: 5-25-23

ANALYTICAL REPORT

PREPARED FOR

Attn: Darby Litz TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 6/8/2023 4:39:25 PM

JOB DESCRIPTION

Karn/Weadock CCR DEK Bottom Ash Pond

JOB NUMBER

240-184755-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 6/8/2023 4:39:25 PM

Authorized for release by Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Tracer Carrier Summary	13
QC Sample Results	14
QC Association Summary	16
Lab Chronicle	17
Certification Summary	19
Chain of Custody	20
Receipt Checklists	24

9

4

e

R

9

11

12

4

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-184755-1

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Qualifiers

R	a	d

Qualifier	Qualifier Description
G	The Sample MDC is greater than the requested RL.
U	Result is less than the sample detection limit.

Glossary

used abbreviations may or may not be present in this report.
asea appreviations may or may not be present in ans report.
column to designate that the result is reported on a dry weight basis
iid
nit .
Liquid
tio (normalized absolute difference)
DD/DOE)
, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
ncentration (Radiochemistry)
lr In

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Cleveland

Page 4 of 24 6/8/2023

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184755-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-184755-1

Receipt

The samples were received on 5/5/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C

Gas Flow Proportional Counter

Method 903.0: Radium-226 Prep Batch 160-611074Insufficient sample volume was available to perform a sample duplicate for the following samples: DEK-MW-15002 (240-184755-1), DEK-MW-15005 (240-184755-2), DEK-MW-15006 (240-184755-3), DUP-DEK-BAP-01 (240-184755-4) and EB-DEK-BAP (240-184755-5). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method 903.0: Radium-226 batch 611074Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.DEK-MW-15002 (240-184755-1), DEK-MW-15005 (240-184755-2), DEK-MW-15006 (240-184755-3), DUP-DEK-BAP-01 (240-184755-4), EB-DEK-BAP (240-184755-5), (LCS 160-611074/2-A), (LCSD 160-611074/3-A) and (MB 160-611074/1-A)

Method 904.0: Radium-228 Prep Batch 160-611088Insufficient sample volume was available to perform a sample duplicate for the following samples: DEK-MW-15002 (240-184755-1), DEK-MW-15005 (240-184755-2), DEK-MW-15006 (240-184755-3), DUP-DEK-BAP-01 (240-184755-4) and EB-DEK-BAP (240-184755-5). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method 904.0: Radium-228 batch 611088The detection goal was not met for the following sample(s). The samples and batch QC were prepped at full volume. Matrix interferences are suspected because the method blank achieved the detection goal demonstrating acceptable sample preparation and instrument performance: DEK-MW-15002 (240-184755-1). Analytical results are reported with the detection limit achieved

Method 904.0: Radium-228 batch 611088Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.DEK-MW-15002 (240-184755-1), DEK-MW-15005 (240-184755-2), DEK-MW-15006 (240-184755-3), DUP-DEK-BAP-01 (240-184755-4), EB-DEK-BAP (240-184755-5), (LCS 160-611088/2-A), (LCSD 160-611088/3-A) and (MB 160-611088/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Rad

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

Job ID: 240-184755-1

3

4

6

0

9

11

12

Method Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep STD	Preparation, Precipitate Separation (Standard In-Growth)	None	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Eurofins Cleveland

2

Job ID: 240-184755-1

2

4

5

7

8

9

1 1

12

14

Sample Summary

Client: TRC Environmental Corporation. Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184755-1	DEK-MW-15002	Water	05/02/23 12:07	05/05/23 08:00
240-184755-2	DEK-MW-15005	Water	05/02/23 09:53	05/05/23 08:00
240-184755-3	DEK-MW-15006	Water	05/02/23 11:13	05/05/23 08:00
240-184755-4	DUP-DEK-BAP-01	Water	05/02/23 00:00	05/05/23 08:00
240-184755-5	EB-DEK-BAP	Water	05/02/23 12:21	05/05/23 08:00

Job ID: 240-184755-1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: DEK-MW-15002

Date Collected: 05/02/23 12:07 Date Received: 05/05/23 08:00

Lab Sample ID: 240-184755-1

Matrix: Water

Job ID: 240-184755-1

Method: EPA 903	3.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.431		0.183	0.187	1.00	0.216	pCi/L	05/11/23 12:08	06/08/23 06:46	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	58.9		30 - 110					05/11/23 12:08	06/08/23 06:46	1

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.548	UG	0.879	0.881	1.00	1.50	pCi/L	05/11/23 12:51	06/01/23 12:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	58.9		30 - 110					05/11/23 12:51	06/01/23 12:32	1
Y Carrier	50.0		30 - 110					05/11/23 12:51	06/01/23 12:32	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.979	U	0.898	0.901	5.00	1.50	pCi/L		06/08/23 14:39	1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

83.2

Client Sample ID: DEK-MW-15005

Date Collected: 05/02/23 09:53 Date Received: 05/05/23 08:00

Ba Carrier

Lab Sample ID: 240-184755-2

05/11/23 12:51 06/01/23 12:32

Matrix: Water

Dil Fac

Job ID: 240-184755-1

Method: EPA 903	3.0 - Radium	-226 (GFP	C)						
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed
Radium-226	0.355		0.125	0.129	1.00	0.122	pCi/L	05/11/23 12:08	06/08/23 06:46

 Carrier
 %Yield Ba Carrier
 Qualifier San 2
 Limits Limits San 2
 Prepared Dil Fac 205/11/23 12:08
 Analyzed Model San 205/11/23 12:08
 Dil Fac 205/11/23 12:08
 O6/08/23 06:46
 Dil Fac 205/11/23 12:08

Method: EPA 904.0 - Radium-228 (GFPC) Total Count Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed $(2\sigma + / -)$ Dil Fac 0.271 U 0.755 pCi/L 05/11/23 12:51 06/01/23 12:32 Radium-228 0.439 0.439 1.00 Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac

30 - 110

Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL MDC Unit Prepared Analyzed Dil Fac 0.626 U 0.456 0.458 5.00 0.755 pCi/L 06/08/23 14:39 Combined Radium 226 + 228

2

Λ

5

7

0

10

11

13

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: DEK-MW-15006

Date Collected: 05/02/23 11:13 Date Received: 05/05/23 08:00 Lab Sample ID: 240-184755-3

Matrix: Water

Job ID: 240-184755-1

Method: EPA 903.	0 - Radium	-226 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.324		0.131	0.134	1.00	0.146	pCi/L	05/11/23 12:08	06/08/23 06:46	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.8		30 - 110					05/11/23 12:08	06/08/23 06:46	1

Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
Analyte	Result	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.111	U	0.491	0.492	1.00	0.894	pCi/L	05/11/23 12:51	06/01/23 12:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	87.8		30 - 110					05/11/23 12:51	06/01/23 12:32	1
Y Carrier	52.5		30 - 110					05/11/23 12:51	06/01/23 12:32	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	ium-226 an	d Radiun	n-228				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.434	U	0.508	0.510	5.00	0.894	pCi/L		06/08/23 14:39	1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: DUP-DEK-BAP-01

Date Collected: 05/02/23 00:00 Date Received: 05/05/23 08:00

Lab Sample ID: 240-184755-4

Matrix: Water

Job ID: 240-184755-1

Method: EPA 903.0 - Radium-226 (GFPC)	
	Count
į	Incort

			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.417		0.149	0.153	1.00	0.143	pCi/L	05/11/23 12:08	06/08/23 06:47	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac

Total

05/11/23 12:08 06/08/23 06:47 Ba Carrier 68.1 30 - 110

- Radium	-228 (GFP	C)							
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.206	U	0.449	0.449	1.00	0.785	pCi/L	05/11/23 12:51	06/01/23 12:38	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
68.1		30 - 110					05/11/23 12:51	06/01/23 12:38	1
79.2		30 - 110					05/11/23 12:51	06/01/23 12:38	1
	Result 0.206 %Yield 68.1	Result Qualifier	Nesult Qualifier (2σ+/-)	Count Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Uncert. Uncert. Count Uncert. Cou	Count Uncert. Uncert. Count Uncert. Unc	Count Uncert. Uncert. Count Uncert. Count Uncert. Uncert. Uncert. Count Uncert.	Result 0.206 Qualifier Uncert. (2σ+/-) (2σ+/-) RL (2σ+/-) MDC Unit (2σ+/-) Prepared 05/11/23 12:51 %Yield 68.1 30 - 110 30 - 110 9 - 110 1.00 1.	Result 0.206 Qualifier Uncert. (2σ+/-) (2σ+/-) (2σ+/-) (2σ+/-) RL 0.206 MDC Unit Unit Unit Uncert. Prepared 0.5/11/23 12:51 Analyzed 0.6/01/23 12:38 %Yield 68.1 30 - 110 30 - 110 Frepared 0.208 Analyzed 0.208

Method: TAL-STL Ra226 Ra228 - Combined Radium-226 and Radium-228

	_		Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.622	U	0.473	0.474	5.00	0.785 pCi/L		06/08/23 14:39	1

+ 228

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: EB-DEK-BAP

Date Collected: 05/02/23 12:21 Date Received: 05/05/23 08:00 Lab Sample ID: 240-184755-5

Matrix: Water

Job ID: 240-184755-1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0170	U	0.0594	0.0594	1.00	0.129	pCi/L	05/11/23 12:08	06/08/23 06:47	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.9		30 - 110					05/11/23 12:08	06/08/23 06:47	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.110	U	0.278	0.279	1.00	0.496	pCi/L	05/11/23 12:51	06/01/23 12:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.9		30 - 110					05/11/23 12:51	06/01/23 12:39	1
Y Carrier	82.6		30 - 110					05/11/23 12:51	06/01/23 12:39	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0929	U	0.284	0.285	5.00	0.496	pCi/L		06/08/23 14:39	1

3

5

7

9

11

12

13

6/8/2023

Tracer/Carrier Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184755-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
240-184755-1	DEK-MW-15002	58.9	
240-184755-2	DEK-MW-15005	83.2	
240-184755-3	DEK-MW-15006	87.8	
240-184755-4	DUP-DEK-BAP-01	68.1	
240-184755-5	EB-DEK-BAP	93.9	
LCS 160-611074/2-A	Lab Control Sample	96.1	
LCSD 160-611074/3-A	Lab Control Sample Dup	81.0	
MB 160-611074/1-A	Method Blank	93.4	
Tracer/Carrier Legenc	I		
Ba = Ba Carrier			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
240-184755-1	DEK-MW-15002	58.9	50.0	
240-184755-2	DEK-MW-15005	83.2	52.0	
240-184755-3	DEK-MW-15006	87.8	52.5	
240-184755-4	DUP-DEK-BAP-01	68.1	79.2	
240-184755-5	EB-DEK-BAP	93.9	82.6	
LCS 160-611088/2-A	Lab Control Sample	96.1	78.7	
LCSD 160-611088/3-A	Lab Control Sample Dup	81.0	62.1	
MB 160-611088/1-A	Method Blank	93.4	79.2	

Tracer/Carrier Legend

Ba = Ba Carrier Y = Y Carrier

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184755-1

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-611074/1-A

Lab Sample ID: LCS 160-611074/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 615046

Analysis Batch: 615046

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 611074

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.1185 0.0822 0.0829 1.00 0.113 pCi/L 05/11/23 12:08 06/08/23 06:45

Total

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 93.4 30 - 110 05/11/23 12:08 06/08/23 06:45

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611074

Total LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.3 9.514 1.02 1.00 0.110 pCi/L 84 75 - 113

Count

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 96.1 30 - 110

Lab Sample ID: LCSD 160-611074/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 615046

Prep Type: Total/NA

Prep Batch: 611074

Total

LCSD LCSD %Rec **RER** Spike Uncert. %Rec Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit Limits Analyte RER Limit Radium-226 11.3 1.12 1.00 0.131 pCi/L 92 75 - 113 0.42 10.42

LCSD LCSD Carrier %Yield Qualifier Limits Ba Carrier 81.0 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-611088/1-A Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 614160

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed

Radium-228 Ū 0.333 1.00 0.512 pCi/L 05/11/23 12:51 06/01/23 12:31 0.4069 0.335 MB MB

Carrier %Yield Qualifier Limits Prepared Analyzed Ba Carrier 93.4 30 - 110 05/11/23 12:51 06/01/23 12:31 30 - 110 Y Carrier 79.2 05/11/23 12:51 06/01/23 12:31

Eurofins Cleveland

Prep Type: Total/NA Prep Batch: 611088

QC Sample Results

Client: TRC Environmental Corporation. Job ID: 240-184755-1

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-611088/2-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 614160

Prep Type: Total/NA Prep Batch: 611088

Total LCS LCS %Rec Spike Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-228 8.15 9.437 1.30 1.00 0.530 pCi/L 116 75 - 125

 Carrier
 %Yield Pack
 Qualifier Qualifier
 Limits

 Ba Carrier
 96.1
 30 - 110

 Y Carrier
 78.7
 30 - 110

Lab Sample ID: LCSD 160-611088/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 614159

Prep Type: Total/NA

Prep Batch: 611088

Total **Spike** LCSD LCSD Uncert. %Rec **RER** %Rec Analyte Added $(2\sigma + / -)$ RL **MDC** Unit Limits RER Limit Result Qual Radium-228 1.00 1.09 pCi/L 8.15 8.686 1.67 107 75 - 125 0.25

 Carrier
 % Yield Plant
 Qualifier Plant
 Limits Plant

 Ba Carrier
 81.0
 30 - 110

 Y Carrier
 62.1
 30 - 110

3

4

6

8

9

10

12

13

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184755-1

Rac

Prep Batch: 611074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184755-1	DEK-MW-15002	Total/NA	Water	PrecSep STD	
240-184755-2	DEK-MW-15005	Total/NA	Water	PrecSep STD	
240-184755-3	DEK-MW-15006	Total/NA	Water	PrecSep STD	
240-184755-4	DUP-DEK-BAP-01	Total/NA	Water	PrecSep STD	
240-184755-5	EB-DEK-BAP	Total/NA	Water	PrecSep STD	
MB 160-611074/1-A	Method Blank	Total/NA	Water	PrecSep STD	
LCS 160-611074/2-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-611074/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	

Prep Batch: 611088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184755-1	DEK-MW-15002	Total/NA	Water	PrecSep_0	
240-184755-2	DEK-MW-15005	Total/NA	Water	PrecSep_0	
240-184755-3	DEK-MW-15006	Total/NA	Water	PrecSep_0	
240-184755-4	DUP-DEK-BAP-01	Total/NA	Water	PrecSep_0	
240-184755-5	EB-DEK-BAP	Total/NA	Water	PrecSep_0	
MB 160-611088/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-611088/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-611088/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep 0	

_4

5

7

10

11

13

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: DEK-MW-15002

Date Collected: 05/02/23 12:07 Date Received: 05/05/23 08:00

Lab Sample ID: 240-184755-1

Matrix: Water

Job ID: 240-184755-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:46
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614160	FLC	EET SL	06/01/23 12:32
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Client Sample ID: DEK-MW-15005

Date Collected: 05/02/23 09:53

Date Received: 05/05/23 08:00

Lab Sample ID: 240-184755-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:46
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614160	FLC	EET SL	06/01/23 12:32
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Client Sample ID: DEK-MW-15006

Date Collected: 05/02/23 11:13

Date Received: 05/05/23 08:00

Lab Sample ID: 240-184755-3

Lab Sample ID: 240-184755-4

Matrix: Water

Matrix: Water

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:46
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614160	FLC	EET SL	06/01/23 12:32
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Client Sample ID: DUP-DEK-BAP-01

Date Collected: 05/02/23 00:00

Date Received: 05/05/23 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:47
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:38
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Page 17 of 24

Lab Chronicle

Job ID: 240-184755-1 Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: EB-DEK-BAP

Lab Sample ID: 240-184755-5 Date Collected: 05/02/23 12:21 **Matrix: Water** Date Received: 05/05/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:47
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:39
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Florida	NELAP	E87689	06-30-23
HI - RadChem Recognition	State	n/a	06-30-23
Illinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New York	NELAP	11616	03-31-24
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-23
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

Job ID: 240-184755-1

3

4

6

8

10

12

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Cleveland

ुँ eurofins Environment Testing

Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772

Eurofins Cleveland 180 S. Van Buren Avenue

	Complex		1 -1 045				ſ
Client Information	Jake.	Kruz	Broc	Brooks, Kris M	Carrier Tracking NQ's)	240-107206-29052.1	
Client Contact: Jacob Krenz	Phone: 774-7	1,083-56		E-Mail: Kris.Brooks@et.eurofinsus.com	State of Origin:	Page 1 of 1	
Company TRC Environmental Corporation		PWSID.		Analys	Analysis Requested	Job #:	
Address: 1540 Eisenhower Place	Due Date Requested:					Preservation Codes:	
City Ann Arbor	TAT Requested (days):					B - NaOH O - AsNaO2	
State, Zip. Mi, 48108-7080	Compliance Project: A	A Yes A No					
Phone 734-971-7080(Tel) 734-971-9022(Fax)	PO#: 178827			(0			0
Етлай JKrenz@trccompanies.com	WO#					I - Ice J - Di Water	
Project Name: Karn/Weadock CCR DEK Bottom Ash Pond	Project #: 24024154			ee ou	240-1	-	
Site	SSOW#			SD_825	8475	Other:	
Sample Identification	Sample Date Time	Sample Type ample (C=comp,	Matrix (Wweter, Brodd, Owestedd.	Eleld Filtered S M/2M mrohe 603.0, Ra226Ra 604.0 - Standard	5 Chain of C	Postal Number of	
			Preservation Code:		usto		1
DEK-MW-15002	5-2-23	5 6	Water		ody		
DEK-MW-15005	1	53 6	Water	×			
DEK-MW-15006	~	3 6	Water	N X X			
DUP-DEK-BAP-01	5-2-23	0	Water	× × ×			
EB-DEK-BAP	5-2-23	21 6	Water	× × ×			
			Water				
Possible Hazard Identification		_		Sample Disposal (A fee n	Sample Disposal (A fee may be assessed if samples are retained inner than 1 month)	alned longer than 1 month)	
ant	Doison B Unknown	Radiological		Return To Client	Disposal By Lab	Archive For Months	
I, III, IV, Other (specify)				Special Instructions/QC Requirements			П
Empty Kit Relinquished by:	Date			Time:	Method of Shipment		П
Relinquiffed by	Date/Time.	1417	Company	Received by Acre	Deterfime/	1417 Company	
Relinguished by	1/23	1413	Company	Received by	Oseletine Oseletine	33 800 CHINA	
	Date/Time: (Company	Received by	Detertime	Company	
Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Remarks:	d Other Remarks.		
						Ver: 06/08/2021] [

16117
Eurofins - Canton Sample Receipt Form/Narrative Barberton Facility Login #:
Client Cooler unpacked by:
Cooler Received on 5-5-23 Opened on 5-5-23
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # Foam Box Client Cooler Box Other
17. Was a LL Hg or Me Hg trip blank present? Yes No Contacted PM by via Verbal Voice Mail Other
Concerning by via veroal voice Mail Other
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
10. CAMPLE COMPLETON
19. SAMPLE CONDITION Sample(s)
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container. Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Sample(s) were further preserved in the laboratory. Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:

Login Container Summary Report

240-184755

Temperature readings: Container Preservative Client Sample ID Temp Added (mls) Lot # Lab ID Container Type pН DEK-MW-15002 Plastic 1 liter - Nitric Acid 240-184755-A-1 <2 DEK-MW-15002 240-184755-B-1 Plastic 1 liter - Nitric Acid <2 DEK-MW-15005 240-184755-A-2 Plastic 1 liter - Nitric Acid <2 Plastic 1 liter - Nitric Acid DEK-MW-15005 240-184755-B-2 <2 DEK-MW-15006 Plastic 1 liter - Nitric Acid 240-184755-A-3 <2 DEK-MW-15006 240-184755-B-3 Plastic 1 liter - Nitric Acid <2 DUP-DEK-BAP-01 Plastic 1 liter - Nitric Acid <2 240-184755-A-4 **DUP-DEK-BAP-01** 240-184755-B-4 Plastic 1 liter - Nitric Acid <2 **EB-DEK-BAP** 240-184755-A-5 Plastic I liter - Nitric Acid <2 **EB-DEK-BAP** 240-184755-B-5 Plastic 1 liter - Nitric Acid

<2

Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772

Eurofins Cleveland 180 S. Van Buren Avenue

Chain of Custody Record

💸 eurofins | Environment Testing

	Client Information (Sub Contract Lab)				Lab PM	Lab PM:	:				Cam	Carrier Tracking No(s):	ig No(s):		COC No:		
	Client Contact:	Phone:			DIOC E-Mail	- N. A.	Σ				-				240-167649.1	9.1	
	Shipping/Receiving				Kris	 Brooks(Det eu	Kris.Brooks@et.eumfinsus.com	000		State	Michigan			Page		
	Company. TestAmerica Laboratories Inc					Accredits	tions R	Accreditations Required (See note)	ee note):			200			Job #		
	Address														240-184755-1	1.	
	13715 Rider Trail North,	Due Date Requested: 6/6/2023	ÿ						Analysis Poguseted	eie P	9	70			Preservation Codes:	n Codes:	
	City. Earth City	TAT Requested (days):	ıys):				-	F						F	A - HCL	M - Hexane N - None	0
	State, Zip: MO, 63045	-					- ë								C - Zn Acetate D - Nitric Acid	0 - AsNaO2 P - Na2O4S Q - Na2SO3	S S 23
): 298-8566(Tel) 314-298-8757(Fax)	PO #:													F - MeOH G - Amchlor		33
	Email:	,#OM				(0)		17 100									I - TSP Dodecahydrate U - Acetone V - MCAA
	ct Name: n/Weadock CCR Groundwater Monitoring	Project #: 24024154				N 10 SI		10.5							J - DI Water K - EDTA L - EDA	W - pH 4-5 Y - Trizma	
	Site:	SSOW#:				SD (No										Z - other (specify)	pecify)
				-	Marrix	'n.		_				_			10.		
				Sample		Filters	PrecSep qeSperq	R2228_C							ledmbN		
P	Sample Identification - Client ID (Lab ID)	Sample Date		(C=comp, G=grab)		ALPS										Special Instructions (Alexa	(Alote:
ad		X	X	Preservation Code	on Code:	XX										ar matractions	More
e 2	DEK-MW-15002 (240-184755-1)	5/2/23	12:07 Fastern		Water		×	×							7VA protocol	TVA protocol - Ra-226+228 action limit at	ction limit at
3 of	DEK-MW-15005 (240-184755-2)	5/2/23	09:53		Water		×	×		+	1	+	#		_	5.0 pCt/L. TVA protocol - Ra-226+228 action limit at	ction limit at
24	DEK-MW-15006 (240-184755-3)	5/2/23	11:13 Factorn		Water		×	×	F	+	L	+	#			5.0 pCi/L. TVA protocol - Ra-226+228 action limit at	ction limit at
	DUP-DEK-BAP-01 (240-184755-4)	5/2/23	Eastern		Water	-	+-	×	1	+		+-				5.0 pCi/L. TVA protocol - Ra-226+228 action limit at	tion limit at
	EB-DEK-BAP (240-184755-5)	5/2/23	12:21 Factorn		Water		×	×		+		╁			_	5.0 pCi/L. TVA protocol - Ra-226+228 action limit at	tion limit at
							-		-	-		-			5.0 pCi/L.		
							-			-		-		9530			
							$\vdash \vdash$					-		1 10560			
														197516	(0)		
	Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation or subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the accreditation in the State of Organity State of Organity Indian accreditation in the State of Organity State of O	t Testing North Centra	t, LLC places t natrix being an	he ownership o	of method, anai	lyte & acci	editation ack to th	n compliar ne Eurofin	ice upon c	our subco	ontract la	boratories h Central	This sa	mple shipm	ent is forwarded ur	nder chain-of-custo	ody. If the

k being analyzed, the samples must be shipped back to the Eurotins Environment Testing North Central, LLC laboratory or other instructions will be provided. Any changes to tally. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Possible Hazard Identification

		_			med longer man	month	
Dolivorable Democrated 1 11 11 12 000		J	Return To Client Dispos	Disposal By Lah	Archive For	A demande	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Spe	Redu			MORITIS	
Emoty Kit Relinguished by:	4						
	Date:	Time:		Method of Shipment:			L
No composition of the compositio	Date/Jake/		Docoined has				
7	37			Date/Time:		Company	
Relinquished by:	Date/Time:) Amount	זבמבצ				
tedex			Necesived by: Shandadad - 11a	Date/Time:	Date/Time:		
Relinquished by:	Date/Time:	Company		18/0	XS V710	アンタング	
			Neceived by:	Date/Time:			
Custody Seals Intact: Custody Seal No.:							
△ Yes △ No			Cooler Temperature(s) °C and Other Remarks:				
			1 (1 : 1 :	7 8 9	5		
			0 1 2 4				

Login Sample Receipt Checklist

Client: TRC Environmental Corporation.

Job Number: 240-184755-1

Login Number: 184755
List Source: Eurofins St. Louis
List Number: 2
List Creation: 05/08/23 02:13 PM

Creator: Sharkey-Gonzalez, Briana L

Answer	Comment
True	
True	
True	
True	
N/A	
True	
N/A	
	True True True N/A True True True True True True True True

6

8

10

12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Darby Litz TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 7/5/2023 11:17:35 AM Revision 1

JOB DESCRIPTION

Karn/Weadock CCR DEK Bottom Ash Pond

JOB NUMBER

240-184761-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 7/5/2023 11:17:35 AM

Authorized for release by
Denise Heckler, Project Manager II
Denise.Heckler@et.eurofinsus.com
Designee for
Kris Brooks, Project Manager II
Kris.Brooks@et.eurofinsus.com
(330)966-9790

nuse DHeckler

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Tracer Carrier Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Chain of Custody	15
Receint Checklists	19

-5

4

8

10

11

13

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-184761-1

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Qualifiers

Rad

Qualifier Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

Ę

_

7

8

10

11

13

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184761-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-184761-1

Comments

A revised report was provided on July 5, 2023. The sample ID was corrected to: DEK-MW-18001.

Receipt

The sample was received on 5/5/2023 8:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

RAD

Method 903.0: Radium-226 batch 611074: Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Method 904.0: Radium-228 batch 611088: Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Method PrecSep_0: Radium-228 Prep Batch 160-611088: Insufficient sample volume was available to perform a sample duplicate for the following samples: DEK-MW-18001 (240-184761-1). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method PrecSep STD: Radium-226 Prep Batch 160-611074: Insufficient sample volume was available to perform a sample duplicate for the following samples: DEK-MW-18001 (240-184761-1). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

Job ID: 240-184761-1

3

А

6

6

0

9

10

1 1

13

Method Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep STD	Preparation, Precipitate Separation (Standard In-Growth)	None	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 240-184761-1

2

4

10

. .

13

Sample Summary

Client: TRC Environmental Corporation. Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184761-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184761-1	DEK-MW-18001	Water	05/03/23 06:40	05/05/23 08:00

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: DEK-MW-18001

Date Collected: 05/03/23 06:40 Date Received: 05/05/23 08:00

Lab Sample ID: 240-184761-1 **Matrix: Water**

Job ID: 240-184761-1

Method: EPA 903.0 - Radium-226 (GFPC)

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.268		0.109	0.112	1.00	0.120	pCi/L	05/11/23 12:08	06/08/23 08:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.4		30 - 110					05/11/23 12:08	06/08/23 08:26	

Ba Carrier	95.4		30 - 110					05/11/23 12:08	06/08/23 08:26	7
Method: EPA 90	4.0 - Radium	-228 (GFP	C)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.599		0.327	0.331	1.00	0.455	pCi/L	05/11/23 12:51	06/01/23 12:43	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.4		30 - 110					05/11/23 12:51	06/01/23 12:43	1
Y Carrier	90.4		30 - 110					05/11/23 12:51	06/01/23 12:43	1

Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.868		0.345	0.349	5.00	0.455	pCi/L		06/08/23 14:39	1

Tracer/Carrier Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184761-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
240-184761-1	DEK-MW-18001	95.4	
LCS 160-611074/2-A	Lab Control Sample	96.1	
LCSD 160-611074/3-A	Lab Control Sample Dup	81.0	
MB 160-611074/1-A	Method Blank	93.4	
Tracer/Carrier Legenc	i		
Ba = Ba Carrier			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Y	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
240-184761-1	DEK-MW-18001	95.4	90.4	
LCS 160-611088/2-A	Lab Control Sample	96.1	78.7	
LCSD 160-611088/3-A	Lab Control Sample Dup	81.0	62.1	
MB 160-611088/1-A	Method Blank	93.4	79.2	

macen carrier Legen

Ba = Ba Carrier

Y = Y Carrier

Job ID: 240-184761-1

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-611074/1-A

Client: TRC Environmental Corporation.

Matrix: Water

Analysis Batch: 615046

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 611074

MB MB Uncert. Uncert. **MDC** Unit Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL Prepared Analyzed Dil Fac Radium-226 0.1185 0.0822 0.0829 1.00 0.113 pCi/L 05/11/23 12:08 06/08/23 06:45

Total

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 93.4 30 - 110 05/11/23 12:08 06/08/23 06:45

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611074

Lab Sample ID: LCS 160-611074/2-A **Matrix: Water**

Analysis Batch: 615046

Total LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL %Rec Limits MDC Unit Radium-226 11.3 9.514 1.02 1.00 0.110 pCi/L 84 75 - 113

Count

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 96.1 30 - 110

Lab Sample ID: LCSD 160-611074/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 615046

Prep Type: Total/NA

Prep Batch: 611074

Total LCSD LCSD Spike Uncert.

%Rec **RER** %Rec Added $(2\sigma + / -)$ RL **MDC** Unit Limits Analyte Result Qual RER Limit Radium-226 11.3 1.12 1.00 0.131 pCi/L 92 75 - 113 0.42 10.42

LCSD LCSD Carrier %Yield Qualifier Limits Ba Carrier 81.0 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-611088/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 614160 Prep Batch: 611088

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 Ū 0.333 1.00 0.512 pCi/L 05/11/23 12:51 06/01/23 12:31 0.4069 0.335

MB MB Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 93.4 30 - 110 05/11/23 12:51 06/01/23 12:31 30 - 110 Y Carrier 79.2 05/11/23 12:51 06/01/23 12:31

QC Sample Results

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184761-1

Method: 904.0 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-611088/2-A

Matrix: Water

Analysis Batch: 614160

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611088

				iotai					
	Spike	LCS	LCS	Uncert.				%Rec	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Un	it %Rec	Limits	
Radium-228	8.15	9.437		1.30	1.00	0.530 pC	/L 116	75 - 125	. ——

Total

LCS LCS

%Yield Qualifier Carrier Limits Ba Carrier 96.1 30 - 110 Y Carrier 78.7 30 - 110

Lab Sample ID: LCSD 160-611088/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 614159

Prep Type: Total/NA

Prep Batch: 611088

Total **Spike** LCSD LCSD Uncert. %Rec **RER** %Rec Limits Limit Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit RER Radium-228 1.00 1.09 pCi/L 8.15 8.686 1.67 107 75 - 125 0.25

LCSD LCSD

Carrier	%Yield	Qualifier	Limits
Ba Carrier	81.0		30 - 110
Y Carrier	62.1		30 - 110

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Job ID: 240-184761-1

Rad

Prep Batch: 611074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184761-1	DEK-MW-18001	Total/NA	Water	PrecSep STD	
MB 160-611074/1-A	Method Blank	Total/NA	Water	PrecSep STD	
LCS 160-611074/2-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-611074/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	

Prep Batch: 611088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184761-1	DEK-MW-18001	Total/NA	Water	PrecSep_0	
MB 160-611088/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-611088/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-611088/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

.40-104701-1

3

4

5

7

8

10

11

40

Lab Chronicle

Job ID: 240-184761-1 Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Client Sample ID: DEK-MW-18001

Lab Sample ID: 240-184761-1 Date Collected: 05/03/23 06:40 **Matrix: Water**

Date Received: 05/05/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615045	FLC	EET SL	06/08/23 08:26
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:43
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK Bottom Ash Pond

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-11-23
HI - RadChem Recognition	State	n/a	06-30-23
Ilinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana	NELAP	04080	06-30-22 *
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New Mexico	State	MO00054	06-30-23
New York	NELAP	11616	03-31-24
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-23
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

Job ID: 240-184761-1

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

DEK-MW-15005 DEK-MW-15006

DEK-MW-15002

Sample Identification

下水・あり

DUP-DEK-BAP-01

EB-DEK-BAP

JKrenz@trccompanies.com

Address: 1540 Eisenhower Place

State, Zip: MI, 48108-7080

Ann Arbor

180 S. Van Buren Avenue

Client Information

Jacob Krenz

linquished by elinquished by

Empty Kit Relinquished by:

nquished by

1047/1
Eurofins - Canton Sample Receipt Form/Narrative Login #: \[\frac{b}{\sqrt{Q}} \] Barberton Facility
Client TV Cooler unpacked by:
Cooler Received on 5-5-23 Opened on 5-5-23
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # E Foam Bex Client Cooler Box Other
Packing material used. Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None See Multiple Cooler Form
IR GUN # 22 (CF +0.0 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9. For each sample, does the COC specify preservatives (Y/N), # of containers (Y/N), and sample type of grab/comp(Y/N)? 10. Were correct bottle(s) used for the test(s) indicated? 11. Sufficient quantity received to perform indicated analyses? 12. Are these work share samples and all listed on the COC? If yes, Questions 13-17 have been checked at the originating laboratory. 13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC? 15. Were air bubbles >6 mm in any VOA vials? 16. Larger than this. 17. Tests that are not checked for pH by Receiving: VOAs No Yes No No YoAs Oil and Grease TOC Toc Tests that are not checked for pH by Receiving: No NO YOAs Oil and Grease TOC Yes No No Yes No No No Yes No No No Yes No No No No No No No Yes No No No No No No No No No No
16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes No
17. Was a LL Hg or Me Hg trip blank present? Yes (No
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Sample(s) were further preserved in the laboratory. Time preserved: Preservative(s) added/Lot number(s):
VOA Sample Preservation - Date/Time VOAs Frozen:

5/5/2023

Login Container Summary Report

240-184761

| Container | Preservative | Client Sample ID | Lab ID | Container Type | DEK-MW-08001 | 240-184761-A-1 | Plastic 1 liter - Nitric Acid | <2 | ____ | DEK-MW-08001 | 240-184761-B-1 | Plastic 1 liter - Nitric Acid | <2 | ____ | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Preservative | Added (mls) | Lot # | Container | Container | Preservative | Added (mls) | Lot # | Container | Container | Preservative | Added (mls) | Lot # | Container | Container | Container | Container | Container | Preservative | Added (mls) | Lot # | Container | Container

A

6

8

4.6

11

13

180 S. Van Buren Avenue Barberton, OH 44203 Phone: 330-497-9396 Fax: 330-497-0772

Chain of Custody Record

Environment Testing

💸 eurofins

COC No: 240-167649.1	Page: Page 1 of 1
Carrier Tracking No(s):	State of Origin: Michigan
Lab PM: Brooks, Kris M	E-Mail: Kris.Brooks@et.eurofinsus.com
Sampler:	Phone:
formation (Sub Contract Lab)	eceiving

	Sampler:		Lab PM					3	Transfer of						- 1
Client Information (Sub Contract Lab)	i		Brooks, Kris M	Σ				5	SCAIIG	(s).		240-167649.1	9.1		
Shipping/Receiving	Phone:		E-Mali: Kris.Brooks@et.eurofinsus.com	@et.eur	ofinsus	moo.		State	State of Origin:			Page:	١.		Т
Company: TestAmerica Laboratories, Inc.			Accredita	Accreditations Required (See note):	vired (Se	e note):						Job #:			Т
Address: 13715 Rider Trail North	Due Date Requested:		-									Preservation Codes	1-1 in Codee:		Т
City	TAT Requested (date):			ŀ		A a	sis R	Analysis Requested	pe			A · HC	. N	M - Hexane	
Earth City	'(e fen) poreophore									_	27.0%	B - NaOH		N - None	
State, Zip: MO, 63045	Γ								_		arger,	C - Zn Acetate D - Nitric Acid		P - Na204S	
	PO#:			je								E - NaHSO4 F - MeOH		R - Na2S203	
314-298-8366(1el) 314-298-8757(Fax)										-		G - Amchlor	:	H2SO4 TSP Dodecabydrate	
L	**OM		(0)											U - Acetone	
Project Name: Kam/Weadock CCR Groundwater Monitoring	Project #: 24024154		e or y									J - DI Water K - EDTA	* ≻	W - pH 4-5 Y - Trizma	
Site:	SSOW#:		•W(7	- other (specify)	
			98	_	PPC			_				_			
Sample Identification - Client ID (Lab ID)	Sample Date Time	- 66	betatili blei RSM mohe	03.0/PrecSep_ qeSperq\0.4.0	0_8226Ra228							nedmuM lists			
	1	Pieservation Code		-	Я					+			al Instru	Special Instructions/Note:	
DEK-MW-08001 (240-184761-1)	}	DOO HORDINGE I	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										A		
	5/3/23 Eastern	Water		×	×							2 TVA protocol	I - Ra-226	TVA protocol - Ra-226+228 action limit at	
										-	200	3.0 PCVL.			
				+	\perp	T	+	#	1	+					_
			+	1	\perp	7	+	1	\dashv	+					_
				-								MAC STA			_
															_
									-		1000				_
							-			+					7
				F	+	1	+	1	1	+					
			+	\perp	+	1	+	\pm	1	+	023				
3															
one. Since laborations are subject to change, Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laborationes. This sample shipment is forwarded under chain-of-custody. If the boratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC aboratory or other instituctions will be provided. Any changes to	ent Testing North Central, LLC places above for analysis/tests/matrix being a sentral, LLC attention immediately. If a	places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC laboratory or other instructions will be provided. Any changes to the result of the sample accreditations are current to date, return the signed Chain of Custory attesting to each commission to change to the contractions will be provided. Any changes to	analyte & accr st be shipped b s are current to	editation ack to the date, ret	complian Eurofins um the si	Environ	our subca ment Tes ain of Cu	ontract laboring North	oratories. Central, Li	This sam	ple shipm tory or oth	ant is forwarded u	Inder chain-	of-custody. If the	
ossible Hazard Identification			Same	ole Dier	/ Jeson	4 600	A 7.65					Omis Civilonnie	n lesting N	orth Central, LLC.	
Inconfirmed				Return To Client	To Clie			Disposal District	in san	is said.		Return To Client	an 1 mon	th)	
eliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Speci	Special Instructions/QC Requirements:	ctions/	SC Re	quirem	ints:	י פא רשט		ARC	Archive For	٧	Months	
mpty Kit Relinquished by:	Inster		į					- r							
linguis ped Dy.	Defarthment	9	illine:					We	Method of Shipment:	ipment:					_
alignii ishad ku:		から		Received by:	forlos	3			<u> </u>	Date/Time:			Company	oany	
feel ex	Date/Time:	Company	R	Received by	- 3		Ages.	Hama	-	Date/Time:			\top	any	
	Date/Time:	Company	Re	Received by:						Date/Time:	2/20	125 07/0	\top	ETAST Company	
Custody Seals Intact: Custody Seal No.:			<u> </u>	Cooler Temperature(s) °C and Other Remarks:	verature(s	s) °C and	Other R	amarks:					-		
3									1						
					,										I

Login Sample Receipt Checklist

Client: TRC Environmental Corporation.

Job Number: 240-184761-1

Login Number: 184761 List Source: Eurofins St. Louis
List Number: 2 List Creation: 05/08/23 01:17 PM

Creator: Sharkey-Gonzalez, Briana L

Creator. Sharkey-Gonzalez, Briana L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

11

14

ANALYTICAL REPORT

PREPARED FOR

Attn: Darby Litz TRC Environmental Corporation. 1540 Eisenhower Place Ann Arbor, Michigan 48108-7080

Generated 7/5/2023 11:48:36 AM Revision 2

JOB DESCRIPTION

Karn/Weadock CCR DEK JCW Background Wells

JOB NUMBER

240-184759-1

Eurofins Cleveland 180 S. Van Buren Avenue Barberton OH 44203

Eurofins Cleveland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager.

Authorization

Generated 7/5/2023 11:48:36 AM

Authorized for release by Denise Heckler, Project Manager II Denise.Heckler@et.eurofinsus.com Designee for Kris Brooks, Project Manager II Kris.Brooks@et.eurofinsus.com (330)966-9790

nuse DHeckler

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Tracer Carrier Summary	14
QC Sample Results	15
QC Association Summary	17
Lab Chronicle	18
Certification Summary	20
Chain of Custody	21
Racaint Chacklists	25

4

•

8

40

11

12

Definitions/Glossary

Client: TRC Environmental Corporation. Job ID: 240-184759-1

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Qualifiers

Rad
Qualifier

4	Zummer 2000 i priori
G	The Sample MDC is greater than the requested RL.
U	Result is less than the sample detection limit.

Glossarv

Abbreviation	These commonly used abbreviations may or may not be present in this report.								
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis								
%R	Percent Recovery								
CFL	Contains Free Liquid								

CFU Colony Forming Unit **CNF** Contains No Free Liquid **DER** Duplicate Error Ratio (normalized absolute difference)

Qualifier Description

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Job ID: 240-184759-1

Laboratory: Eurofins Cleveland

Narrative

Job Narrative 240-184759-1

Comments

A revised report was provided on July 5, 2023. The sample ID was corrected: DUP-BACKGROUND. The sampling date was corrected: MW-15016.

Receipt

The samples were received on 5/5/2023 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.3° C.

RAD

Method 903.0: Radium-226 batch 611074: Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Method 904.0: Radium-228 batch 611088: The detection goal was not met for the following sample. Sample was prepped at a reduced volume due to the presence of matrix interferences: MW-15008 (240-184759-2). Analytical results are reported with the detection limit achieved.

Method 904.0: Radium-228 batch 611088: The detection goal was not met for the following sample. The samples and batch QC were prepped at full volume. Matrix interferences are suspected because the method blank achieved the detection goal demonstrating acceptable sample preparation and instrument performance: MW-15016 (240-184759-3). Analytical results are reported with the detection limit achieved

Method 904.0: Radium-228 batch 611088: Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

Method PrecSep_0: Radium-228 Prep Batch 160-611088: The following samples were prepared at a reduced aliquot due to Matrix: MW-15008 (240-184759-2), MW-15019 (240-184759-4) and DUP-BACKGROUND (240-184759-5). A laboratory control sample duplicate (LCS/LCSD) were prepared instead of a sample duplicate (DUP) to demonstrate batch precision.

Method PrecSep_0: Radium-228 Prep Batch 160-611088: Insufficient sample volume was available to perform a sample duplicate for the following samples: MW-15002 (240-184759-1), MW-15016 (240-184759-3) and FB-BACKGROUND (240-184759-6). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method PrecSep STD: Radium-226 Prep Batch 160-611074: The following samples were prepared at a reduced aliquot due to Matrix: MW-15008 (240-184759-2), MW-15019 (240-184759-4) and DUP-BACKGROUND (240-184759-5). A laboratory control sample duplicate (LCS/LCSD) were prepared instead of a sample duplicate (DUP) to demonstrate batch precision.

Method PrecSep STD: Radium-226 Prep Batch 160-611074: Insufficient sample volume was available to perform a sample duplicate for the following samples: MW-15002 (240-184759-1), MW-15016 (240-184759-3) and FB-BACKGROUND (240-184759-6). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 240-184759-1

4

6

7

10

12

13

Method Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
PrecSep STD	Preparation, Precipitate Separation (Standard In-Growth)	None	EET SL
PrecSen 0	Preparation Precipitate Separation	None	FFT SI

Protocol References:

EPA = US Environmental Protection Agency

None = None

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Job ID: 240-184759-1

5

7

8

9

10

12

13

Sample Summary

Client: TRC Environmental Corporation.
Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-184759-1	MW-15002	Water	05/01/23 15:01	05/05/23 08:00
240-184759-2	MW-15008	Water	05/01/23 12:40	05/05/23 08:00
240-184759-3	MW-15016	Water	05/02/23 08:40	05/05/23 08:00
240-184759-4	MW-15019	Water	05/01/23 13:43	05/05/23 08:00
240-184759-5	DUP-BACKGROUND	Water	05/01/23 00:00	05/05/23 08:00
240-184759-6	FB-BACKGROUND	Water	05/01/23 12:40	05/05/23 08:00

Job ID: 240-184759-1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID: 240-184759-1

Motrice Motor

Matrix: Water

Job ID: 240-184759-1

Client Sample	ID:	MW-15002
Date Collected: 0	5/01	/23 15:01

Date Received: 05/05/23 08:00

Method: EPA 903.	0 - Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.115	U	0.115	0.115	1.00	0.183	pCi/L	05/11/23 12:08	06/08/23 06:47	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	80.0		30 - 110					05/11/23 12:08	06/08/23 06:47	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0854	U	0.301	0.301	1.00	0.547	pCi/L	05/11/23 12:51	06/01/23 12:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	80.0		30 - 110					05/11/23 12:51	06/01/23 12:40	1
Y Carrier	87.4		30 - 110					05/11/23 12:51	06/01/23 12:40	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.200	U	0.322	0.322	5.00	0.547	pCi/L		06/08/23 14:39	1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID: 240-184759-2

Job ID: 240-184759-1

Matrix: Water

Date Collected: 05/01/23 12:40 Date Received: 05/05/23 08:00

Client Sample ID: MW-15008

- Radium	-226 (GFP	C)							
	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.102	U	0.147	0.147	1.00	0.249	pCi/L	05/11/23 12:08	06/08/23 06:47	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
76.4		30 - 110					05/11/23 12:08	06/08/23 06:47	1
_	Result 0.102 %Yield	Result Qualifier 0.102 U %Yield Qualifier	Result 0.102 Qualifier Uncert. (2σ+/-) 0.47 0.147	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.102 U O.147 O.147	Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Uncert. Count Uncert. Count Uncert. Count Uncert. Count Uncert. Count Uncert. Uncert. Count Uncert. Count Uncert. Count Uncert. Uncert. Count Uncert. Count Uncert. Count Uncert. Uncert.	Count Uncert. Uncert. Variety Variety	Count Uncert. Uncert. Vicert. Vicert.

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.286	UG	0.658	0.658	1.00	1.16	pCi/L	05/11/23 12:51	06/01/23 12:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	76.4		30 - 110					05/11/23 12:51	06/01/23 12:40	1
Y Carrier	61.5		30 - 110					05/11/23 12:51	06/01/23 12:40	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.388	U	0.674	0.674	5.00	1.16	pCi/L		06/08/23 14:39	1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID: 240-184759-3

Metric Mater

Job ID: 240-184759-1

Matrix: Water

Client Sample ID: MW-15016 Date Collected: 05/02/23 08:40

Date Received: 05/05/23 08:00

Method: EPA 903.	0 - Radium	-226 (GFP	C)							
		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0671	U	0.0783	0.0785	1.00	0.127	pCi/L	05/11/23 12:08	06/08/23 06:49	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.2		30 - 110					05/11/23 12:08	06/08/23 06:49	1

motriou. El 7100	4.0 - Radium	-220 (011	U)							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.201	UG	0.523	0.523	1.00	1.01	pCi/L	05/11/23 12:51	06/01/23 12:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.2		30 - 110					05/11/23 12:51	06/01/23 12:40	1
Y Carrier	59.3		30 - 110					05/11/23 12:51	06/01/23 12:40	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count	Total						
Austra	D	0	Uncert.	Uncert.	ъ.		1194	D	A	D'' E
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.134	U	0.529	0.529	5.00	1.01	pCi/L		06/08/23 14:39	1

2

Δ

5

7

0

10

11

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID: 240-184759-4

Matrix: Water

Job ID: 240-184759-1

Client Sample ID: MW-15019 Date Collected: 05/01/23 13:43

Date Received: 05/05/23 08:00

Method: EPA 903.0	- Radium	-226 (GFP	C)							
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.310		0.134	0.137	1.00	0.137	pCi/L	05/11/23 12:08	06/08/23 08:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.1		30 - 110					05/11/23 12:08	06/08/23 08:21	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.483	U	0.529	0.530	1.00	0.859	pCi/L	05/11/23 12:51	06/01/23 12:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.1		30 - 110					05/11/23 12:51	06/01/23 12:40	1
Y Carrier	65.7		30 - 110					05/11/23 12:51	06/01/23 12:40	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.792	U	0.546	0.547	5.00	0.859	pCi/L		06/08/23 14:39	1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Client Sample ID: DUP-BACKGROUND Lab Sample ID: 240-184759-5 **Matrix: Water**

Date Collected: 05/01/23 00:00 Date Received: 05/05/23 08:00

Method: EPA 903	.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.393		0.140	0.144	1.00	0.123	pCi/L	05/11/23 12:08	06/08/23 08:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.4		30 - 110					05/11/23 12:08	06/08/23 08:22	

		-228 (GFP	•							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.588	U	0.553	0.556	1.00	0.883	pCi/L	05/11/23 12:51	06/01/23 12:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.4		30 - 110					05/11/23 12:51	06/01/23 12:41	1
Y Carrier	71.1		30 - 110					05/11/23 12:51	06/01/23 12:41	1

Method: TAL-STL F	Ra226_Ra	228 - Com	bined Radi	um-226 an	d Radiur	n-228				
	_		Count	Total						
Analyte	Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.981		0.570	0.574	5.00	0.883	pCi/L	_ ··	06/08/23 14:39	1

Job ID: 240-184759-1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID: 240-184759-6

Job ID: 240-184759-1

Client Sample ID: FB-BACKGROUND Date Collected: 05/01/23 12:40 **Matrix: Water** Date Received: 05/05/23 08:00

Method: EPA 90	03.0 - Radium	-226 (GFP	C)							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0163	U	0.0448	0.0449	1.00	0.109	pCi/L	05/11/23 12:08	06/08/23 08:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.4		30 - 110					05/11/23 12:08	06/08/23 08:22	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.242	U	0.351	0.352	1.00	0.593	pCi/L	05/11/23 12:51	06/01/23 12:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	85.4		30 - 110					05/11/23 12:51	06/01/23 12:41	1
Y Carrier	81.2		30 - 110					05/11/23 12:51	06/01/23 12:41	1

Method: TAL-STL R	a226_Ra	228 - Com	bined Radi	ium-226 an	d Radiur	n-228				
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.226	U	0.354	0.355	5.00	0.593	pCi/L		06/08/23 14:39	1

Tracer/Carrier Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Job ID: 240-184759-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
240-184759-1	MW-15002	80.0	
240-184759-2	MW-15008	76.4	
240-184759-3	MW-15016	85.2	
240-184759-4	MW-15019	86.1	
240-184759-5	DUP-BACKGROUND	95.4	
240-184759-6	FB-BACKGROUND	85.4	
LCS 160-611074/2-A	Lab Control Sample	96.1	
LCSD 160-611074/3-A	Lab Control Sample Dup	81.0	
MB 160-611074/1-A	Method Blank	93.4	
Tracer/Carrier Legend			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
240-184759-1	MW-15002	80.0	87.4	
240-184759-2	MW-15008	76.4	61.5	
240-184759-3	MW-15016	85.2	59.3	
240-184759-4	MW-15019	86.1	65.7	
240-184759-5	DUP-BACKGROUND	95.4	71.1	
240-184759-6	FB-BACKGROUND	85.4	81.2	
LCS 160-611088/2-A	Lab Control Sample	96.1	78.7	
LCSD 160-611088/3-A	Lab Control Sample Dup	81.0	62.1	
MB 160-611088/1-A	Method Blank	93.4	79.2	

Ba = Ba Carrier

Y = Y Carrier

Eurofins Cleveland

Job ID: 240-184759-1

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-611074/1-A

Lab Sample ID: LCS 160-611074/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 615046

Analysis Batch: 615046

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 611074

MB MB Uncert. Uncert. **MDC** Unit Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL Prepared Analyzed Dil Fac Radium-226 0.1185 0.0822 0.0829 1.00 0.113 pCi/L 05/11/23 12:08 06/08/23 06:45

Total

Count

MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 93.4 30 - 110 05/11/23 12:08 06/08/23 06:45

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611074

Total

LCS LCS %Rec **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL %Rec Limits MDC Unit Radium-226 11.3 9.514 1.02 1.00 0.110 pCi/L 84 75 - 113

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 96.1 30 - 110

Lab Sample ID: LCSD 160-611074/3-A

Matrix: Water

Analysis Batch: 615046

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 611074

Total LCSD LCSD %Rec **RER** Spike Uncert. %Rec Added $(2\sigma + / -)$ RL **MDC** Unit Limits Analyte Result Qual RER Limit Radium-226 11.3 1.12 1.00 0.131 pCi/L 92 75 - 113 0.42 10.42

LCSD LCSD Carrier %Yield Qualifier Limits Ba Carrier 81.0 30 - 110

Method: 904.0 - Radium-228 (GFPC)

Lab Sample ID: MB 160-611088/1-A Client Sample ID: Method Blank **Matrix: Water**

Analysis Batch: 614160

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Dil Fac Analyzed Radium-228 Ū 0.333 1.00 0.512 pCi/L 05/11/23 12:51 06/01/23 12:31 0.4069 0.335

MB MB Carrier %Yield Qualifier Limits Dil Fac Prepared Analyzed Ba Carrier 93.4 30 - 110 05/11/23 12:51 06/01/23 12:31 30 - 110 Y Carrier 79.2 05/11/23 12:51 06/01/23 12:31

Eurofins Cleveland

Prep Type: Total/NA Prep Batch: 611088

QC Sample Results

Client: TRC Environmental Corporation.

Lab Sample ID: LCS 160-611088/2-A

Matrix: Water

Analysis Batch: 614160

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Method: 904.0 - Radium-228 (GFPC) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 611088

Job ID: 240-184759-1

				Iotai					
	Spike	LCS	LCS	Uncert.				%Rec	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-228	8.15	9.437		1.30	1.00	0.530 pCi/L	116	75 - 125	

 Carrier
 %Yield Pack
 Qualifier Qualifier
 Limits

 Ba Carrier
 96.1
 30 - 110

 Y Carrier
 78.7
 30 - 110

Lab Sample ID: LCSD 160-611088/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Prep Type: Total/NA

Matrix: Water
Analysis Batch: 614159

Total **Spike** LCSD LCSD Uncert. %Rec **RER** %Rec Limits Limit Analyte Added $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Radium-228 1.00 1.09 pCi/L 8.15 8.686 1.67 107 75 - 125 0.25

 Carrier
 %Yield Ba Carrier
 81.0
 Qualifier Qualifier
 Limits 30 - 110

 Y Carrier
 62.1
 30 - 110

Prep Type: Total/NA
Prep Batch: 611088

12

13

QC Association Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Job ID: 240-184759-1

Rac

Prep Batch: 611074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184759-1	MW-15002	Total/NA	Water	PrecSep STD	
240-184759-2	MW-15008	Total/NA	Water	PrecSep STD	
240-184759-3	MW-15016	Total/NA	Water	PrecSep STD	
240-184759-4	MW-15019	Total/NA	Water	PrecSep STD	
240-184759-5	DUP-BACKGROUND	Total/NA	Water	PrecSep STD	
240-184759-6	FB-BACKGROUND	Total/NA	Water	PrecSep STD	
MB 160-611074/1-A	Method Blank	Total/NA	Water	PrecSep STD	
LCS 160-611074/2-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-611074/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	

Prep Batch: 611088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-184759-1	MW-15002	Total/NA	Water	PrecSep_0	
240-184759-2	MW-15008	Total/NA	Water	PrecSep_0	
240-184759-3	MW-15016	Total/NA	Water	PrecSep_0	
240-184759-4	MW-15019	Total/NA	Water	PrecSep_0	
240-184759-5	DUP-BACKGROUND	Total/NA	Water	PrecSep_0	
240-184759-6	FB-BACKGROUND	Total/NA	Water	PrecSep_0	
MB 160-611088/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-611088/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-611088/3-A	Lab Control Sample Dup	Total/NA	Water	PrecSep 0	

Eurofins Cleveland

Δ

5

7

Ŏ

10

11

1 /

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Client Sample ID: MW-15002

Date Collected: 05/01/23 15:01 Date Received: 05/05/23 08:00 Lab Sample ID: 240-184759-1

Matrix: Water

Job ID: 240-184759-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:47
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:40
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Client Sample ID: MW-15008

Date Collected: 05/01/23 12:40 Date Received: 05/05/23 08:00

Lab Sample ID: 240-184759-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615046	FLC	EET SL	06/08/23 06:47
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:40
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Client Sample ID: MW-15016

Date Collected: 05/02/23 08:40

Date Received: 05/05/23 08:00

ab Sample	ID: 240-1	84759-3
-----------	-----------	---------

05/11/23 12:08

06/08/23 08:21

05/11/23 12:51

06/01/23 12:40

06/08/23 14:39

EET SL

EET SL

EET SL

EET SL

EET SL

Matrix: Water

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	615045	FLC	EET SL	06/08/23 06:49
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:40
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Prep

Prep

Analysis

Analysis

Analysis

PrecSep STD

PrecSep_0

Ra226_Ra228

903.0

904.0

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sam Date Collecte Date Receive	d: 05/01/23	13:43					Lal	240-184759-4 Matrix: Water	
Pren Tyne	Batch	Batch Method	Run	Dilution	Batch	Analyet	l ah	Prepared	

1

1

611074 KAC

614897 FLC

611088 KAC

614159 FLC

615062 EMH

Eurofins Cleveland

Lab Chronicle

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Lab Sample ID: 240-184759-5

Client Sample ID: DUP-BACKGROUND

Date Collected: 05/01/23 00:00
Date Received: 05/05/23 08:00

Matrix: Water

Job ID: 240-184759-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	614897	FLC	EET SL	06/08/23 08:22
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:41
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Client Sample ID: FB-BACKGROUND Lab Sample ID: 240-184759-6

Date Collected: 05/01/23 12:40 Matrix: Water

Date Received: 05/05/23 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	PrecSep STD			611074	KAC	EET SL	05/11/23 12:08
Total/NA	Analysis	903.0		1	614897	FLC	EET SL	06/08/23 08:22
Total/NA	Prep	PrecSep_0			611088	KAC	EET SL	05/11/23 12:51
Total/NA	Analysis	904.0		1	614159	FLC	EET SL	06/01/23 12:41
Total/NA	Analysis	Ra226_Ra228		1	615062	EMH	EET SL	06/08/23 14:39

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

_

-

5

0

ŏ

10

46

13

Accreditation/Certification Summary

Client: TRC Environmental Corporation.

Project/Site: Karn/Weadock CCR DEK JCW Background Wells

Job ID: 240-184759-1

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-06-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-23
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-23
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-11-23
HI - RadChem Recognition	State	n/a	06-30-23
Ilinois	NELAP	200023	11-30-23
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-23
Kentucky (DW)	State	KY90125	12-31-23
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-23
Louisiana	NELAP	04080	06-30-22 *
Louisiana (All)	NELAP	04080	06-30-23
Louisiana (DW)	State	LA011	12-31-23
Maryland	State	310	09-30-23
MI - RadChem Recognition	State	9005	06-30-23
Missouri	State	780	06-30-25
Nevada	State	MO000542020-1	07-31-23
New Jersey	NELAP	MO002	06-30-23
New Mexico	State	MO00054	06-30-23
New York	NELAP	11616	03-31-24
North Carolina (DW)	State	29700	07-31-23
North Dakota	State	R-207	06-30-23
Oklahoma	NELAP	9997	08-31-23
Oregon	NELAP	4157	09-01-23
Pennsylvania	NELAP	68-00540	02-28-24
South Carolina	State	85002001	06-30-23
Texas	NELAP	T104704193	07-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO000542021-14	07-31-23
Virginia	NELAP	10310	06-14-23
Washington	State	C592	08-30-23
West Virginia DEP	State	381	10-31-23

0

8

10

12

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins Cleveland

Change Constant	Sampler			Brooks	Lab PM Brooks, Kris M			Carrier Tra	Carrier Tracking No(s).	2 6	COC No. 240-107203-33282.	3282.1
Jacob Krenz	Phone			E-Mail Kris.B	E-Mail Kris. Brooks@et. eurofinsus. com	eurofinsus	mos	State of Ongin	ngin	P	Page 1 of 1	
Company: TRC Environmental Corporation.			PWSID				Analysis	Requested		9	Job #	
Address 1540 Eisenhower Place	Due Date Requested:	ed:								å .	Preservation Codes	odes: M - Hexane
City. Ann Arbor	TAT Requested (days)	ays):			110					(m U	B - McL B - NaOH C - Zn Acetate	
State, Zip. MI, 48108-7080	Compliance Project:	A Yes	Δ No								- Nitric Acid	Q - Na2SO3 R - Na2S2O3
Phone. 734-971-7080(Tel) 734-971-9022(Fax)	PO# TBD				10					.01	- MeUri i - Amchior I - Ascorbic Acid	
Email: JKrenz@trccompanies.com	#OM						_				I - Ice J - Di Water	
Project Name: Karn/Weadock CCR Background Well	Project #: 24024154				10 80	1817 14					K - EDTA L - EDA	Y - Trizma Z - other (specify)
Site	\$SOW#				N) ası	ognaT b	_				Other:	
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (w-weter, B-sold, O-westslod, BT-These A-AA)	Field Filtered Perform MSIM 903.0, Re226Re	nabnat2 - 0.1-06		240-1847	114111111111111111	Total Number	Special	Special Instructions/Note
	X	X	00	n Code:	° X	0		59		X		
MW-15002	5-1-23	1051	<u></u>	Water	5 ×	*	-	Chair				
MW-15008	5-1-23	1240	9	Water	×	×	_	of C				
MW-15016	5-2-23	0420	5	Water	×	×		Custo				
MW-15019	5-1-33	1343	5	Water	NNX	~		dy				
DUP-Background	5-1-23	1	S	Water	×	×						
EQ-Backgroud				Water		1	_					
FB-Background	5-1-33	07-01	ی	Water	<i>≥</i>	×	H-	_				
Possible Hazard Identification Non-Hazard Flammable Skin Initian	Doison R		Radiological		Sample	le Disposal (A 1	A fee ma	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	if samples	are retained lon	longer than	1 month)
/, Other					Special	Instruction	Special Instructions/QC Requirements	rements	y Lab	PARTO	5	MORINS
Empty Kit Relinquished by:		Date:			Time:			Met	Method of Shipment			
Relinquish d by	Date Time: 73 3	Uhi/	8	Company	Rece	Received by	20	,	S/4/	23 /	411	Company
Reinquished by Reinquished by	S/4/23 Date/Time:	1418		Company	Recei			Shall	Date/Time	5.3	3 80	Company
Custody Seals Intact: Custody Seal No.		Ĺ			Cook	r Temperatu	re(s) °C and (Cooler Temperature(s) °C and Other Remarks				

MICHIGAN 0-3/0-3 MICHIGAN 190 chain of Custody Record 190

Eurofins Cleveland

19.4759
Eurofins - Canton Sample Receipt Form/Narrative Login # : 107 13
Barberton Facility
Client Site Name Cooler unpacked by:
Cooler Received on 5-5-23 Opened on 5-5-23
FedEx: 1st Grd Exp UPS FAS Clipper Client Drop Off Eurofins Courier Other
Receipt After-hours: Drop-off Date/Time Storage Location
Eurofins Cooler # E Foam Box Client Cooler Box Other
Packing material used. Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None
1. Cooler temperature upon receipt
IR GUN # 22 (CF +0.0 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C
2. Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity -Were the seals on the outside of the cooler(s) signed & dated? -Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was'were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottle sarrive in good condition (Unbroken)? 8. Could all bottle labels (ID/Date/Time) be reconciled with the COC? 9. For each sample, does the COC specify preservatives (Y/M), # of containers (Y/M), and sample type of grab/comp(Y/M)? 10. Were correct bottle(s) used for the test(s) indicated? 11. Sufficient quantity received to perform indicated analyses? 12. Are these work share samples and all listed on the COC? 13. Were all preserved sample(s) at the correct pH upon receipt? 14. Were VOAs on the COC? 15. Were air bubbles >6 mm in any VOA vials? 16. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # 17. Was a LL Hg or Me Hg trip blank present? 18. Were all preserved to perform in the cooler(s)? Trip Blank Lot # Yes No Tests that are not checked for pH by Receiving: YOAs Oil and Grease TOC YOAS Oil and Grease TOC You No You No No No No No No No No No No
Contacted PM Date by via Verbal Voice Mail Other
Concerning
18. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
19. SAMPLE CONDITION
Sample(s) were received after the recommended holding time had expired.
Sample(s) were received in a broken container.
Sample(s) were received with bubble >6 mm in diameter. (Notify PM)
20. SAMPLE PRESERVATION
Sample(s) were further preserved in the laboratory.
Sample(s) were further preserved in the laboratory. Time preserved: Preservative(s) added/Lot number(s):
יייי אייייי אייייי אייייי אייייי איייייי
VOA Sample Preservation - Date/Time VOAs Frozen:

5/5/2023

FB-BACKGROUND

Login Container Summary Report

240-184759

Temperature readings: _ Container **Preservative** Client Sample ID Lab ID **Container Type** Temp Added (mls) Lot # pН MW-15002 Plastic 1 liter - Nitric Acid 240-184759-A-1 <2 MW-15002 Plastic 1 liter - Nitric Acid 240-184759-B-1 <2 MW-15008 240-184759-A-2 Plastic 1 liter - Nitric Acid <2 Plastic 1 liter - Nitric Acid MW-15008 240-184759-B-2 <2 MW-15016 240-184759-A-3 Plastic 1 liter - Nitric Acid <2 Plastic 1 liter - Nitric Acid MW-15016 240-184759-B-3 <2 Plastic 1 liter - Nitric Acid MW-15019 240-184759-A-4 <2 MW-15019 240-184759-B-4 Plastic 1 liter - Nitric Acid <2 **DUP-BACKGROUD** 240-184759-A-5 Plastic 1 liter - Nitric Acid <2 Plastic 1 liter - Nitric Acid **DUP-BACKGROUD** 240-184759-B-5 <2 FB-BACKGROUND 240-184759-A-6 Plastic 1 liter - Nitric Acid <2

Plastic 1 liter - Nitric Acid

<2

240-184759-B-6

T

Phone: 330-497-9396 Fax: 330-497-0772 180 S. Van Buren Avenue Barberton, OH 44203

Chain of Custody Record

💸 eurofins

Environment Testing

COC No: 240-167649.1 Page: Page 1 of 1 Carrier Tracking No(s) State of Origin: Michigan E-Mail: Kris.Brooks@et.eurofinsus.com Lab PM: Brooks, Kris M Client Information (Sub Contract Lab) Client Contact: Shipping/Receiving

Company					S.C. CONSTRUCTION OF THE STREET	5	301110			MICHIGAN			Page 1 of 1	
TestAmerica I aboratories Inc					Accreditations Required (See note):	lions Re	quired (S	ee note):					Job #:	
Address:													240-184759-1	
13715 Rider Trail North.	Due Date Requested:	.; •							<u> </u>				Preservation Codes:	
NiC.	01015050							Analys	Analysis Requested	ested				M - Hexane
Earth City	TAT Requested (days):	ays):			272	_					L	938		N - None
State, Zip: MO, 63045	,												C - Zn Acetate P - D - Nitric Acid O - C - Notaco	P - Na204S Q - Na2SO3
Phone: 314-298-8566(Tel) 314-298-8757(Fax)	PO#:													R - Na2S203 S - H2SO4 T - TSD Dodgochudgolo
Email:	**				(0)								H - Ascorbic Acid	U - Acetone V - MCAA
Project Name: Kam/Weadock CCR Groundwater Monitoring	Project #: 24024154											menis	J - DI water K - EDTA L - EDA	W - pH 4-5 Y - Trizma
Sile:	SSOW#:				A) as		_					noo i	Other:	z - otner (specify)
				Marrix		_	_					0.1		
Sample Identification - Client ID /I sk iD)		Sample	Sample Type (C=comp,	(Wawater, Sesolid, Oewasts/oil, BTeTissue,	Sh mon	ge25e1910.£ ge25e1910.\$	_8228 ₈ 228_0					edmuk isi		
	Sample Date		G=grab)	A=Air)	e le	-+	-+					οT	Special Instructions/Note:	ctions/Note:
			Preservation Code:	on Code:	X							<u>X</u>		
MW-15002 (240-184759-1)	5/1/23	Fastern		Water		×	×					2	-	+228 action limit at
MW-15008 (240-184759-2)	5/1/23	12:40 Factors		Water		×	×	-				0		+228 action limit at
MW-15016 (240-184759-3)	5/1/23	08:40 Fastern		Water		×	×	+	1			0.		+228 action limit at
MW-15019 (240-184759-4)	5/1/23	13:43		Water	+	<u> </u>	>		+	+	+		5.0 pCi/L. TVA pmtocol - Ra-226+228 action limit at	+228 action limit at
		Eastern			+	+	<					7	_	ייד מבתוכון וווווון פו
DOT-BACKGROUD (240-184/59-5)	5/1/23	Eastern		Water	_	×	×					2		+228 action limit at
FB-BACKGROUND (240-184759-6)	5/1/23	12:40 Eastem		Water		×	×					2		+228 action limit at
						-							a.u pcwr.	
					+	\downarrow	1	+	‡	+				
			+		_	\dashv	\downarrow	_	\downarrow					
						-0.		_					(7)	

Note. Since laboratory accreditations are subject to change. Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment before above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing North Central, LLC. Possible Hazard Identification

Possible Hazard Identification		-	Marie Marie 17 A.C.						
Unconfirmed			e ma	ssessed if sa	mples are r	stained Ion	ger than 1	month)	
Deliverable Degreeted: 1 II III V. Out.			Return To Client D	Disposal By Lab		Archive For		Months	
Deliverable Nequested. I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Sp	Special Instructions/QC Requirements:	ts:	l			THE STATE OF THE S	
Empty Kit Relinquished by:	Date:	Time		Method of Shipmant	Shipmont				
Reginanis/hed by:	Date				- Company				
4	5 = 75	Company	Received by:		Date/Time:			Company	
Relinquished by:	Date/Time		Tedex						
1-0/ex		Company	Received by:	Sama	Date/Time:	270	1	Company	
Relinquished by:	Date/Time:	Company	Description	0	3/2	5/8/25 VY10 CTAST	2110	つなり	7
			Neceived by:		Date/Time:			Company	
Custody Seals Infact: Custody Seal No									
Δ Yes Δ No			Cooler Temperature(s) °C and Other Remarks:	arks:					
			1						
			1 2 3	9	7 8		4 5		

Login Sample Receipt Checklist

Client: TRC Environmental Corporation. Job Number: 240-184759-1

Login Number: 184759 List Source: Eurofins St. Louis List Creation: 05/08/23 01:28 PM List Number: 2

Creator: Sharkey-Gonzalez, Briana L

Creator: Sharkey-Gonzalez, Briana L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	N/A	
ooler Temperature is acceptable.	True	
cooler Temperature is recorded.	True	
COC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
nere are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time (excluding tests with immediate Ts)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested IS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
lultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
esidual Chlorine Checked.	N/A	

Date: July 21, 2023

To: J.R. Register, Consumers Energy

From: Darby Litz, TRC

Kristin Lowery, TRC

Project No.: 514404.0001.0000 Phase 2 Task 2

Subject: First Semiannual 2023 Nature and Extent Data Summary, DE Karn Bottom Ash

Pond, Consumers Energy, Essexville, Michigan

Introduction

In response to the United States Environmental Protection Agency's (U.S. EPA's) Resource Conservation and Recovery Act (RCRA) Coal Combustion Residual rule ("CCR Rule") promulgated on April 17, 2015, as amended, Consumers Energy Company (Consumers Energy) has conducted groundwater monitoring at the DE Karn Bottom Ash Pond CCR Unit. During the statistical evaluation of the initial assessment monitoring event (May 2018) for the Karn Bottom Ash Pond, arsenic was present in one or more downgradient monitoring well(s) at statistically significant levels exceeding the Groundwater Protection Standards (GWPSs)¹.

The CCR Rule 40 CFR §257.96(a) requires that an owner or operator initiate an assessment of corrective measures (ACM) to prevent further release, to remediate any releases, and to restore impacted areas to original conditions if any Appendix IV constituent has been detected at a statistically significant level exceeding a GWPS. The Assessment of Corrective Measures (ACM) (TRC, September 2019) was initiated on April 14, 2019 and was certified and submitted to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) on September 11, 2019 in accordance with the schedule in §257.96.

Per §257.95(g)(1), in the event that the facility determines, pursuant to §257.93(h), that there is a statistical exceedance of the GWPSs for one or more of the Appendix IV constituents, the facility must characterize the nature and extent of the release of CCR as well as any site conditions that may affect the remedy selected. Installation of additional monitoring wells at locations downgradient of the Karn Bottom Ash Pond groundwater monitoring system was not necessary or feasible due to the presence of existing monitoring wells sampled under the groundwater surface water interface (GSI) Compliance Monitoring Program administered under a Michigan-approved Hydrogeological Monitoring Plan (HMP) (Consumers Energy, 2019), and the proximity of the surface water bodies. Monitoring wells designated for nature and extent characterization are shown on Figures 1 and 2 and data collected over the past year (July 2022 through May 2023) from these nature and extent groundwater monitoring wells are included in Tables 1 and 2.

¹ TRC. 2019. Statistical Evaluation of Initial Assessment Monitoring Sampling Event, DE Karn Bottom Ash Pond, Consumers Energy Company, Essexville, Michigan. January 14.

Approach

Given the proximity of the Karn Bottom Ash Pond to the Karn Landfill at the Karn property, the nature and extent of contamination was assessed from a site-wide perspective rather than on a per CCR unit basis. The nature and extent of groundwater impacted by a release from the Karn Bottom Ash Pond overlaps with groundwater impacted by operation of the Karn Landfill. Additionally, looking at impacted groundwater on a site-wide basis was more practical from a risk mitigation standpoint, given:

- The likely age of the release(s);
- A long operational history of ash management;
- The historical use of CCR as fill; and
- The influence of geochemistry on several of the Appendix IV constituent concentrations in groundwater.

Groundwater Nature and Extent Relative to Groundwater Protection Standards

As discussed in the ACM, the nature and extent of contamination (e.g. arsenic) in groundwater relative to GWPSs has been defined per the RCRA CCR Rule requirements based on the site-specific hydrogeology. Although arsenic concentrations exceed the GWPS in on-site groundwater monitoring locations, arsenic is delineated within the limits of the property owned by Consumers Energy and there are currently no adverse effects on human health or the environment from either surface water or groundwater due to CCR management at the Karn Bottom Ash Pond. The property is owned and operated by Consumers Energy and groundwater is not used for drinking water. There are no on-site drinking water wells and there are no surface water potable water intakes within 3 miles of the site, so the drinking water pathway is not complete.

The distribution of arsenic relative to the Karn Bottom Ash Pond groundwater monitoring system in the shallow water-bearing unit as compared to the GWPS is presented in Figure 1. Three categories were assigned to groundwater data collected from July 2022 to May 2023, as follows:

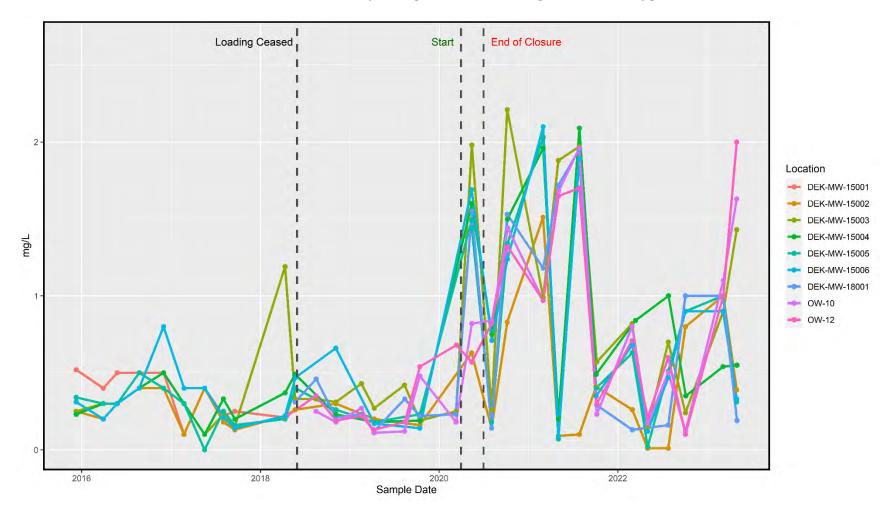
- White No Exceedances: all concentrations were below the GWPS
- Yellow Two or More Exceedances: individual observations above the GWPS²
- Orange Statistically Significant GWPS Exceedances³

The highest concentrations of arsenic observed in the vicinity of the Karn Bottom Ash Pond have been observed at DEK-MW-15003, a monitoring well located to the north of the bottom ash pond and associated with the shifted "highest" elevation of mounded groundwater relative to the Karn Bottom Ash Pond. Although historically the point source discharge of sluiced bottom ash into the Karn Bottom Ash Pond created localized mounding of the potentiometric surface, the new Karn Lined Impoundment went into service on June 7, 2018 and has been continuously collecting the process water and bottom ash that went into the former bottom ash pond. Since the former bottom ash pond is no longer being

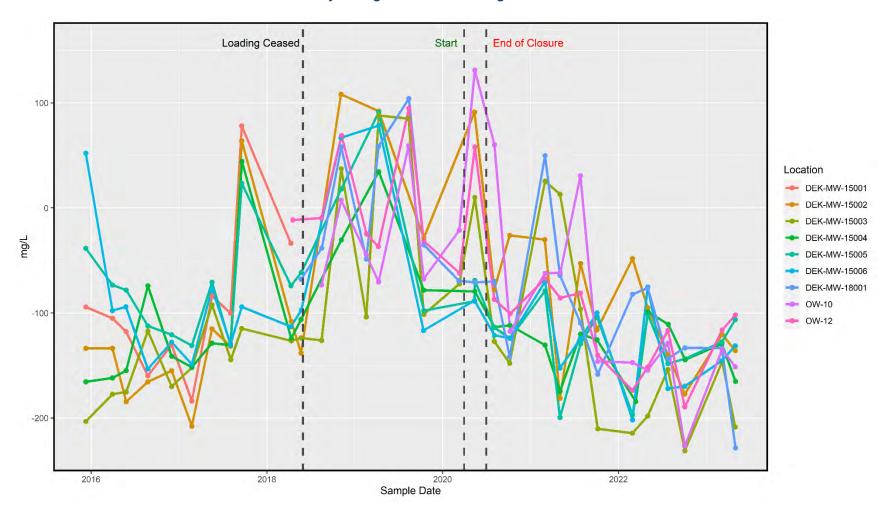
² Although an exceedance is defined as a single detection above the GWPS, confidence intervals will be used to determine compliance per the CCR Rule using the Karn Bottom Ash Pond monitoring well network. Compliance with the GWPSs established under § 257.95(h) will be achieved by demonstrating that concentrations of constituents listed in Appendix IV to this part have not exceeded the GWPSs for a period of three consecutive years using the statistical procedures and performance standards in § 257.93(f) and (g).

³ Lower confidence limit is above the GWPS based upon most recent assessment monitoring statistical evaluation using the eight most recent sampling events (October 2019 through May 2023).

hydraulically loaded with sluiced ash and has been dewatered by gravity, the characteristic groundwater mound centered within the pooled area is no longer present. The groundwater elevation data collected from the groundwater monitoring system of the former bottom ash pond this event demonstrate a reduction in groundwater elevation measurements by several feet when compared to groundwater elevations measured prior to June 2018. Given this shift in groundwater flow direction, DEK-MW-15003 and DEK-MW-15004 are now located upgradient to side gradient of the CCR unit and are no longer representative of groundwater chemistry downgradient of the Karn Bottom Ash Pond. DEK-MW-15003 and DEK-MW-15004 cannot reliably be used to assess the effectiveness of the CCR removal activities and are influenced by the long operational history of ash management in this area of the site. As such, these two wells were removed from the certified downgradient monitoring well network. DEK-MW-15003 and DEK-MW-15004 are instead used as part of the nature and extent monitoring well network for the purposes of informing the ongoing remedy selection and risk mitigation evaluations. The recertification was included in Appendix D of the *October 2021 Assessment Monitoring Data Summary and Statistical Evaluation*4.


Recent data show that groundwater quality is changing since sluicing to the Karn Bottom Ash Pond ceased in June 2018 when the bottom ash and transport water was diverted to the Karn Lined Impoundment. Arsenic has been the only constituent to have triggered corrective action. TRC used Sanitas™ to compare groundwater data collected while the pond was still in operation ("background" for the purposes of the statistical comparison, December 2015 to June 2018) to data collected once hydraulic loading ceased ("compliance" for the purposes of the statistical comparison, June 2018 to present), as shown by the time-series charts and student t-test results (Attachment A). Mean arsenic concentrations in groundwater at DEK-MW-15002, DEK-MW-15003, and DEK-MW-180015 from June 2018 to present are lower than concentrations observed while the pond was in operation (prior to June 2018), whereas arsenic concentrations in groundwater at DEK-MW-15004, DEK-MW-15005, and DEK-MW-15006 are higher than concentrations observed while the pond was in operation. The decrease in concentrations of arsenic at DEK-MW-15002, DEK-MW-15003, and DEK-MW-18001 indicate that discontinuing the hydraulic loading to the Karn Bottom Ash Pond and the completed source removal of CCR was successful in removing a source of arsenic; however, attainment of the GWPS at all of the Bottom Ash Pond downgradient monitoring wells may not be feasible due to influences other than the former pond, such as the presence and former operation of the nearby Karn Landfill. Arsenic in the nature and extent monitoring wells located along the landfill perimeter bordering Saginaw Bay also exhibit concentrations above the GWPS. Although arsenic is present above the GWPS, the drinking water pathway is not complete as there are no drinking water wells on-site. Redox conditions, which affect contaminant transport, are still stabilizing in the Bottom Ash Pond Area following removal activities and will continue to be evaluated further.

As shown on the charts below, the dissolved oxygen concentration and oxidation-reduction potential (ORP) showed highly variable results following CCR removal activities.


⁴ TRC. January 2022. October 2021 Assessment Monitoring Data Summary and Statistical Evaluation – DE Karn Power Plant, Bottom Ash Pond CCR Unit. Prepared for Consumers Energy Company.

⁵ Monitoring well DEK-MW-18001 was installed in May 2018, following decommissioning of monitoring well DEK-MW-15001. DEK-MW-15001 is located approximately 80 feet northwest of DEK-MW-18001 and was decommissioned due to the installation of the Karn Lined Impoundment. Due to the close proximity of the wells, data collected at DEK-MW-15001 from 2015 to April 2018 is used as the "background" for DEK-MW-18001.

Groundwater Chemistry Changes Post-Dewatering - Dissolved Oxygen

Groundwater Chemistry Changes Post-Dewatering - Oxidation-Reduction Potential

Specifically, dissolved oxygen transitioned from the suboxic/anoxic state of 0.5 mg/L or less to an oxic state of greater than 1.5 mg/L immediately following CCR removal. In the same time period, the electric potential transitioned from a moderately negative electric potential near -100 mV to a moderately positive electric potential of +100 mV. The observed trends for these two key field-measured parameters demonstrate that the preferred equilibrium redox state (e.g. preferred redox couple chemistry) also shifted during the time period immediately following CCR removal. Recent data indicate that trends in the redox conditions may be stabilizing at values similar to pre-dewatering conditions based on measurements of dissolved oxygen in the anoxic range of 0.5 – 1.0 mg/L and negative electric potential; however, measured dissolved oxygen at DEK-MW-15003, OW-10, and OW-12 has increased over the past two quarterly events. These trends will continue to be evaluated.

Groundwater Nature and Extent Relative to GSI

The drinking water pathway is not complete. Due to the presence of the surrounding surface water bodies, another relevant pathway is the groundwater surface water interface pathway. Monitoring performed under the Michigan-approved GSI Compliance Monitoring Program demonstrates protection of human health and the environment with criteria determined to be protective at the potential point of exposure. Transect/porewater GSI compliance sampling data collected quarterly show that biogeochemical conditions are contributing to the reduction of arsenic in groundwater as observed in transect push-point samples located along the water's edge of Saginaw Bay, where arsenic concentrations are generally much lower than the arsenic concentrations observed in the perimeter dike wells. Compliance with water quality criteria is demonstrated on a quarterly basis by evaluating the total chronic loading based on contribution from each GSI compliance sample location with respect to the total flux observed in the state-authorized site-specific mixing zone, per the HMP.

The distribution of arsenic in the shallow water-bearing unit as compared to the mixing zone GSI criteria is presented in Figure 2. Three categories were assigned to the data from July 2022 to May 2023⁶, as follows:

- White No Exceedances: all concentrations were below the mixing zone GSI criteria
- Light Blue Two consecutive exceedances of the chronic mixing zone GSI criterion
- Dark Blue Two consecutive exceedances of the acute mixing zone GSI criterion

Groundwater monitoring locations along the DE Karn Intake Channel and boundary between the coal ash management areas and the power plant complex (DEK-MW-15002, DEK-MW-15005, DEK-MW-15006,) document contaminant concentrations of arsenic are less than the authorized mixing zone-based chronic concentration of 100 ug/L. Total chronic loading (i.e., mass flux), calculated from concentrations observed in transect groundwater samples collected from push-point samplers advanced at locations T1-3GSI through T6-3GSI, remains below the chronic mixing zone GSI criterion, indicating current conditions are protective of the GSI pathway.

⁶ Given the dynamic nature of the groundwater surface water interactions, it is appropriate to look at a shorter timeframe for data analysis (one year).

Summary

The nature and extent of arsenic in the shallow water-bearing unit is defined in accordance with the Federal CCR rule. Risk from potential exposure to groundwater is managed. The drinking water pathway is not complete. Monitoring performed under the Michigan-approved GSI Compliance Monitoring Program demonstrates protection of human health and the environment with criteria determined to be protective at the potential point of exposure (i.e., state-authorized site-specific mixing zone criteria).

Attachments

Table 1	Summary of Groundwater Sampling Results (Analytical): DE Karn Nature and Extent Monitoring Wells
Table 2	Summary of Groundwater Sampling Results (Analytical): DE Karn Nature and Extent GSI Monitoring Locations
Figure 1 Figure 2	Nature and Extent Summary: GWPS Exceedances Nature and Extent Summary: GSI Pathway Compliance

Attachment A Statistical Evaluation

Tables

Table 1

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

									1.1. 0		DEI/ M	N 45000		<u> </u>	DEI/ M	11. 45004		Ti-			
								Sa	mple Location:	7/00/0000		N-15003	F/0/0000	7/07/0000		W-15004	F /0 /0000	7/00/0000	MV	-	F/4/0000
			MI	MI Non-	l	1		1	Sample Date:	7/26/2022	10/4/2022	3/8/2023	5/2/2023	7/27/2022	10/6/2022	3/7/2023	5/3/2023	7/26/2022	10/4/2022	3/6/2023	5/1/2023
Constituent	Unit	GWPS*	Residential**	Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^	Acute MZ^^												
Appendix III																					ĺ
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	773	891	816	701	965	1,340	972	931	5,620	5,440	5,270	5,650
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	27.1	26.1	29.2	24.4	73.7	62.2	72.8	81.8	126	111	83.3	82.4
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	58.6	60.8	58.7	58.9	69.2	70.6	68.4	66.7	81.8	78.9	93.3	84.8
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000				
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	39.3	39	41.8	50.2	245	98.9	267	273	117	84.8	3.26	< 1
Total Dissolved Solids	mg/L	NA	500 ^E	500E	500	NC	NC	NC	NC	272	317	282	285	660	567	684	701				
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	8.1	8.3	8.0	8.0	7.1	7.4	7.4	7.3	8.0	8.4	8.1	8.4
Appendix IV																					1
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC	< 1	< 1	1	< 1	< 1	< 1	< 1	< 1				
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	475	401	401	418	157	56	168	134	7	7	6	6
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC	40	44	44	36	142	90	151	162				
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1				
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2	1	1	1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6				
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000	< 1,000				
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1				
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	20	23	21	20	37	16	36	40	108	106	78	91
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	23	25	23	28	10	13	12	10	< 5	< 5	< 5	< 5
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC		2.15										
Selenium	ug/L	50	50	50	5.0	62	120	55	120	11	< 1	1	1	2	< 1	< 1	< 1	3	3	3	3
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2				
MI Part 115 Parameters																					1
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	169	84	178	89	3,900	1,950	3,780	4,250	402	254	208	142
Copper	ug/L	NA	1,000E	1,000 ^E	20	33	66	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1				
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC	< 2	< 2	3	< 2	2	3	3	2				
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2				
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2
Zinc	ug/L	NA	2,400	5,000E	260	260	520	NC	NC	< 10	< 10	< 10	< 10	< 10	< 10	15	< 10				

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria. -- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and
- Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}. BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

Page 1 of 5 July 2023

Table 1

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

ir-																					
								Sai	mple Location:		MW					V-06				/-08	
									Sample Date:	7/26/2022	10/4/2022	3/6/2023	5/1/2023	7/26/2022	10/4/2022	3/6/2023	5/1/2023	7/26/2022	10/4/2022	3/6/2023	5/1/2023
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^	Acute MZ^^												
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	8,360	8,710	8,570	9,000	618	530	458	621	4,900	4,800	4,520	4,230
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	119	118	129	133	102	91.2	104	174	169	155	154	165
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	77.7	85.8	86.6	75	24.9	25.4	14.1	18.9	51.9	52.1	59.2	52.5
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	< 1	< 1	< 1	< 1	90.1	92.8	78.2	255	291	268	275	317
Total Dissolved Solids	mg/L	NA	500 ^E	500 ^E	500	NC	NC	NC	NC												
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.9	8.4	7.5	8.0	7.2	7.4	7.3	7.3	7.0	7.1	7.2	7.4
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC												
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	3	4	3	3	164	183	112	95	94	97	113	94
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC												
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC												
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC												
Chromium	ug/L	100	100	100	11	16	32	NC	NC	2	2	2	2	1	< 1	2	2	< 1	< 1	< 1	< 1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC												
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC												
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	92	89	87	102	38	35	33	52	110	105	102	117
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC												
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5	6	< 5	8	8	< 5	< 5	20	22	19	17
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC												
Selenium	ug/L	50	50	50	5.0	62	120	55	120	4	3	2	2	1	1	< 1	1	3	2	< 1	2
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC												
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300 ^E	500,000EE	NC	NC	NC	NC	295	181	630	522	1,510	1,120	1,570	2,800	9,960	9,190	9,800	9,640
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC												
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC												
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC												
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Zinc	ug/L	NA	2,400	5,000 ^E	260	260	520	NC	NC												

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria. -- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and
- Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote (G) of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}. BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

Page 2 of 5 July 2023

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

I 																					
								Sai	mple Location:		MW					V-12				<i>I</i> -14	
									Sample Date:	7/26/2022	10/4/2022	3/7/2023	5/1/2023	7/26/2022	10/4/2022	3/7/2023	5/1/2023	7/26/2022	10/4/2022	3/7/2023	5/1/2023
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^	Acute MZ^^												
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	5,100	4,550	3,920	3,390	4,040	4,140	4,000	3,970	2,900	2,740	2,760	2,740
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	186	172	214	243	190	186	196	192	204	241	159	176
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	56.7	56.5	44.2	31.4	68.3	67.2	66.8	55.1	69	57.8	67	68.4
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	108	156	353	528	265	250	285	249	282	573	121	223
Total Dissolved Solids	mg/L	NA	500E	500 ^E	500	NC	NC	NC	NC												
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.1	7.1	7.1	7.3	7.2	7.2	7.3	7.5	7.1	7.0	7.2	7.4
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC												
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	616	326	504	350	312	386	489	353	421	118	503	123
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC												
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC												
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC												
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC												
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC												
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	131	131	137	130	119	114	120	118	81	99	73	84
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC												
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	7	< 5	10	7	9	< 5	6	8	13	< 5	9
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC												
Selenium	ug/L	50	50	50	5.0	62	120	55	120	2	2	< 1	2	6	4	2	7	5	27	3	17
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC									-			
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300 ^E	500,000EE	NC	NC	NC	NC	5,760	3,520	6,920	7,940	1,800	3,070	3,410	2,010	3,400	164	3,250	633
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC												
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC												
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC												
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Zinc	ug/L	NA	2,400	5,000 ^E	260	260	520	NC	NC												

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable. NC - no criteria.

-- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote (G) of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}. BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

Page 3 of 5 July 2023

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

									1.1. 0					T				1			
								Sa	mple Location:	=/00/0000	MV		= // /0000	=/0=/000		V-22	= // /0000	=/0=/0000		I-23	= / / / / 0 0 0 0
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^	Sample Date: Acute MZ^^	7/26/2022	10/4/2022	3/7/2023	5/1/2023	7/27/2022	10/6/2022	3/7/2023	5/1/2023	7/27/2022	10/6/2022	3/7/2023	5/1/2023
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	1,360	1,510	1,520	1,710	6,870	6,930			6,760	6,830		-
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	381	338	356	371	75.4	75.3			157	181		
Chloride	mg/L	NA	250E	250 ^E	50	320,000	640,000	NC	NC	113	104	159	123	95.4	104			56.9	55.4		
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	1,210	1,210	1,130	1,180	168	176			273	438		
Total Dissolved Solids	mg/L	NA	500 ^E	500 ^E	500	NC	NC	NC	NC					550	593	-		886	871		
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.2	7.3	7.4	7.6	7.0	6.9			6.7	6.8		
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC												
Arsenic	ug/L	21¹	10	10	10	340	680	100	680	2	1	2	2	516	559	-		47	53		-
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC												
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC												
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC												
Chromium	ug/L	100	100	100	11	16	32	NC	NC	< 1	< 1	< 1	1	< 1	< 1			2	1		
Cobalt	ug/L	15	40	100	100	370	740	NC	NC												
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC												
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC										-		
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	123	114	149	144	131	129			115	122		
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC												
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	23	30	19	23	1,110	1,190			44	46		
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC					-							
Selenium	ug/L	50	50	50	5.0	62	120	55	120	6	12	5	10	4	3			3	2		
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC												
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300E	500,000EE	NC	NC	NC	NC	100	25	233	154	89	256			37,000	44,000		
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC												
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC												
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC												
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	< 2	< 2	< 2	< 2	3	3			5	< 2		
Zinc	ug/L	NA	2,400	5,000E	260	260	520	NC	NC												

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable. NC - no criteria.

-- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote {G} of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}. BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

Page 4 of 5 July 2023

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent Monitoring Wells Essexville, Michigan

								Sai	mple Location:		OW	/-10			OV	V-11			OV	<i>I</i> -12	
									Sample Date:	7/26/2022	10/4/2022	3/8/2023	5/2/2023	7/26/2022	10/4/2022	3/8/2023	5/2/2023	7/26/2022	10/4/2022	3/8/2023	5/2/2023
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^	Acute MZ^^				•		•	•	•		•		
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	1,090	1,100	1,430	998	3,330	3,470	3,690	3,400	1,230	1,090	1,060	1,340
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	101	118	123	98.8	5.33	7.13	5.77	6.42	84.8	70.7	64.8	124
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	58	66	74.4	56.9	61.6	62.5	59.5	56.1	55.5	61.8	59.7	59.4
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	2,710	3,460	2,900	2,960	< 1,000	< 1,000	< 1,000	< 1,000
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	2.67	46.4	11.3	8.28	19.9	19.3	17.4	17.6	169	150	142	265
Total Dissolved Solids	mg/L	NA	500E	500 ^E	500	NC	NC	NC	NC	568	612	673	517	235	260	233	224	601	531	522	820
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.2	7.1	7.3	7.3	9.8	9.6	9.8	9.7	7.1	7.2	7.2	7.1
Appendix IV																					
Antimony	ug/L	6	6.0	6.0	2.0	1,100	2,300	NC	NC	< 1	< 1	< 1	< 1	4	2	3	3	< 1	< 1	< 1	< 1
Arsenic	ug/L	21 ¹	10	10	10	340	680	100	680	2	3	2	3	682	667	769	837	111	104	79	62
Barium	ug/L	2,000	2,000	2,000	1,200	3,400	6,800	NC	NC	163	157	166	146	17	28	21	24	90	80	100	168
Beryllium	ug/L	4	4.0	4.0	33	300	600	NC	NC	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cadmium	ug/L	5	5.0	5.0	2.5	12	24	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/L	100	100	100	11	16	32	NC	NC	2	1	< 1	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cobalt	ug/L	15	40	100	100	370	740	NC	NC	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Fluoride	ug/L	4,000	NC	NC	NC	9,800	20,000	NC	NC	< 1,000	< 1,000	< 1,000	< 1,000	2,710	3,460	2,900	2,960	< 1,000	< 1,000	< 1,000	< 1,000
Lead	ug/L	15	4.0	4.0	14	250	500	NC	NC	1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	27	31	31	26	< 10	< 10	< 10	< 10	36	34	33	44
Mercury	ug/L	2	2.0	2.0	0.20#	1.4	2.8	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5	< 5	< 5	173	178	158	157	17	21	13	7
Radium-226/228	pci/L	5	NC	NC	NC	NC	NC	NC	NC		1.96				1.35				1.91		
Selenium	ug/L	50	50	50	5.0	62	120	55	120	2	10	1	2	5	4	3	5	1	2	< 1	1
Thallium	ug/L	2	2.0	2.0	2.0	47	94	NC	NC	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
MI Part 115 Parameters																					
Iron	ug/L	NA	300€	300€	500,000EE	NC	NC	NC	NC	3,350	1,350	3,590	3,660	31	128	86	90	6,080	5,800	4,950	8,580
Copper	ug/L	NA	1,000E	1,000E	20	33	66	NC	NC	3	1	2	2	< 1	1	< 1	1	< 1	< 1	< 1	< 1
Nickel	ug/L	NA	100	100	120	1,000	2,100	NC	NC	3	3	< 2	3	2	2	2	2	< 2	3	2	3
Silver	ug/L	NA	34	98	0.2	0.54	1.1	NC	NC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Vanadium	ug/L	NA	4.5	62	27	79	160	NC	NC	5	5	3	3	1,500	693	1,020	743	< 2	< 2	< 2	< 2
Zinc	ug/L	NA	2,400	5,000€	260	260	520	NC	NC	< 10	< 10	< 10	< 10	< 10	181	13	< 10	< 10	< 10	< 10	< 10

Notes:

ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable. NC - no criteria.

-- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and
- Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote (G) of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote {X}. GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote {FF}.
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- # If detected above 0.20 ug/L, further evaluation of low-level mercury may be necessary to evaluate the GSI pathway
- per Michigan Part 201 and EGLE policy and procedure 09-014 dated June 20, 2012.
- E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}. BOLD font denotes concentrations detected above laboratory reporting limits.

Result Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

1 - Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.

Page 5 of 5 July 2023

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent GSI Monitoring Locations Essexville, Michigan

								Sar	mple Location:		T1-3	BGSI			T2-3	GSI			T3-3	GSI	
									Sample Date:				5/3/2023	7/25/2022	10/3/2022	3/6/2023	5/3/2023	7/25/2022	10/3/2022	3/6/2023	5/3/2023
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^	Acute MZ^^												
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	48	321		22	5,240	5,030		2,280	705	404		46
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	37.8	82.5		58.9	152	178		142	144	141		123
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	51.5	48.7		44.5	68.2	61.6		28.3	45.9	66.6		23.8
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	23.9	< 1		34.7	16.5	79		118	< 1	< 1		119
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.3	7.0		7.8	6.5	6.8	-	7.2	6.7	6.8		7.2
Appendix IV																					
Arsenic	ug/L	21 ¹	10	10	10	340	680	100 ²	680	5	3		1	< 1	< 1		1	< 1	1		< 1
Chromium	ug/L	100	100	100	11	16	32	NC	NC	1	2		< 1	2	1		2	1	2		1
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	< 10	14		< 10	115	116	-	46	116	52		12
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	6	< 5		< 5	< 5	< 5		< 5	< 5	< 5	-	< 5
Selenium	ug/L	50	50	50	5.0	62	120	NC	NC	1	< 1		1	2	2	1	2	2	1		1
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300€	500,000EE	NC	NC	NC	NC	568	2,190		119	164	106	-	< 20	1,700	2,750		1,870
Vanadium	ug/L	NA	4.5	62	27	260	520	NC	NC	< 2	< 2		< 2	2	< 2	ł	2	< 2	< 2		< 2

Notes:
ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

NC - no criteria.

-- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote (G) of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote (X). GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote (FF).
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- ^E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.
- BOLD font denotes concentrations detected above laboratory reporting limits.

Result	Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria.
Result	Indicates an exceedance of acute-based GSI criteria.

All metals were analyzed as total unless otherwise specified.

Transect samples were unable to be collected during the first quarter 2022 event due to site conditions.

- 1 Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.
- ² Compliance demonstrated on a mass flux basis.

Page 1 of 2 July 2023

Summary of Groundwater Sampling Results (Analytical) DE Karn Nature and Extent GSI Monitoring Locations Essexville, Michigan

								Sar	mple Location:		T4-3	BGSI			T5-3	GSI			T6-3	GSI	
									Sample Date:	7/25/2022			5/3/2023	7/25/2022		3/6/2023	5/3/2023	7/25/2022	10/3/2022	3/6/2023	5/3/2023
Constituent	Unit	GWPS*	MI Residential**	MI Non- Residential**	MI GSI^	MI AMV***	MI FAV***	Chronic MZ^^													
Appendix III																					
Boron	ug/L	NA	500	500	4,000	34,000	69,000	44,000	69,000	878	448		355	1,600	1,150		223	321	139		35
Calcium	mg/L	NA	NC	NC	500EE	NC	NC	NC	NC	104	73.5		56.1	101	62.8		172	73.5	51.1	-	69.4
Chloride	mg/L	NA	250 ^E	250 ^E	50	320,000	640,000	NC	NC	47.5	48.3		37.8	18.4	48.3		45.7	31.5	54.4		34.9
Sulfate	mg/L	NA	250 ^E	250 ^E	500EE	600,000	1,200,000	NC	NC	< 1	< 1		17	172	6.95		438	28.9	13.9	-	87.3
pH, Field	su	NA	6.5 - 8.5 ^E	6.5 - 8.5 ^E	6.5 - 9.0	NC	NC	NC	NC	7.1	7.2		7.8	7.2	7.4		7.6	7.4	7.6		8.2
Appendix IV																					
Arsenic	ug/L	21¹	10	10	10	340	680	100 ²	680	84	6		17	525	187		349	2	1		1
Chromium	ug/L	100	100	100	11	16	32	NC	NC	2	1		1	2	1		1	< 1	< 1		1
Lithium	ug/L	180	170	350	440	910	1,800	NC	NC	22	35		25	62	43		30	32	18		11
Molybdenum	ug/L	100	73	210	120	29,000	58,000	NC	NC	< 5	< 5		< 5	< 5	< 5		< 5	< 5	6		< 5
Selenium	ug/L	50	50	50	5.0	62	120	NC	NC	2	< 1		2	1	< 1		2	1	< 1		< 1
MI Part 115 Parameters																					
Iron	ug/L	NA	300E	300 ^E	500,000EE	NC	NC	NC	NC	14,300	770		151	149	86		224	220	84		84
Vanadium	ug/L	NA	4.5	62	27	260	520	NC	NC	< 2	< 2		< 2	< 2	< 2		< 2	< 2	< 2		< 2

Notes:
ug/L - micrograms per liter; mg/L - milligrams per liter.

SU - standard units; pH is a field parameter.

NA - not applicable.

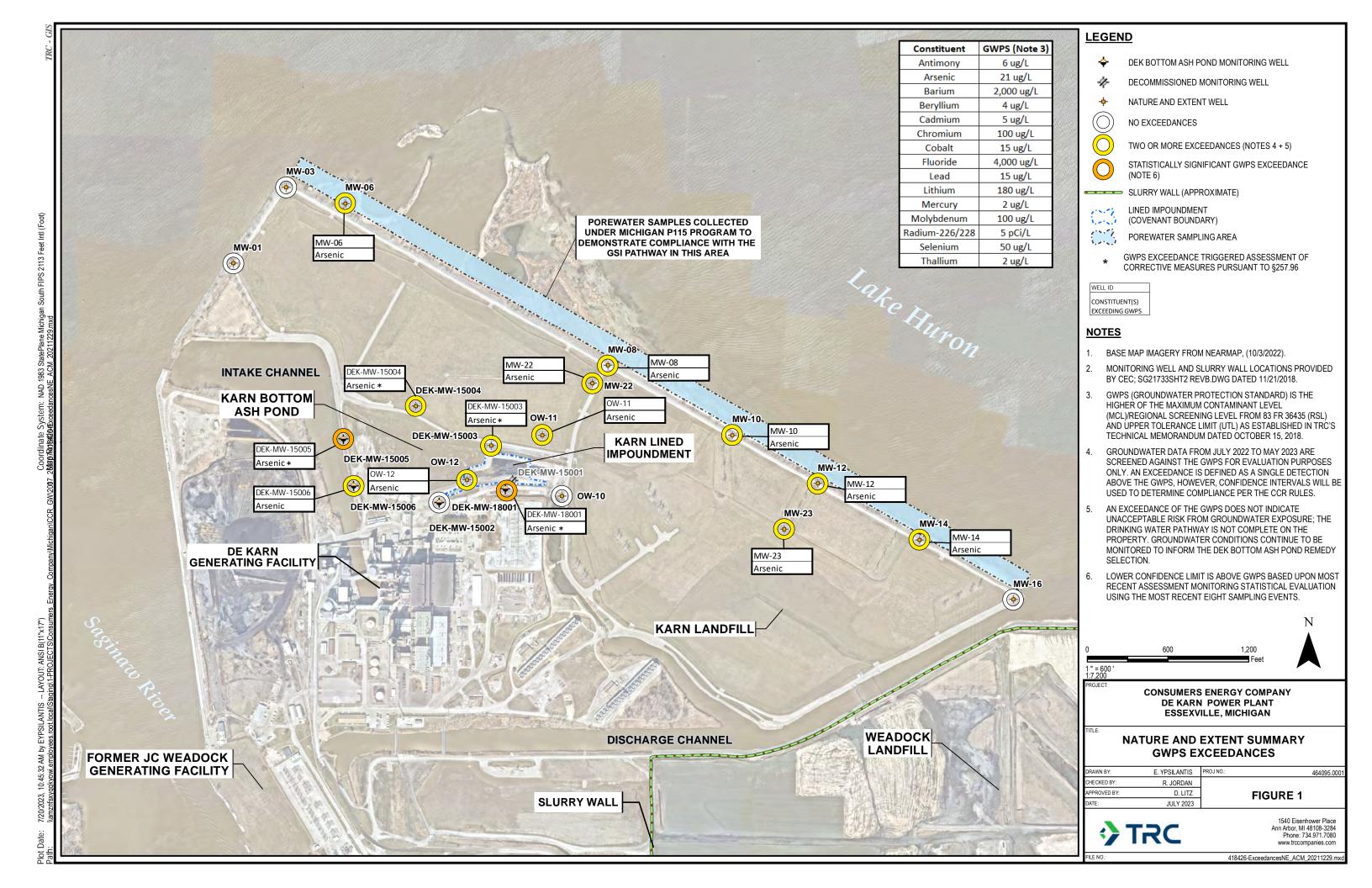
NC - no criteria.

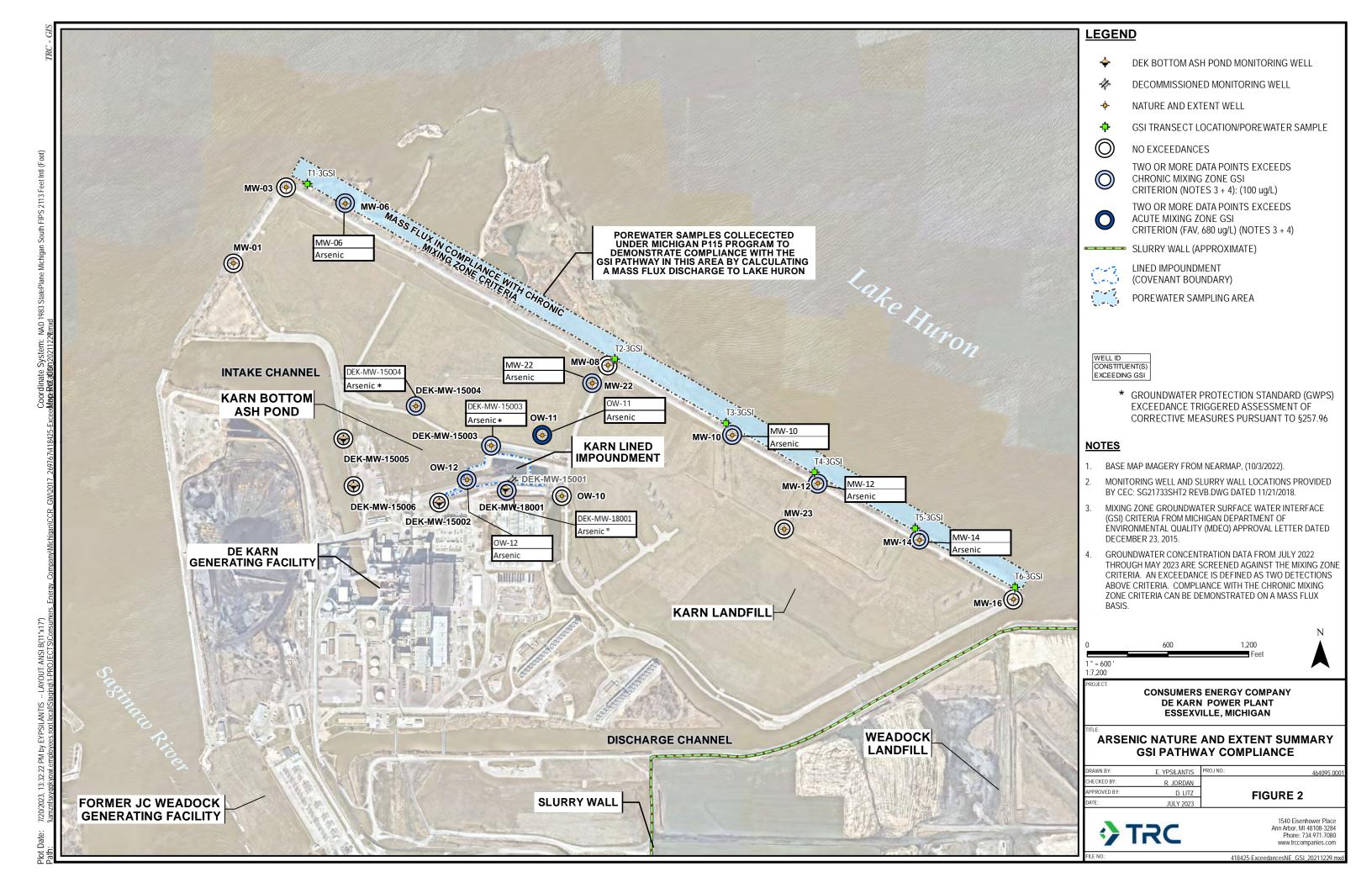
-- - not analyzed.

- * GWPS (Groundwater Protection Standard) is the higher of the Maximum Contaminant Level (MCL)/Regional Screening Level from 83 FR 36435 (RSL) and Upper Tolerance Limit (UTL) as established in TRC's Technical Memorandum dated October 15, 2018.
- ** Michigan Part 201 Generic Drinking Water Cleanup Criteria, December 21, 2020.
- ^ Michigan Part 201 Groundwater Surface Water Interface (GSI) Criteria. Hardness-dependent criteria calculated using hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018) per footnote (G) of Michigan Part 201 criteria tables. Chromium GSI criterion based on hexavalent chromium per footnote {H}. GSI criterion is protective for surface water used as a drinking water source as described in footnote (X). GSI criterion for chloride is 50 mg/L when the discharge is to the Great Lakes or connecting waters per footnote (FF).
- *** Aquatic Maximum (AMV) and Final Acute Values (FAV) are taken from EGLE Rule 323.1057 Part 4 Water Quality Standards (Rule 57), March 15, 2018. Hardness-dependent criteria calculated using site-specific hardness of 258 mg CaCO3/L (average of SW-01 [Lake Huron] and SW-02 [Saginaw River] collected in April 2018). Chromium AMV & FAV criteria are based on hexavalent chromium.
- M Mixing Zone (MZ) GSI Criteria from Michigan Department of Environmental Quality (MDEQ) approval letter dated December 23, 2015.
- ^E Criterion is the aesthetic drinking water value per footnote {E}.
- EE Criterion is based on the total dissolved solids GSI value per footnote {EE}.

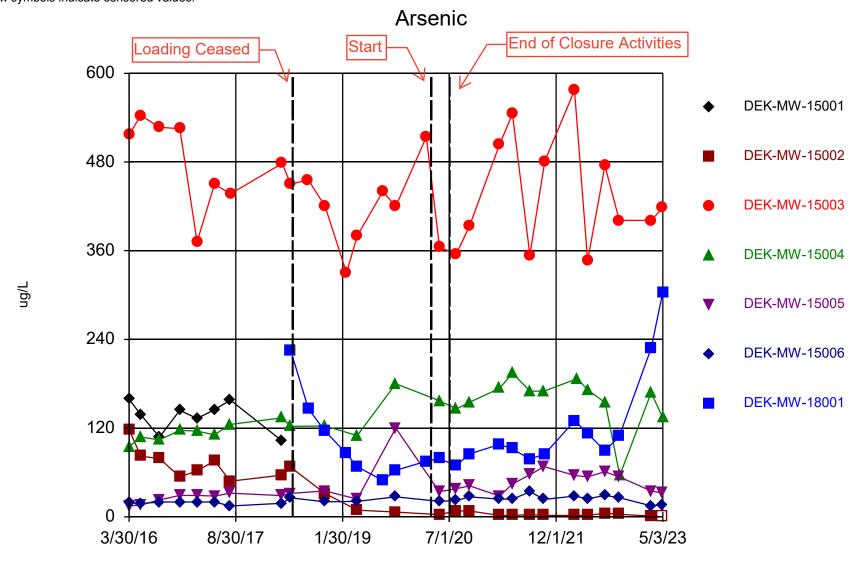
BOLD font denotes concentrations detected above laboratory reporting limits.

Indicates an exceedance of one or more applicable health-based drinking water and GSI criteria. Result Indicates an exceedance of acute-based GSI criteria.

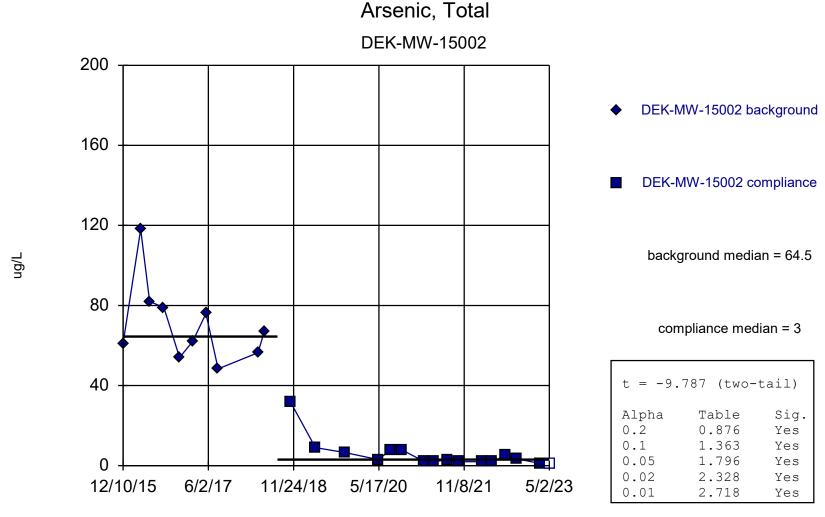

All metals were analyzed as total unless otherwise specified.


Transect samples were unable to be collected during the first quarter 2022 event due to site conditions.

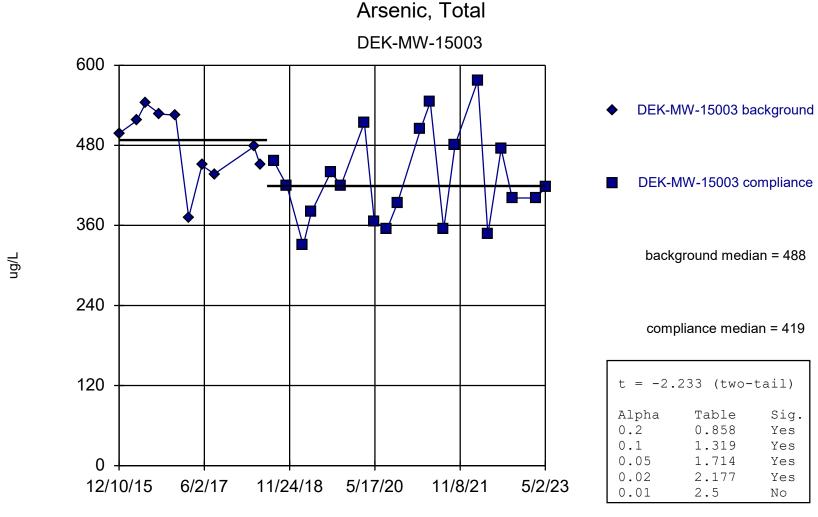
- 1 Constituent triggered an Assessment of Corrective Measures for the Karn Bottom Ash Pond as described in TRC's letter report dated Januarary 14, 2019.
- ² Compliance demonstrated on a mass flux basis.


Page 2 of 2 July 2023

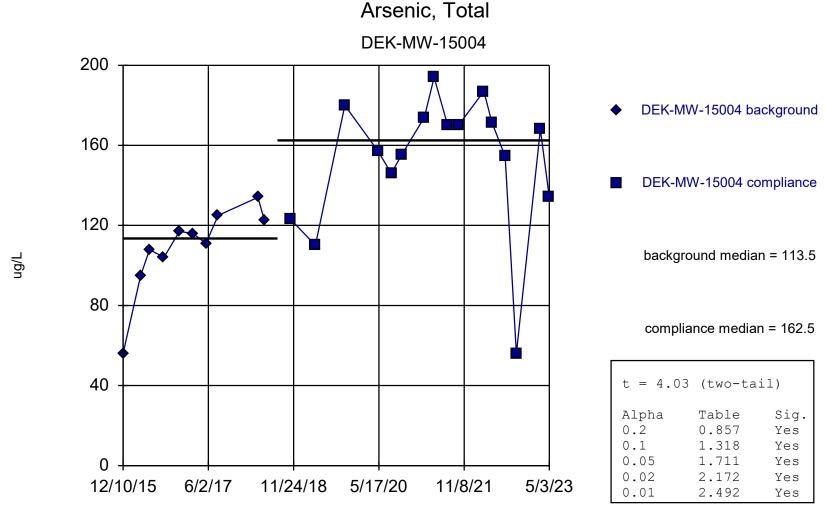
Figures



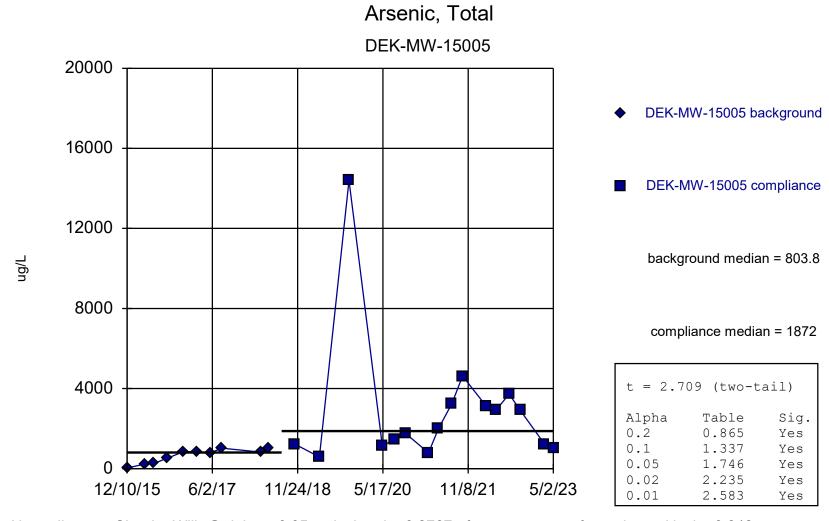
Attachment A Statistical Evaluation



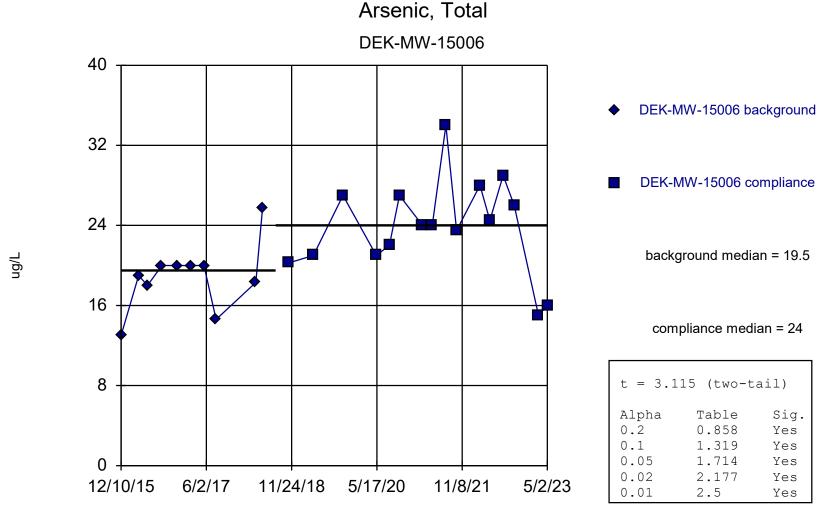
Time Series Analysis Run 6/12/2023 12:55 PM


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8668, critical = 0.842.

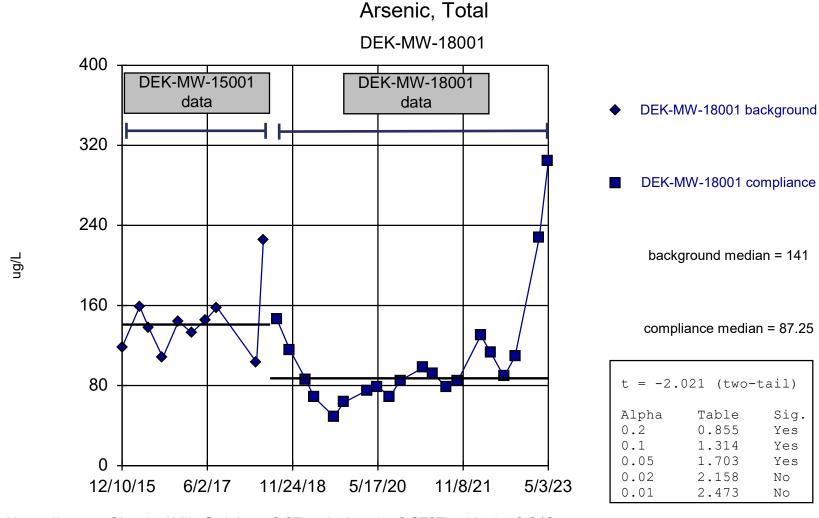
Welch's t-test Analysis Run 6/12/2023 1:12 PM


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9262, critical = 0.842.

Welch's t-test Analysis Run 6/12/2023 1:13 PM


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.852, critical = 0.842.

Welch's t-test Analysis Run 6/12/2023 1:13 PM


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8767 after square transformation, critical = 0.842.

Welch's t-test Analysis Run 6/12/2023 1:14 PM

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8992, critical = 0.842.

Welch's t-test Analysis Run 6/12/2023 1:15 PM

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8737, critical = 0.842.

Welch's t-test Analysis Run 6/12/2023 1:31 PM

Constituent: Arsenic, Total (ug/L) Analysis Run 6/12/2023 1:50 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-15002	DEK-MW-15002
12/10/2015	61	
3/30/2016	118	
5/26/2016	82	
8/24/2016	79	
12/1/2016	54	
2/23/2017	62	
5/18/2017	76	
8/3/2017	48.3	
4/12/2018	56.4	
5/23/2018	67	
11/5/2018		31.7
4/11/2019		9
10/15/2019		6.5
5/13/2020		3
8/3/2020		8
10/6/2020		8 (D)
3/1/2021		2
5/3/2021		2
7/28/2021		3 (D)
10/4/2021		2
3/1/2022		2 (D)
5/3/2022		2
7/26/2022		5
10/4/2022		3.5 (D)
3/8/2023		1 (D)
5/2/2023		<1

Constituent: Arsenic, Total (ug/L) Analysis Run 6/12/2023 1:50 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-15003	DEK-MW-15003
12/10/2015	498	
3/30/2016	517	
5/26/2016	543	
8/24/2016	527	
12/1/2016	525	
2/23/2017	372	
5/18/2017	450	
8/4/2017	437	
4/12/2018	478	
5/23/2018	450	
8/16/2018		456
11/6/2018		420
2/18/2019		330
4/11/2019		380
8/13/2019		440
10/15/2019		420
3/11/2020		514 (D)
5/14/2020		365
8/3/2020		355
10/6/2020		393
3/2/2021		504
5/3/2021		545
7/27/2021		354
10/7/2021		481
2/28/2022		577
5/3/2022		346.5 (D)
7/26/2022		475
10/4/2022		401
3/8/2023		401
5/2/2023		418

Constituent: Arsenic, Total (ug/L) Analysis Run 6/12/2023 1:48 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-15004	DEK-MW-15004
12/10/2015	56	
3/30/2016	95	
5/26/2016	108	
8/24/2016	104	
12/1/2016	117	
2/23/2017	116	
5/18/2017	111	
8/3/2017	125 (D)	
4/12/2018	134	
5/23/2018	122.5 (D)	
11/6/2018		123
4/11/2019		110
10/15/2019		180
5/14/2020		157
8/4/2020		146
10/7/2020		155
3/2/2021		174
5/3/2021		194
7/28/2021		170
10/4/2021		170
3/14/2022		187
5/4/2022		171.5 (D)
7/27/2022		154.5 (D)
10/6/2022		56
3/7/2023		168
5/3/2023		134

Constituent: Arsenic, Total (ug/L) Analysis Run 6/12/2023 1:47 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-15005	DEK-MW-15005
12/10/2015	5	
3/30/2016	15	
5/26/2016	16	
8/24/2016	23	
12/1/2016	29	
2/23/2017	29	
5/18/2017	28	
8/3/2017	31.9	
4/11/2018	28.7 (D)	
5/24/2018	31.7	
11/6/2018		35
4/11/2019		24 (D)
10/15/2019		120 (D)
5/13/2020		34 (D)
8/3/2020		38 (D)
10/7/2020		42
3/2/2021		28 (D)
5/3/2021		44.5 (D)
7/28/2021		57
10/4/2021		68
3/1/2022		56
5/3/2022		54
7/26/2022		61 (D)
10/4/2022		54
3/7/2023		35
5/2/2023		32 (D)

Constituent: Arsenic, Total (ug/L) Analysis Run 6/12/2023 1:46 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-15006	DEK-MW-15006
12/10/2015	13	
3/30/2016	19	
5/25/2016	18	
8/24/2016	20	
12/1/2016	20	
2/23/2017	20	
5/18/2017	20	
8/3/2017	14.6	
4/11/2018	18.3	
5/24/2018	25.7	
11/5/2018		20.25 (D)
4/11/2019		21
10/15/2019		27
5/13/2020		21
8/4/2020		22
10/7/2020		27
3/2/2021		24
5/3/2021		24
7/28/2021		34
10/4/2021		23.5 (D)
3/1/2022		28
5/3/2022		24.5 (D)
7/26/2022		29
10/4/2022		26
3/7/2023		15
5/2/2023		16

Constituent: Arsenic, Total (ug/L) Analysis Run 6/12/2023 1:32 PM

Client: Consumers Energy Data: DEK_HMPCCR_Sanitas_23Q2

	DEK-MW-18001	DEK-MW-18001
12/10/2015	118	
3/30/2016	159	
5/26/2016	138	
8/24/2016	108	
12/1/2016	144	
2/23/2017	133	
5/18/2017	145	
8/3/2017	158	
4/10/2018	103	
5/23/2018	225	
8/17/2018		146
11/6/2018		116
2/18/2019		85.5 (D)
4/10/2019		68
8/14/2019		49
10/15/2019		63
3/9/2020		75
5/14/2020		79
8/3/2020		69
10/6/2020		85
3/2/2021		98
5/3/2021		92
7/27/2021		78
10/7/2021		85
3/1/2022		130
5/3/2022		113
7/26/2022		89
10/4/2022		109
3/7/2023		228
5/3/2023		304