PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 9/24/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: **David Hutchinson** 0630/1300

Contractor(s) Rep:

Contractor(s): Ryan Central Inc.

John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Sunny **Temperature: 57** Weather (PM): Sunny Temperature: 70 Precipitation: None Wind: W, 4-12 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operators, 2 Laborers

- Continued placement of protective cover in Pond 1.
- Placed structural fill outside of Pond 2.
- Began placement of topsoil in Chemical Ponds.
- Import structural.
- Import protective cover.
- Import topsoil.
- Water truck used for dust control and to maintain fill moisture.

Summary of Dewatering:

Week 1	Week 2	<u>Week 3</u>	<u>Week 4</u>
05/06/19: 281,988 gal.	05/13/19: 399,021 gal.	05/20/19: 328,687 gal.	05/27/19: Holiday
05/07/19: 387,165 gal.	05/14/19: 484,537 gal.	05/21/19: 402,720 gal.	05/28/19: 386,176 gal.
05/08/19: 405,104 gal.	05/15/19: 486,473 gal.	05/22/19: 487,716 gal.	05/29/19: 468,094 gal.
05/09/19: 404,705 gal.	05/16/19: 481,499 gal.	05/23/19: 408,516 gal.	05/30/19: 357,569 gal.
05/10/19: 410,498 gal.	05/17/19: 484,331 gal.	05/24/19: 484,613 gal.	05/31/19: 161,965 gal.
05/11/19: 64,691 gal.	05/18/19: 249,566 gal.	05/25/19: None	06/01/19: None

Week 5	Week 6	Week 7	Week 8
06/03/19: 185,365 gal.	06/10/19: 175,022 gal.	06/17/2019: 247,813 gal.	06/24/2019: 218,008 gal.
06/04/19: 409,662 gal.	06/11/19: 184,365 gal.	06/18/2019: 68,510 gal.	06/25/2019: 208,371 gal.
06/05/19: 345,122 gal.	06/12/19: 178,934 gal.	06/19/2019: 215,872 gal.	06/26/2019: 181,215 gal.
06/06/19: 311,007 gal.	06/13/19: 147,219 gal.	06/20/2019: 207,117 gal.	06/27/2019: 216,650 gal.
06/07/19: 276,790 gal.	06/14/19: 13,156 gal.	06/21/2019: 200,874 gal.	06/28/2019: 208,921 gal.
06/08/19: 65,064 gal.	06/15/19: 142,063 gal.	06/22/2019: 102,207 gal.	06/29/2019: 135,907 gal.
Week 9	Week 10	Week 11	Week 12
07/01/19: 175,586 gal.	07/08/19: 107,894 gal.	07/15/19: None	07/22/19: 15,890 gal.
07/02/19: 129,459 gal.	07/09/19: 44,007 gal.	07/16/19: 17,852 gal.	07/23/19: 15,310 gal.
07/03/19: 13,878 gal.	07/10/19: 25,922 gal.	07/17/19: 20,293 gal.	07/24/19: 23,572 gal.
07/04/19: None	07/11/19: 27,943 gal.	07/18/19: None	07/25/19: None
07/05/19: 137,112 gal.	07/12/19: 18,335 gal.	07/19/19: 20,316 gal.	07/26/19: None
07/06/19: 95,100 gal.	07/13/19: None	07/20/19: None	07/27/19: None
Week 13	Week 14		
07/29/19: None	08/16/19: 49,780 gal.		
07/30/19: 23,124 gal.	08/22/19: 94,717 gal.		
	Total: 14,006,131 gal.		

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1 in minimum 18 inch loose lift using D6T LGP dozer.
- Golder observed placement of structural fill outside liner limits of Pond 2's southeast corner and compacted using Cat 815.
- Golder observed placement of single 6 inch lift of topsoil in the Chemical Pond work area.

SUMMARY OF SURVEYOR'S ACTIVITIES None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature:

PHOTOGRAPHS

Placement of topsoil in the Chemical Pond work area, looking west.

Protective cover on Pond 1 geotextile, looking east.

Placement of structural fill outside of Pond 2's southeast corner, looking east.

Finished liner sub-grade in Pond 2, looking north.

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

Project Number: 1788523 and 2 Closure CQA

Date: 9/25/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: **David Hutchinson** 0630/1500

Contractor(s):

Contractor(s) Rep:

John Johnson (Ryan Central) Ryan Central Inc.

SITE CONDITIONS

Weather (AM): Partly Sunny Temperature: 63 Weather (PM): Mostly Cloudy Temperature: 70 Precipitation: None Wind: NW, 3-15 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operators, 2 Laborers

- Continued placement of protective cover in Pond 1.
- Continued placement of topsoil in Chemical Ponds.
- Leistered textile for the burrito used on the above-cap pipe in Pond 1.
- Import protective cover.
- Import topsoil.
- Water truck used for dust control and to maintain fill moisture.

Summary of Dewatering:

Week 1	Week 2	Week 3	Week 4
05/06/19: 281,988 gal.	05/13/19: 399,021 gal.	05/20/19: 328,687 gal.	05/27/19: Holiday
05/07/19: 387,165 gal.	05/14/19: 484,537 gal.	05/21/19: 402,720 gal.	05/28/19: 386,176 gal.
05/08/19: 405,104 gal.	05/15/19: 486,473 gal.	05/22/19: 487,716 gal.	05/29/19: 468,094 gal.
05/09/19: 404,705 gal.	05/16/19: 481,499 gal.	05/23/19: 408,516 gal.	05/30/19: 357,569 gal.
05/10/19: 410,498 gal.	05/17/19: 484,331 gal.	05/24/19: 484,613 gal.	05/31/19: 161,965 gal.
05/11/19: 64,691 gal.	05/18/19: 249,566 gal.	05/25/19: None	06/01/19: None
Week 5	Week 6	Week 7	Week 8
<u>Week 5</u> 06/03/19: 185,365 gal.	<u>Week 6</u> 06/10/19: 175,022 gal.		<u>Week 8</u> 06/24/2019: 218,008 gal.
		06/17/2019: 247,813 gal.	
06/03/19: 185,365 gal.	06/10/19: 175,022 gal.	06/17/2019: 247,813 gal. 06/18/2019: 68,510 gal.	06/24/2019: 218,008 gal.
06/03/19: 185,365 gal. 06/04/19: 409,662 gal.	06/10/19: 175,022 gal. 06/11/19: 184,365 gal.	06/17/2019: 247,813 gal. 06/18/2019: 68,510 gal. 06/19/2019: 215,872 gal.	06/24/2019: 218,008 gal. 06/25/2019: 208,371 gal.
06/03/19: 185,365 gal. 06/04/19: 409,662 gal. 06/05/19: 345,122 gal.	06/10/19: 175,022 gal. 06/11/19: 184,365 gal. 06/12/19: 178,934 gal.	06/17/2019: 247,813 gal. 06/18/2019: 68,510 gal. 06/19/2019: 215,872 gal. 06/20/2019: 207,117 gal.	06/24/2019: 218,008 gal. 06/25/2019: 208,371 gal. 06/26/2019: 181,215 gal.

4				
Week 9	Week 10	Week 11	Week 12	
07/01/19: 175,586 gal.	07/08/19: 107,894 gal.	07/15/19: None	07/22/19: 15,890 gal.	
07/02/19: 129,459 gal.	07/09/19: 44,007 gal.	07/16/19: 17,852 gal.	07/23/19: 15,310 gal.	
07/03/19: 13,878 gal.	07/10/19: 25,922 gal.	07/17/19: 20,293 gal.	07/24/19: 23,572 gal.	
07/04/19: None	07/11/19: 27,943 gal.	07/18/19: None	07/25/19: None	
07/05/19: 137,112 gal.	07/12/19: 18,335 gal.	07/19/19: 20,316 gal.	07/26/19: None	
07/06/19: 95,100 gal.	07/13/19: None	07/20/19: None	07/27/19: None	
<u>Week 13</u>	Week 14			

07/29/19: None 08/16/19: 49,780 gal. 07/30/19: 23,124 gal. 08/22/19: 94,717 gal. **Total: 14,006,131 gal**.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1 in minimum 18 inch loose lift using D6T LGP dozer.
- Golder observed placement of single 6 inch lift of topsoil in the Chemical Pond work area.
- Golder monitored leistering of the textile used to burrito the 6-AA stone used to cover the solid ADS pipe used for the above-cap drain pipe in Pond 1.
- Golder collected and shipped protective samples PC-7 and PC-8.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

Aubrey Proctor (EGLE) and Michelle Marion (CEC) onsite for site visit.

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson Signature:

PHOTOGRAPHS

6AA placed around the solid above-cap drain pipe in Pond 1, looking east.

Burrito of the above-cap drain pipe stone, looking east.

Placement of protective cover in Pond 1, looking east.

Import of protective cover in Pond 1, looking south.

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

Project Number: 1788523 and 2 Closure CQA

Date: 9/26/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: **David Hutchinson** 0630/1930

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Partly Sunny Temperature: 64 Weather (PM): Mostly Sunny Temperature: 72 Precipitation: Rain Wind: NW, 2-18 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operators, 2 Laborers

- Continued placement of protective cover in Pond 1.
- Continued placement of topsoil in Chemical Ponds.
- Rolled liner sub-grade in Pond 2.
- Walked Pond 2 liner sub-grade to remove rocks over 0.75 inches.
- Import protective cover.
- Import topsoil.
- Water truck used for dust control and to maintain fill moisture.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1 in minimum 18 inch loose lift using D6T LGP dozer.
- Golder observed placement of single 6 inch lift of topsoil in the Chemical Pond work area.
- Golder observed rolling of the liner sub-grade in Pond 2 with Cat CS56B smooth drum roller.
- Golder observed removal of rock over 0.75 inches or with sharp edges from surface of Pond 2's liner sub-grade.
- Golder along with CEC and Ryan representatives completed visual inspection of Pond 2 liner subgrade. Pond 2 sub-grade approved for deployment of geomembrane.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril Phos

PHOTOGRAPHS

Rolling of liner sub-grade in Pond 2, looking north.

Placement of protective cover over the above-cap drain pipe in Pond 1, looking northeast.

Overview of rolled liner sub-grade in Pond 2, looking west.

Overview of protective cover being placed in Pond 1, looking northeast.

PROJECT OVERVIEW

Project Title:J.R. Whiting Ponds 1 and 2 Closure CQA

s 1 **Project Number:** 1788523

Date: 9/27/2019

Client:

Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel:

David Hutchinson 0630/1930

Contractor(s) Rep:

Contractor(s): Ryan Central Inc.

John Johnson (Ryan Central)

Chesapeake

Greg Parrott

SITE CONDITIONS

Weather (AM): Mostly Sunny
Weather (PM): Overcast
Precipitation: Rain

Temperature: 59
Temperature: 72
Wind: S, 2-10 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operators, 2 Laborers

- Continued placement of protective cover in Pond 1.
- Continued placement of topsoil in Chemical Ponds.
- Rolled liner sub-grade in Pond 2 ahead of geomembrane deployment.
- Import protective cover.
- Import topsoil.
- Water truck used for dust control and to maintain fill moisture.

Chesapeake - 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake began deployment of geomembrane in Pond 2 deploying panels P-26 thru P-32.
- Chesapeake preformed trial welds for fusion and extrusion prior to any seaming or repairs.
- Chesapeake seamed panels P-26 thru P-31 deployed today using the fusion method.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1 in minimum 18 inch loose lift using D6T LGP dozer.
- Golder observed placement of single 6 inch lift of topsoil in the Chemical Pond work area.

- Golder observed rolling of the liner sub-grade in Pond 2 prior to deployment of geomembrane using a Cat CS56B smooth drum roller.
- Performed CQA oversight and documentation on 40mil HDPE micro-spike geomembrane deployed today.
- Chesapeake installed approximately 117,530sf of geomembrane on Pond 2 today for a total of 498,680sf to date.
- Golder monitored deployment of 40mil micro-spike geomembrane panels P-26 thru P-32.
- Golder monitored and documented trial seams for fusion in P.M. preformed prior to seaming activities.
- Golder observed seaming of deployed panels P-26 thru P-31 on Ponds by fusion seaming method using 3 wedges.
- Golder marked destructive test locations DS-39 thru DS-47 on geomembrane for removal by Chesapeake and destructive field testing onsite.
- Worked ceased rather suddenly due to weather.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

Pre-Construction meeting on geomembrane installation with CEC, Ryan, Chesapeake and Golder.

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

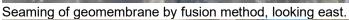
None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril The

PHOTOGRAPHS



Protective cover in Pond 1, looking north.

Deployment of 40mil geomembrane in Pond 2, looking southeast.

Rub sheet/Tub for generators while on liner, looking south.

Destructive test and defect number.

Destruct ready to be removed for field testing.

PHOTOGRAPHS

Protective cover in Pond 1, looking north.

Deployment of 40mil geomembrane in Pond 2, looking southeast.

Seaming of geomembrane by fusion method, looking east.

Rub sheet/Tub for generators while on liner, looking south.

Destructive test and defect number.

Destruct ready to be removed for field testing.

PROJECT OVERVIEW

J.R. Whiting Ponds 1 Project Number: 1788523 **Project Title:**

and 2 Closure CQA

Date: 9/30/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: **David Hutchinson** 0630/1730

Contractor(s) Rep:

Contractor(s): Ryan Central Inc. John Johnson (Ryan Central)

Chesapeake **Greg Parrott**

SITE CONDITIONS

Weather (AM): Cloudy Temperature: 62 Weather (PM): Mostly Sunny Temperature: 75 Precipitation: Rain Wind: W, 2-7 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator

- No Construction due to rain.
- Standby to assist Chesapeake as needed.

Chesapeake - 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake preformed trial welds for extrusion prior to starting repairs.
- Chesapeake preformed air pressure testing of all fusion seams on deployed geomembrane panels P-26 thru P-31.
- Chesapeake made repairs to all defects on panels P-26 thru P-31 deployed.
- Chesapeake vacuum tested repairs.
- Chesapeake field tested destructs DS-39 thru DS-47.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored and documented trial seams for extrusion in P.M. preformed prior to start of repairs.
- Golder monitored non-destructive testing of all fusion seams by air pressure testing to a minimum of 30psi for 5 minutes with a loss of no more than 4psi in accordance to specifications.

- · Golder observed repairs to defects by extrusion method.
- Golder monitored vacuum testing of repairs.
- Golder monitored field testing of destructs DS-39 thru DS-47 prior to shipping for third party testing.
- Golder shipped destructs DS-39 thru DS-42, DS-45 and DS-46 to laboratory for testing.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

DS-44 on seam P-27/28 and DS-47 on seam P-30/31 both failed field testing. Both of the seams to be cut out and reconstructed using fusion method, seam P-27/28 will also include removal of DS-43 that passed field testing. Both seams were welded using fusion welder M-65 which is in progress of being inspected and repaired.

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SL	<i>JBI</i>	ИІТТ	ED	BY	GOL	.DER:
----	------------	------	----	----	-----	-------

CQA Field Manager: David Hutchinson

Signature: Ravil 94

PHOTOGRAPHS

Air pressure testing of fusion seam.

Preparing trial weld.

Destructive samples removed for sampling.

Field test of destructive sample.

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 10/1/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0630/1930

Contractor(s) Rep:

Contractor(s): Ryan Central Inc. John Johnson (Ryan Central)

Chesapeake Greg Parrott

SITE CONDITIONS

Weather (AM): Mostly Sunny
Weather (PM): Mostly Cloudy
Precipitation: None

Temperature: 70
Temperature: 87
Wind: SW, 2-10 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator

- Continued placement of protective cover in Pond 1.
- Standby to assist Chesapeake as needed.

Chesapeake - 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake preformed trial welds for fusion and extrusion prior to any seaming or repairs.
- Chesapeake preformed seaming using the fusion method.
- Chesapeake preformed air pressure testing of all fusion seams performed today.
- Chesapeake made repairs to all defects on panels P-27 thru P-32.
- Chesapeake continued vacuum testing of repairs.
- Chesapeake field tested destructs DS-43, DS-44, DS-47 thru DS-49.
- Chesapeake continued deployment of geotextile in Pond 2.
- Chesapeake sewed all panels of geotextile deployed today.
- Chesapeake made repairs to all defects on geotextile panels deployed.
- Chesapeake placed sandbags around the outside edges of all deployed geotextile.
- Chesapeake QC shot panel layout and defects.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1.
- Golder monitored and documented trial seams for fusion and extrusion in P.M. preformed prior to start of seaming or repairs.
- Golder observed reconstruction of seam 27/28, 30/31 and 31/32 using the fusion method.
- Golder monitored non-destructive testing of fusion seams completed today by air pressure testing to a minimum of 30psi for 5 minutes with a loss of no more than 4psi in accordance to specifications.
- Golder marked destructive test locations DS-43, DS-44 and DS-47 thru DS-49 on geomembrane for removal by Chesapeake and destructive field testing onsite.
- Golder observed repairs to defects by extrusion method.
- Golder monitored vacuum testing of repairs.
- Golder monitored field testing of destructs DS-43, DS-44 and DS-47 thru DS-49 prior to shipping for third party testing.
- Golder shipped destructs DS-43, DS-44 and DS-47 thru DS-49 to laboratory for testing.
- Golder monitored deployment of 8oz. geotextile.
- Golder observed sewing of all deployed panels on Pond 2.
- Golder observed repairs to damage of geotextile by patch placed over defect by leistering of 8oz. textile patch over defect.

SUMMARY OF	<i>SURVEYOR'S</i>	ACTI	/ITIES
------------	-------------------	------	--------

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITT	ED BY	GOLL	DER:
---------	-------	------	------

CQA Field Manager: David Hutchinson

Signature: Paril Pho

PHOTOGRAPHS

Deployment of geotextile in Pond 2, looking east.

Sewing of geotextile panels.

Repair using extrusion method.

Vacuum testing of extrusion weld.

Placement of protective cover in Pond 1, looking north.

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

Project Number: 1788523 and 2 Closure CQA

Date: 10/2/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: **David Hutchinson** 0630/1530

Contractor(s) Rep:

Contractor(s): Ryan Central Inc. John Johnson (Ryan Central)

Chesapeake **Greg Parrott**

SITE CONDITIONS

Weather (AM): Mostly Cloudy Temperature: 70 Weather (PM): Overcast Temperature: 72 Precipitation: Rain Wind: W, 1-12 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator

- Continued placement of protective cover in Pond 1.
- Rolled liner sub-grade in Pond 2.
- Standby to assist Chesapeake as needed.

Chesapeake – 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake preformed trial welds for fusion prior to seaming.
- Chesapeake preformed seaming using the fusion method.
- Chesapeake preformed air pressure testing of all fusion seams performed today.
- Chesapeake continued vacuum testing of repairs.
- Chesapeake continued deployment of geotextile in Pond 2.
- Chesapeake sewed all panels of geotextile deployed today.
- Chesapeake made repairs to all defects on geotextile panels deployed.
- Chesapeake placed sandbags around the outside edges of all deployed geotextile.
- Chesapeake QC shot panel layout and defects.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1.
- Golder observed deployment of 40mil geomembrane panels P-33 thru P-38 in Pond 2.
- Golder monitored and documented trial seams for fusion in A.M. preformed prior to start of seaming.
- Golder monitored non-destructive testing of fusion seams completed today by air pressure testing to a minimum of 30psi for 5 minutes with a loss of no more than 4psi in accordance to specifications.
- Golder marked destructive test locations DS-50 thru DS-58 on geomembrane for removal by Chesapeake and destructive field testing onsite.
- · Golder monitored vacuum testing of repairs.
- Golder monitored deployment of 8oz. geotextile.
- Golder observed sewing of all deployed panels on Pond 2.
- Golder observed repairs to damage of geotextile by patch placed over defect by leistering of 8oz. textile patch over defect.

	OF SURVEYOR'S	* * * * TI // TI // C
NI IIWIWI ARY	UF	ACHVILLES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

Bi-Weekly progress/construction meeting with CEC, Ryan, Chesapeake and Golder.

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

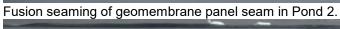
None

SUBMITTED BY GOLD	ER:
-------------------	-----

CQA Field Manager: David Hutchinson

Signature: Paril The

PHOTOGRAPHS



Rolling sub-grade ahead of liner deployment, looking south

Deployment of geomembrane in Pond 2, looking east

Sewing of geotextile panel seams in Pond 2.

Overview of geosynthetics in Pond 2, looking south

Overview of protective cover in Pond 1, looking north.

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

Project Number: 1788523 and 2 Closure CQA

Date: 10/4/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0630/1900

Contractor(s) Rep:

Contractor(s): Ryan Central Inc. John Johnson (Ryan Central)

> Chesapeake **Greg Parrott**

SITE CONDITIONS

Weather (AM): Mostly Cloudy Temperature: 58 Weather (PM): Partly Sunny Temperature: 67 Wind: NE, 4-13 mph Precipitation: None

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator

- Continued placement of protective cover in Pond 1.
- Rolled liner sub-grade in Pond 2.
- Assist Chesapeake as needed.

Chesapeake – 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake continued deployment of geomembrane in Pond 1.
- Chesapeake preformed trial welds for extrusion before start of repairs.
- Chesapeake preformed trial welds for fusion prior to start of seaming and end of day.
- Chesapeake preformed seaming using the fusion method.
- Chesapeake preformed air pressure testing of fusion seams.
- Chesapeake continued vacuum testing of repairs.
- Chesapeake removed and field tested destructs DS-50 thru DS-58 and DS-44P.
- Chesapeake continued deployment of geotextile in Pond 2.
- Chesapeake sewed all panels of geotextile deployed today.
- Chesapeake made repairs to all defects on geotextile panels deployed.
- Chesapeake placed sandbags around the outside edges of all deployed geotextile.

Chesapeake QC shot panel layout and defects.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of protective cover in Pond 1.
- Golder observed deployment of 40mil geomembrane panels P-39 thru P-44 in Pond 2.
- Golder monitored and documented trial seams for extrusion in A.M. preformed before beginning repairs.
- Golder monitored and documented trial seams for fusion in P.M. preformed prior to start of seaming and end of day.
- Golder observed seaming of all deployed panels on Pond 2 by fusion seaming method using 3 wedges.
- Golder monitored non-destructive testing of fusion seams completed today by air pressure testing to a minimum of 30psi for 5 minutes with a loss of no more than 4psi in accordance to specifications.
- Golder marked destructive test locations DS-59 thru DS-67, DS-44P and DS-44N on geomembrane for removal by Chesapeake and destructive field testing onsite.
- Golder monitored vacuum testing of repairs.
- Golder monitored field testing of destructive samples DS-50 thru DS-58 and Ds-44P, samples sent to lab for further testing.
- Golder monitored deployment of 8oz. geotextile.
- Golder observed sewing of all deployed panels on Pond 2.
- Golder observed repairs to damage of geotextile by patch placed over defect by leistering of 8oz. textile patch over defect.
- Chesapeake installed approximately 100,740sf of geomembrane on Pond 2 today for a total of 700,160sf to date for Ponds 1 and 2.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

Destructive test sample DS-44 on seam 27/28 failed testing in lab, procedures for failing destructive test followed in accordance to specifications with two additional samples being marked for testing to identify the section of seam to be capped. One sample collected previous to failed destructive sample DS-44 and one after.

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

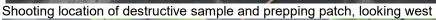
None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson


Signature: Paril 94

PHOTOGRAPHS

Destructive sample removed for field and lab testing



Vacuum testing of extrusion weld on repair patch

Rolling sub-grade ahead of liner deployment, looking southeast

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 10/5/2019

Client:

Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel:

Contractor(s):

David Hutchinson

0630/1700

Ryan Central Inc.

Contractor(s) Rep: John Johnson (Ryan Central)

Chesapeake

Greg Parrott

SITE CONDITIONS

Weather (AM): Mostly Cloudy Weather (PM): Mostly Cloudy

Precipitation: None

Temperature: 56 Temperature: 62 Wind: NE, 6-15 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozers; 1-John Deere 9520 Tractor; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator

- Rolled liner sub-grade in Pond 2.
- Assist Chesapeake as needed.
- Demobilized John Deere Tractor.

Chesapeake - 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake completed deployment of geomembrane in Pond 2.
- Chesapeake preformed trial welds for extrusion before start of repairs.
- Chesapeake preformed trial welds for fusion prior to start of seaming and end of day.
- Chesapeake preformed seaming using the fusion method.
- Chesapeake preformed air pressure testing of fusion seams.
- Chesapeake made repairs by the extrusion method.
- Chesapeake removed destruct DS-44N.
- Chesapeake placed sandbags around the outside edges of all deployed panels.
- Chesapeake QC shot panel layout and defects.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

Golder onsite documenting the construction progress.

- Golder observed deployment of 40mil geomembrane panels P-45 thru P-52 in Pond 2. Geomembrane deployment completed for Ponds 1 and 2.
- Golder monitored and documented trial seams for extrusion in P.M. preformed before beginning repairs.
- Golder monitored and documented trial seams for fusion in A.M., P.M. preformed prior to start of seaming and end of day.
- Golder observed seaming of all deployed panels on Pond 2 by fusion seaming method using 3 wedges.
- Golder monitored non-destructive testing of fusion seams completed today by air pressure testing to a minimum of 30psi for 5 minutes with a loss of no more than 4psi in accordance to specifications.
- Golder marked destructive test locations DS-68 thru DS-77 and DX-2 on geomembrane for removal by Chesapeake and destructive field testing onsite.
- Golder observed repairs by extrusion method.
- Chesapeake installed approximately 90,559sf of geomembrane on Pond 2 today for a total of 790,719sf to date for Ponds 1 and 2.

SUMMARY OF SURVEYOR'S ACTIVITIES	
None	
SUMMARY OF PROBLEMS AND RESOLUTIONS	
None	
SUMMARY OF MEETINGS/DISCUSSIONS HELD (AT	TENDEES AND ISSUES)
None	
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH	AND SAFETY ISSUES
None	
SUBMITTED BY GOLDER:	
CQA Field Manager: David Hutchinson	Signature: Raid 9

PHOTOGRAPHS



Rolling sub-grade ahead of liner deployment, looking east

Fusion welding of seam in Pond 2, looking southeast

Air pressure testing of fusion seam

Welding cap over failed seam by extrusion method

Overview of Pond 2, looking northeast

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 10/7/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson 0630/1930

Contractor(s) Rep:

Contractor(s): Ryan Central Inc. John Johnson (Ryan Central)

Chesapeake **Greg Parrott**

SITE CONDITIONS

Weather (AM): Mostly Cloudy Temperature: 58 Weather (PM): Mostly Sunny Temperature: 67 Precipitation: None Wind: W, 0-8 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 326F Excavator; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 2 Laborers

- Protective cover import.
- Placed protective cover in Ponds 1 and 2.
- Assist Chesapeake as needed.
- Demobilized Cat 815 Compactor.

Chesapeake – 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake preformed trial welds for extrusion before start of repairs.
- Chesapeake preformed air pressure testing of fusion seams.
- Chesapeake continued vacuum testing of repairs.
- Chesapeake removed and field tested destructs DS-59 thru DS-77, DS-44N, DX-2 and DX-3.
- Chesapeake continued deployment of geotextile in Pond 2.
- Chesapeake sewed panels of geotextile deployed today.
- Chesapeake made repairs to defects on geotextile panels deployed.
- Chesapeake placed sandbags around the outside edges of all deployed geotextile.
- Chesapeake QC shot panel layout and defects.

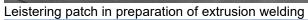
GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import and placement of Protective cover to Ponds 1 and 2.
- Golder monitored and documented trial seams for extrusion in A.M. and P.M. preformed before beginning repairs.
- Golder monitored non-destructive testing of fusion seams completed today by air pressure testing to a minimum of 30psi for 5 minutes with a loss of no more than 4psi in accordance to specifications.
- Golder monitored field destructive tests for DS-59 thru DS-77, DS-44N, DX-2 and DX-3 removed by Chesapeake.
- Golder observed deployment of geotextile in Pond 2.
- Golder observed sewing of geotextile seams

• Golder observed sewing of geolexille seams	ა.
Golder observed repairs by extrusion metho	od.
SUMMARY OF SURVEYOR'S ACTIVITIES	
None	
OUMMARY OF BRODE ENGLAND BEGOLUTIONS	
SUMMARY OF PROBLEMS AND RESOLUTIONS	
None	
SUMMARY OF MEETINGS/DISCUSSIONS HELD	(ATTENDEES AND ISSUES)
None	
SUMMARY OF INCIDENTS / ACCIDENTS / HEAL?	TH AND SAFETY ISSUES
None	
SUBMITTED BY GOLDER:	
CQA Field Manager: David Hutchinson	Signature: Paril Phone


PHOTOGRAPHS



Air pressure testing of fusion seam in Pond 2

Import of protective cover in Pond 2, looking north

Deploying geotextile in Pond 2, looking east

Sewing of geotextile seam in Pond 2, looking north

CEC observing field test of destructive sample

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 10/8/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel:

David Hutchinson 0630/1630

Contractor(s) Rep:

Contractor(s): Ryan Central Inc. John Johnson (Ryan Central)

Chesapeake

Greg Parrott

SITE CONDITIONS

Weather (AM): Sunny Temperature: 45 Weather (PM): Sunny Temperature: 68 Precipitation: None Wind: W, 0-6 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator, 2 Laborers

- Protective cover import.
- Placed protective cover in Pond 2.
- Finish grading of protective cover in Pond 1.
- Assist Chesapeake as needed.
- Demobilized Cat 326F Excavator.

Chesapeake – 1 Superintendent, 11 Technicians, 1 operator

- Chesapeake completed deployment of geotextile in Pond 2.
- Chesapeake sewed all panels of geotextile.
- Chesapeake made repairs to defects on geotextile panels deployed.
- Chesapeake placed sandbags around the outside edges of all deployed geotextile.
- Chesapeake of the Pond 2 work area.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import and placement of Protective cover to Pond 2.
- Golder observed finish grading of protective cover in Pond 1.
- Golder observed deployment of geotextile in Pond 2.

Golder observed sewing of geotextile seams.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

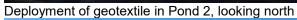
SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril The

PHOTOGRAPHS

Sewing textile seam in Pond 2



Finish grading of protective cover in Pond 1, looking east

Overview of protective cover in Pond 1, looking north

PROJECT OVERVIEW

Client:

J.R. Whiting Ponds 1 **Project Title:**

Project Number: 1788523 and 2 Closure CQA

Date: 10/9/2019

GAI Arrival/Departure Time:

Personnel: 0630/1930 David Hutchinson

Consumers Energy

Contractor(s) Rep: Contractor(s):

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Sunny Temperature: 45 Weather (PM): Sunny Temperature: 67 Precipitation: None Wind: E, 1-6 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-John Deere 644G Loader; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer; 1-JLG 10054 Sky-Trak.

Site/Location: Erie, MI

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator, 2 Laborers

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Finish grading of protective cover in Pond 1.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Continued install of the above-cap drain pipe in Pond 2.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import and placement of Protective cover to Pond 2.
- Golder observed finish grading of protective cover in Pond 1.
- Golder observed import and placement of topsoil to Pond 1.
- Golder observed installation of the above-cap drain pipe in Pond 2.
- Golder observed surveyor from Rowe shoot protective cover in Pond 1, liner limits and the placed above-cap drain pipe in Pond 2.

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe surveyor shot protective cover in Pond 1, edge of liner placed in Pond 2 and above-cap drain pipe installed in Pond 2.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

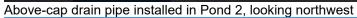
SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril 9

PHOTOGRAPHS

Placing protective cover in Pond 2, looking west



Import of protective cover to Pond 2, looking north

Rowe shooting protective cover placed in Pond 1, looking east

First load of topsoil received and placed in Pond 1, looking northwest

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/10/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel:

David Hutchinson 0630/1530

Contractor(s) Rep:

Contractor(s): Ryan Central Inc.

John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Mostly Sunny
Weather (PM): Mostly Sunny
Precipitation: None
Temperature: 50
Temperature: 70
Wind: E, 3-12 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Continued install of the above-cap drain pipe in Pond 2.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import and placement of Protective cover to Pond 2.
- Golder observed import and placement of topsoil to Pond 1.
- Golder observed installation of the above-cap drain pipe in Pond 2.
- Golder collected protective cover samples PC-13 and PC-14 from imported material.

SUMMARY OF SURVEYOR'S ACTIVITIES	
None	
OVERTICAL AND DESCRIPTIONS	
SUMMARY OF PROBLEMS AND RESOLUTIONS	
None	
OUT A DY OF MEETINGS/DIGGLISSIONS LIELD (A)	TTENDEED AND IOOUED
SUMMARY OF MEETINGS/DISCUSSIONS HELD (A	I TENDEES AND ISSUES)
None	
	/ AND 0 A FET V 100 U FO
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH	AND SAFETY ISSUES
None	
SUBMITTED BY GOLDER:	
004 F1 1114	Signature: Paril The
CQA Field Manager: David Hutchinson	Signature: Want The

PHOTOGRAPHS

Placing protective cover in Pond 2, looking northeast

Above-Cap drain pipe with sock

Above-cap drain pipe installed in Pond 2, looking northwest

Overview of Pond 2, looking southeast

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/11/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

1030/1400

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Overcast
Weather (PM): Overcast
Precipitation: Rain
Temperature: 60
Temperature: 66
Wind: W, 2-6 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Shut down due to rain.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import and placement of Protective cover to Pond 2.
- Golder observed import of topsoil to Pond 1.
- Golder observed Rowe surveyor shoot remaining Pond 2 above-cap drain pipe not already surveyed.
- Golder shipped protective cover samples PC-9 and PC-14 from imported material to lab for sieve analysis.

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe onsite, shot remaining above-cap drain pipe for Pond 2.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paul Gho

PHOTOGRAPHS

Import and placement of protective cover in Pond 2, looking north

Overview Pond 2, looking northwest

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 10/14/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Personnel: **David Hutchinson**

Arrival/Departure Time:

0630/1530

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Contractor(s):

Weather (AM): Mostly Cloudy Temperature: 45 Weather (PM): Partly Sunny Temperature: 63 Precipitation: None Wind: NW, 5-10 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 1 and Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of Protective cover to Pond 2.
- Golder observed placement of protective cover in Pond 1 and Pond 2.
- Golder observed import of topsoil to Pond 1.
- Golder observed placement of topsoil in Pond 1.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

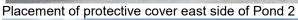
None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson


Signature: Paul The

PHOTOGRAPHS

Import of protective cover to Pond 2, looking southwest

Overview Pond 2, looking southwest

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/15/2019

Client: Consumers Energy Si

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0630/1230

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Mostly Sunny
Weather (PM): Mostly Sunny
Precipitation: None
Temperature: 37
Temperature: 52
Wind: NW, 3-9 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of Protective cover to Pond 2.
- Golder observed placement of protective cover in Pond 1 and Pond 2.
- Golder observed import of topsoil to Pond 1.
- Golder observed placement of topsoil in Pond 1.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

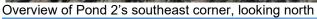
None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson


Signature: Paril Phos

PHOTOGRAPHS

Placement of protective cover in Pond 2, looking northeast

Overview from Pond 2's southwest corner, looking northeast

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 10/16/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time: Personnel:

David Hutchinson 0630/1630

Contractor(s) Rep: Contractor(s):

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Cloudy Temperature: 50 Weather (PM): Cloudy Temperature: 52 Precipitation: Rain Wind: W, 10-22 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Class II sand import for access road.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of Protective cover to Pond 2.
- Golder observed placement of protective cover in Pond 1 and Pond 2.
- Golder observed import of topsoil to Pond 1.
- Golder observed placement of topsoil in Pond 1.
- Golder observed import of Class II sand for access road.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

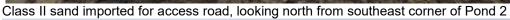
Bi-Weekly construction meeting with CEC, Ryan and Golder.

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson


Signature: Paril 94

PHOTOGRAPHS

23A imported stone for access road placed atop 10 oz. textile in chemical ponds, looking south

Overview of Pond 2, looking south from Pond 1

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/17/2019

Client: Consumers Energy S

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0630/1630

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Mostly Sunny
Weather (PM): Mostly Cloudy
Precipitation: None
Temperature: 43
Temperature: 54
Wind: NW, 3-10 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Class II sand import for access road.
- Placed class II sand on east access road.
- Compacted class II sand using smooth drum roller.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of Protective cover to Pond 2.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material stockpiled along western edge of Pond 1.
- Golder observed import of Class II sand for access road.
- Golder monitored placement of Class II sand along east access road (see attached lift/test map) in single 12 inch lift and compacted using a Cat CS56B smooth drum roller.
- Golder performed Standard test on Troxler 3440 prior to density testing.

 Performed density test's SBDT-1 thru SBDT-3 on 12-inch compacted class II fill lift 1 placed along east access road east of Pond 2 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested class II fill met all specifications.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

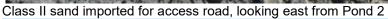
SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

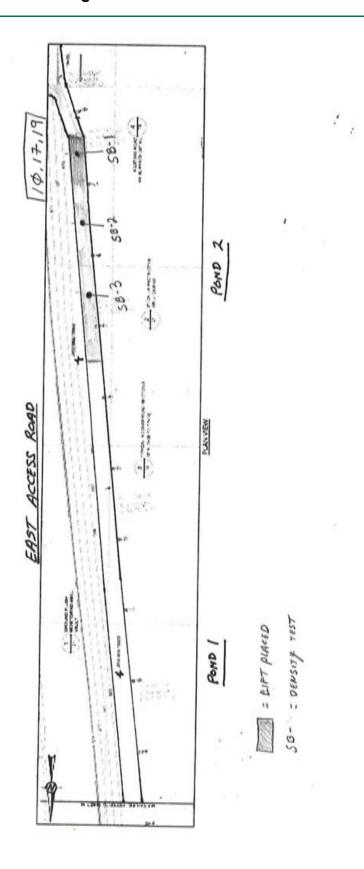
None

SUBMITTED BY GOLDER:


CQA Field Manager: David Hutchinson

Signature: Paul Phos

Protective cover import to Pond 2, looking southwest


Topsoil placed in Pond 1, looking northeast

Preforming standard on nuclear density gauge prior to testing, looking east

Density test of class II sand placed and compacted for east access road, looking north

Lift/Density Test Map

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/18/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0630/1230

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc.

John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Sunny
Weather (PM): Sunny
Temperature: 37
Temperature: 42
Precipitation: None
Wind: NW, 2-7 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller:

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Class II sand import for access road.
- Placed class II sand on east access road.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material stockpiled along western edge of Pond 1.
- Golder observed import of Class II sand for access road.
- Golder monitored placement of Class II sand along east access road (see attached lift/test map) in single 12 inch lift and compacted using a Cat CS56B smooth drum roller.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's SBDT-4 and SBDT-5 on 12-inch compacted class II fill lift 1 placed along east access road east of Pond 2 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested class II fill met all specifications.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

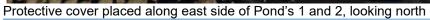
SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

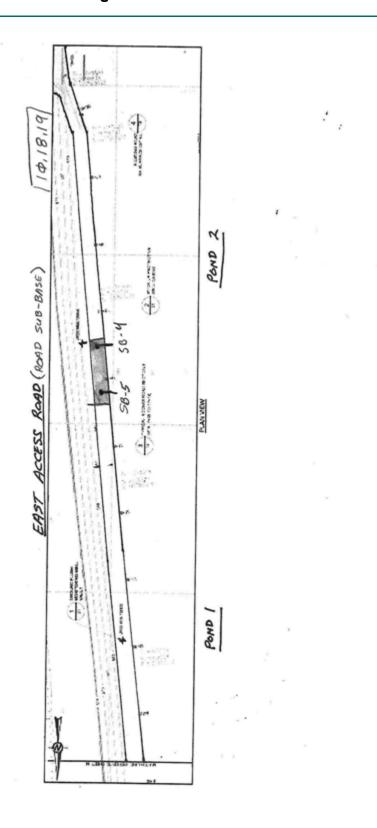
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:


CQA Field Manager: David Hutchinson

Signature: Paril Phos


Class II placed for east access road sub-base east of Pond 2, looking south

Overview of protective cover in Pond 2, looking southwest

Lift/Density Test Map

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 10/21/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0630/1430

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Mostly Cloudy
Weather (PM): Cloudy
Precipitation: None
Temperature: 53
Temperature: 60
Wind: NE, 4-15 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer; 1-Cat 326F Excavator.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Class II sand import for access road sub-base.
- Placed class II sand on east access road.
- Mobilized Cat 326F Excavator.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material being pushed in 3 foot lift for haul road from the western edge of Pond 1.
- Golder observed import of Class II sand for access road sub-base layer.
- Golder monitored placement of Class II sand along east access road (see attached lift/test map) in single 12 inch lift.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's SBDT-6 and SBDT-7 on 12-inch compacted class II fill lift 1 placed along east access road east of Pond 2 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested class II fill met all specifications for road sub-base.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

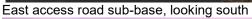
SUMMARY OF PROBLEMS AND RESOLUTIONS

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

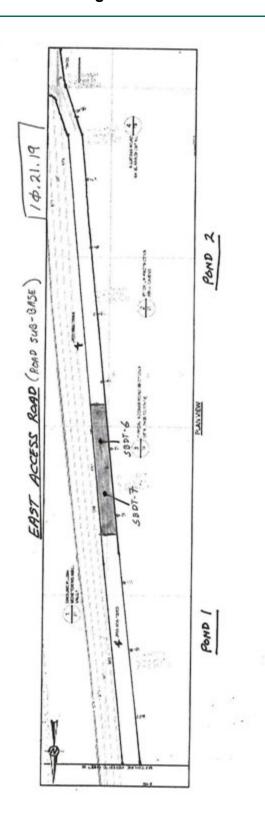
None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

SUBMITTED BY GOLDER:


CQA Field Manager: David Hutchinson

Signature: Paril The


Placement of protective cover over Pond 2 geosynthetics, looking northeast

Import of protective cover to Pond 2, looking northeast

Lift/Density Test Map

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/22/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0630/1430

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Sunny
Weather (PM): Mostly Cloudy
Precipitation: None

Temperature: 52
Temperature: 57
Wind: W, 3-20 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer; 1-Cat 326F Excavator.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material being pushed in 3 foot lift for haul road from the western edge of Pond 1.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Ravil 94

Resurfacing of access road to chemical ponds, looking south

Building topsoil haul road in Pond 1, looking east

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 10/23/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0630/1430

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Mostly Sunny
Weather (PM): Mostly Sunny
Precipitation: None

Temperature: 43
Temperature: 50
Wind: W, 4-22 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer; 1-Cat 326F Excavator.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Road base import and placement for east access road.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material being pushed in 3 foot lift for haul road from the western edge of Pond 1.
- Golder observed deployment of 10oz textile above east access road sub-base.
- Golder observed import of 23A stone for access road base, material placed in single 10 inch loose lift atop of the 10oz textile along the east access road. No compaction or testing done.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

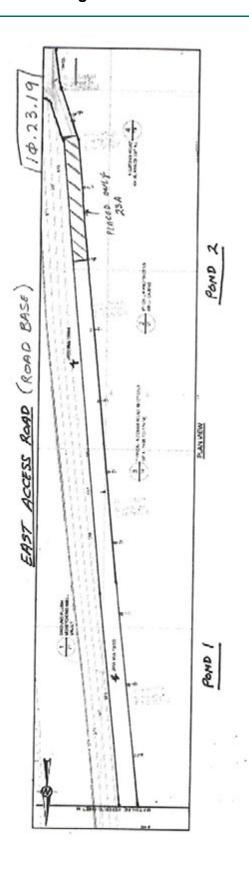
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril Phos


Placement of protective cover in Pond 2, looking northwest

Overview of remaining area of Pond 2 to be covered with protective cover, looking southwest

Road base placed for east access road, looking north

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 10/24/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0630/1430

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

Rowe Will Smith (Rowe)

SITE CONDITIONS

Weather (AM): Partly Sunny
Weather (PM): Mostly Cloudy
Precipitation: None

Temperature: 54
Temperature: 58
Wind: W, 5-12 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer; 1-Cat 326F Excavator.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Road base import and placement for east access road.
- Road sub-base import and placement for east access road.
- Cut and removed 15 foot section of 24 inch steel pipe in discharge channel.
- Demobilized Cat 326F Excavator.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material being pushed in 3 foot lift for haul road from the western edge of Pond 1.
- Golder observed deployment of 10oz textile on east access road for placement of road sub-base and road base material.
- Golder monitored placement of Class II sand along east access road (see attached lift/test map) in single 12 inch lift.

- Golder observed import of 23A stone for access road base (see attached lift/test map), material
 placed in single 10 inch loose lift atop of the 10oz textile along the east access road. No compaction
 or testing done.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's SBDT-8 thru SBDT-10 on 12-inch compacted class II fill lift 1 placed along east access road east of Pond 2 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested class II fill met all specifications for road sub-base.
- Golder observed cutting and removal of a 15 foot section of 24 inch steel pipe located in discharge channel (see attached map for location).

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe shot protective cover in Pond 2.

SUMMARY OF PROBLEMS AND RESOLUTIONS

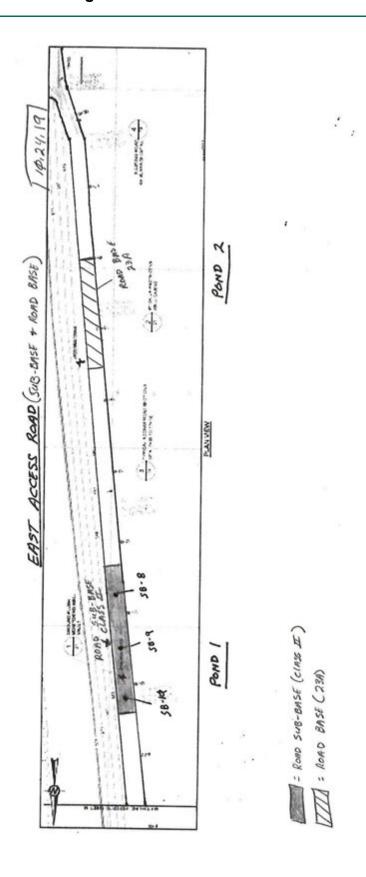
Unidentified 24 inch steel pipe found running from the northeast corner of the discharge channel toward the north (see attached map). Pipe was found due to water level in discharge channel dropping and fully exposing the pipe. Ryan cut off and removed the section of pipe exposed, section removed was approximately 15 feet in length. Tom Shields with CEC was asked how they wanted to deal with the remaining pipe running north, Tom told Ryan to place sandbags into the pipe and install a 4 to 6 inch grout cap.

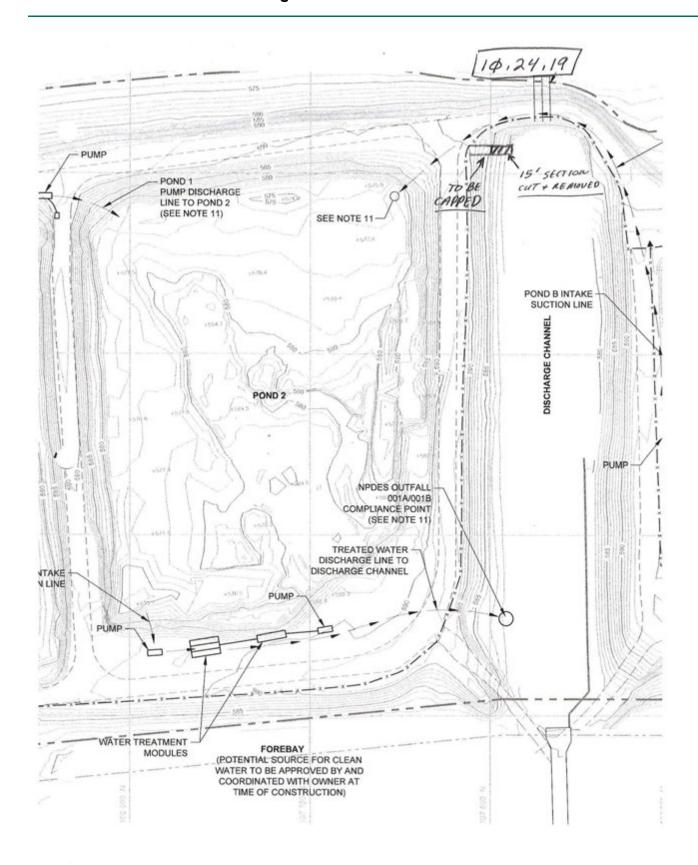
SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES) None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES
None

SUBMITTED BY GOLDER:			
CQA Field Manager: David Hutchinson	Signature:	David Flore	

Topsoil import to Pond 1, looking northeast


24 inch steel pipe discovered in the northeast corner of the discharge channel, looking north


Cutting 24 inch pipe into discharge channel for removal, looking south

End of 24 inch pipe from discharge channel to be capped, looking west

Lift/Density Test Map

Location of 24 inch steel pipe found in discharge channel

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 10/25/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson 0630/1830

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

Rowe Will Smith (Rowe)

SITE CONDITIONS

Weather (AM): Cloudy
Weather (PM): Cloudy
Precipitation: None
Temperature: 46
Temperature: 52
Wind: E, 3-9 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Protective cover import to Pond 2.
- Placed protective cover in Pond 2.
- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Road base import and placement for east access road.
- Road sub-base import and placement for east access road.
- Capped 24 inch steel pipe in discharge channel.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder monitored placement of protective cover in Pond 2 in single 18 inch lift using GPS dozer.
- Golder observed import of topsoil to Pond 1, material being pushed in 3 foot lift for haul road from the western edge of Pond 1.
- Golder observed deployment of 10oz textile on east access road for placement of road sub-base and road base material.
- Golder monitored placement of Class II sand along east access road (see attached lift/test map) in single 12 inch lift.
- Golder observed import of 23A stone for access road base (see attached lift/test map), material
 placed in single 10 inch loose lift atop of the 10oz textile along the east access road. No compaction
 or testing done.

- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's SBDT-11 thru SBDT-13 on 12-inch compacted class II fill lift 1 placed along east access road east of Pond 2 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested class II fill met all specifications for road sub-base.
- Golder monitored capping of 24 inch steel pipe in discharge channel. Ryan placed sandbags to fill pipe starting 6 inches back from open end then installed a 6 inch cap using grout.

SUMMARY	OF.	SURVE	EYOR'S	ACTI	VITIES
---------	-----	-------	--------	------	--------

Rowe shot protective cover in Pond 2.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

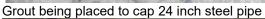
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

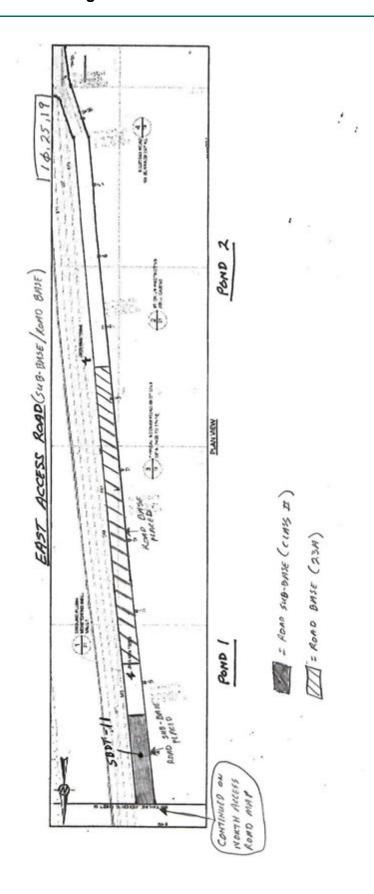
SUBMITTED BY GOLDER:

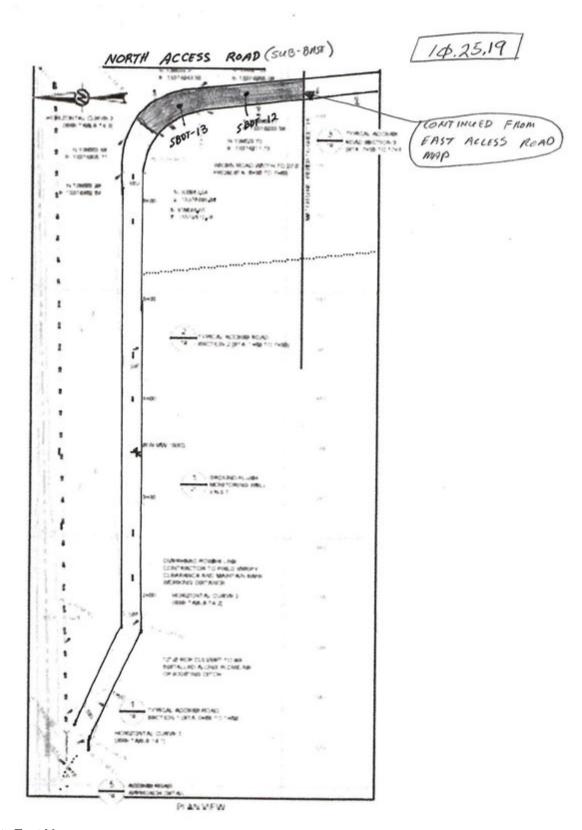
CQA Field Manager: David Hutchinson

Signature: Paril The



East access road, looking north


Sandbags placed in 24 inch steel pipe being capped



Finished 24 inch pipe cap

Lift/Density Test Map

Lift/Density Test Map

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

and 2 Closure CQA

Project Number: 1788523

Date: 10/29/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time: Personnel: 0630/1530

David Hutchinson

Contractor(s) Rep: Contractor(s):

Ryan Central Inc. John Johnson (Ryan Central)

Rowe Will Smith (Rowe)

SITE CONDITIONS

Weather (AM): Sunny Temperature: 50 Weather (PM): Mostly Cloudy Temperature: 58 Wind: S, 1-8 mph Precipitation: None

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator, 1 Laborer

- Topsoil import to Pond 1.
- Placed topsoil in Pond 1.
- Road sub-base import and placement for east access road.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of topsoil to Pond 1, material being pushed in 3 foot lift for haul road from the western edge of Pond 1.
- Golder observed import of Class II sand for the access road, material stockpiled outside Pond 1's northeast corner.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's RBDT-1 thru RBDT-9 on 12-inch compacted lift of 23A along east access road east of Pond's 1 and 2 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested 23A fill met all specifications for road sub-base.
- Golder collected samples PC-15 thru PC-18 from protective cover for grain size analysis and classification.
- Golder observed Young Environmental cleaning Frack Tank for removal.

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe shot protective cover in Pond's 1 and 2.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

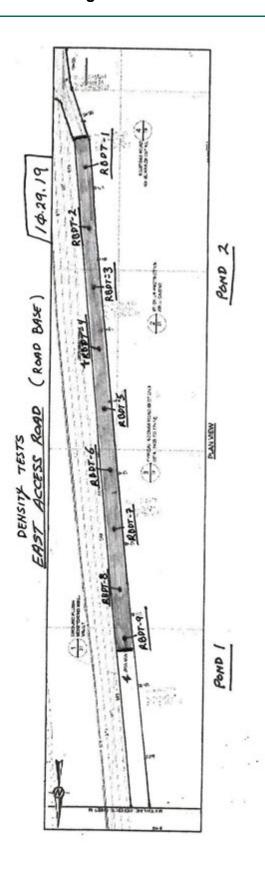
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril 94


Import of topsoil to Pond 1, looking north

Standard test of Troxler prior to testing

Rowe set-up for survey of protective cover, looking south

Lift/Density Test Map

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 11/05/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: D

David Hutchinson 0900/1600

Contractor(s) Rep:

Contractor(s): Ryan Central Inc.

John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Partly Cloudy
Weather (PM): Partly Sunny
Precipitation: None

Temperature: 44
Temperature: 52
Wind: NW, 5-12 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operator, 1 Laborer

- Topsoil import to Pond's 1 and 2.
- Placed topsoil in Pond's 1 and 2.
- Road sub-base import and placement for north access road.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of topsoil to Pond's 1 and 2, material being placed in 6 inch lift from the western edge of Pond's 1 and 2.
- Golder observed import of Class II sand for the access road, material placed on north access road in single 12 inch lift.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's SBDT-14 thru SBDT-22 on 12-inch compacted lift of Class II/III sand along north access road north of Pond 1 using a Troxler 3440 Nuclear Gauge (see density test map).
 Compacted and tested Class II/III fill met all specifications for road sub-base.
- Golder observed Young Environmental cleaning Frack Tank for removal.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

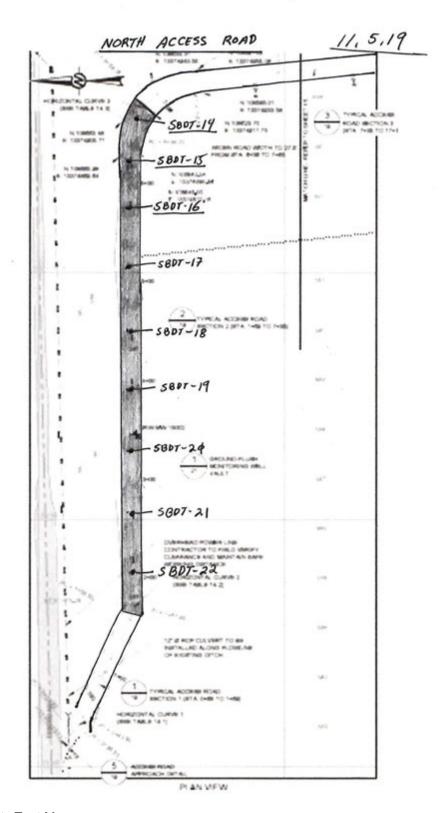
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paul Ghan


Import of Class II/III sand for north access road sub-base, looking northeast

Overview of completed north access road sub-base, looking east

Density testing of north access road sub-base, looking east

Lift/Density Test Map

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 11/08/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0700/1330

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

Rowe Will Smith (Rowe)

SITE CONDITIONS

Weather (AM): Sunny
Weather (PM): Sunny
Precipitation: None
Temperature: 24
Temperature: 37
Wind: NW, 6-15 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operator, 1 Laborer

- Topsoil import to Pond's 1 and 2.
- Placed topsoil in Pond's 1 and 2.
- · Road base import and placement for north access road.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed import of topsoil to Pond's 1 and 2, material being placed in 6 inch lift from the western edge of Pond's 1 and 2.
- Golder observed import of 23A for the north access road, material placed on north access road in single 12 inch lift.

SUMMARY OF SURVEYOR'S ACTIVITIES

Shot topsoil of Pond 1 in limited area of western half of pond ready

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril 94

Rowe shooting cert points in Pond 1, looking north

Placement of topsoil in Pond 2, looking south

Overview of topsoil placement in Pond 1, looking east

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 11/13/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0930/1430

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Cloudy
Weather (PM): Cloudy
Precipitation: None
Temperature: 24
Temperature: 25
Wind: NE, 5-9 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operator, 1 Laborer

Placed topsoil in Pond's 1 and 2.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of topsoil in Pond's 1 and 2, material being placed in 6 inch lift from the western edge of Pond's 1 and 2.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test's RBDT-10 thru RBDT-25 on 12-inch compacted lift of 23A road base along the east and north access roads of Pond 1 using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested 23A fill met all specifications for road base material.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

Bi-Weekly construction meeting with CEC, Ryan and Golder.

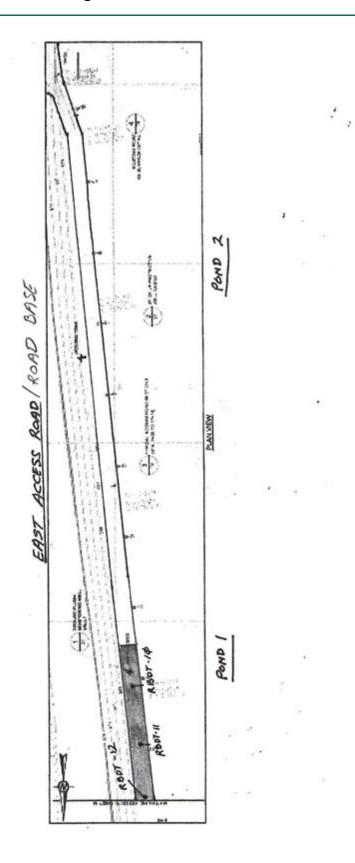
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

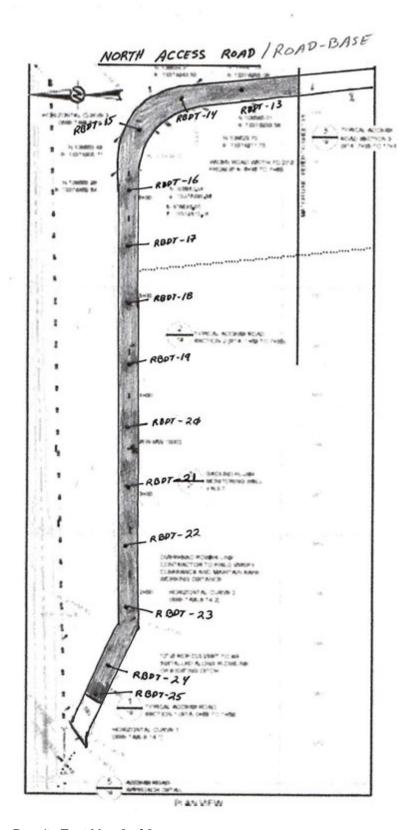
None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril Phos


Placement of topsoil along east side of Ponds 1 and 2, looking south



Overview of topsoil placed in Pond's 1 and 2, looking southwest

Density testing of road base material for north access road, looking east

Road Base Density Test Map 2 of 2

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 11/14/2019

Client: Consumers Energy

Rowe

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0930/1430

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc.

John Johnson (Ryan Central)

Will Smith (Rowe)

SITE CONDITIONS

Weather (AM): Cloudy
Weather (PM): Cloudy
Precipitation: None
Temperature: 24
Temperature: 28
Wind: W, 2-6 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operator, 1 Laborer

- Placed topsoil in Pond's 1 and 2.
- Finish grading topsoil placed in Pond's 1 and 2.

FK Engineering - 2 Techs

- Scoped MW-15006.
- Flushed MW-15006

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of topsoil in Pond's 1 and 2, material being placed in 6 inch lift from the western edge of Pond's 1 and 2.
- Golder observed finish grading of placed topsoil to specifications.
- Golder observed survey of protective cover and topsoil certification points in Pond 1.
- Golder preformed depth checks of topsoil to verify minimum 6 inch thickness.
- Golder monitored flushing of MW-15006 to remove plug and prep for well development on Monday, November 18, 2019.

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe shot remaining certification points for the protective cover in Pond 1 and continued shooting topsoil certification points within pond 1.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

Bi-Weekly construction meeting with CEC, Ryan and Golder.

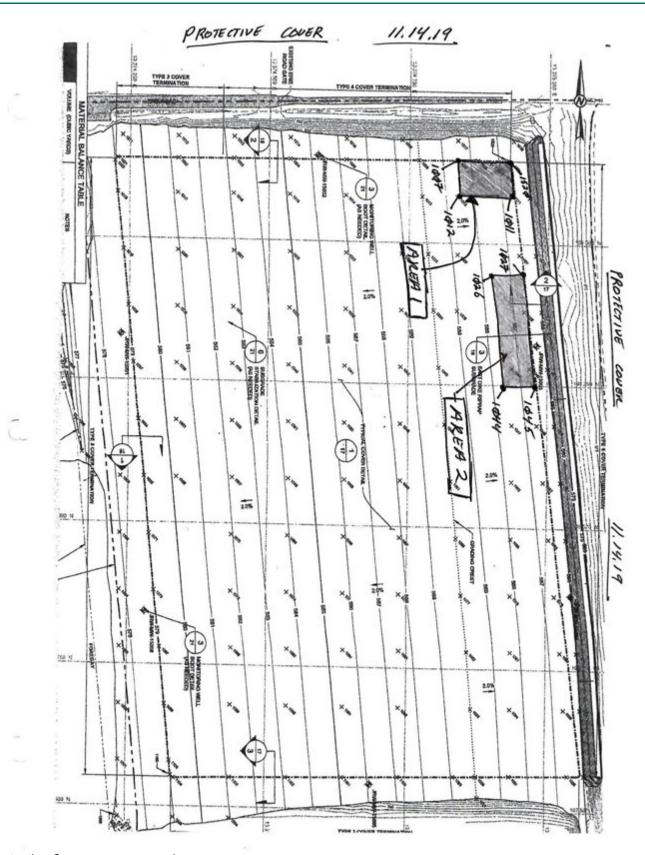
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

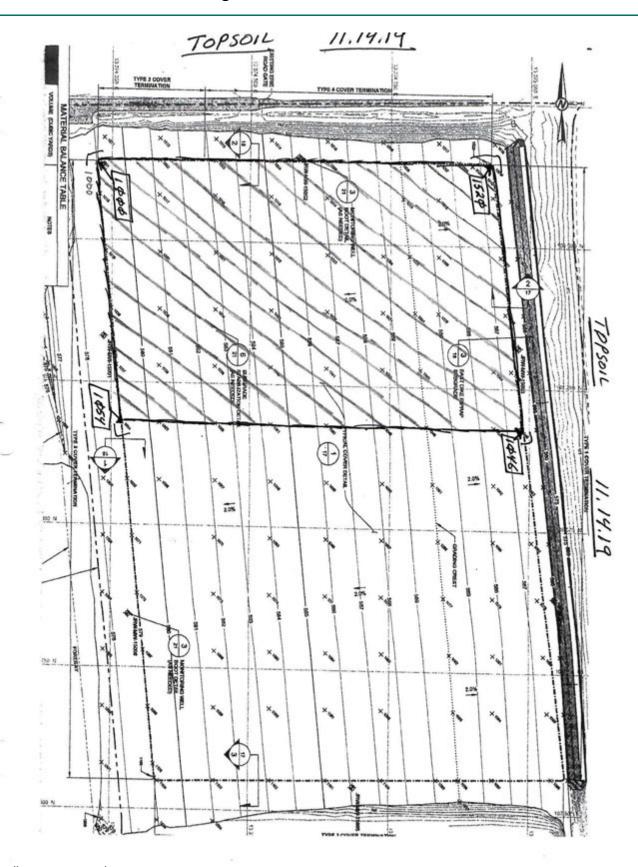
None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril 94


Loading topsoil from onsite stockpile for placement in Pond 2, looking northeast


Preparing to flush MW-15006

Flushing MW-15006

Protective Cover area surveyed

Topsoil area surveyed

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523

Date: 11/16/2019

Client: Consumers Energy

Site/Location: Erie, MI

GAI

Arrival/Departure Time:

Personnel: David Hutchinson

0730/1400

Contractor(s):

Contractor(s) Rep:

Ryan Central Inc.

John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Mostly Cloudy
Weather (PM): Mostly Cloudy
Precipitation: None
Temperature: 25
Temperature: 34
Wind: N, 3-8 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 3 Operator

- Placed topsoil in Pond 2.
- Finish grading topsoil placed in Pond 2.
- Import 21AA for asphalt base.
- Placed and compacted asphalt base for access ramp.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of topsoil in Pond 2, material being placed in 6 inch lift.
- Golder observed finish grading of placed topsoil to specifications.
- Golder performed Standard test on Troxler 3440 prior to density testing.
- Performed density test ABDT-1 on 8-inch compacted lift of 21AA asphalt base for access ramp using a Troxler 3440 Nuclear Gauge (see density test map). Compacted and tested 21AA fill met all specifications for asphalt base material.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

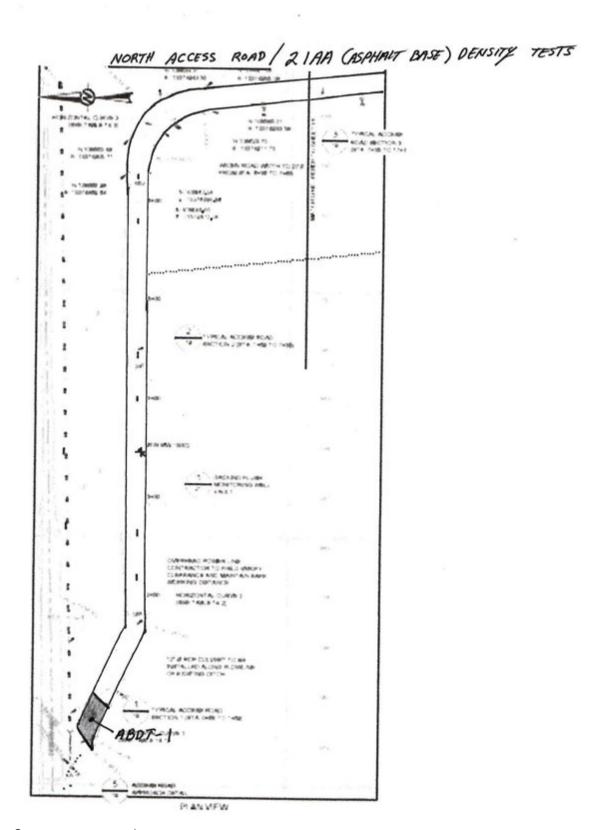
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril 9


Placing 8 inch lift of 21AA for access ramps asphalt base, looking northwest

Compacting 21AA placed for access ramp using smooth drum roller, looking north

Fabric and 21AA placed for Access Ramp, looking northwest

Protective Cover area surveyed

PROJECT OVERVIEW

J.R. Whiting Ponds 1 **Project Title:**

Project Number: 1788523 and 2 Closure CQA

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: 0700/1400 David Hutchinson

Contractor(s) Rep: Contractor(s):

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Cloudy Temperature: 35 Weather (PM): Cloudy Temperature: 38 Precipitation: None Wind: N, 3-6 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller;

Date: 11/19/2019

1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operators, 1 Laborer

- Place and finish grading topsoil in Pond 2.
- Installed Jersey Barriers around horseshoe.

Ebony

Placed and compacted asphalt for access ramp.

NERC

Seeded, fertilized and covered with straw topsoil in Pond 1.

Future Fence

Installing fence posts for perimeter fence along west side of Ponds 1 and 2.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of topsoil in Pond 2, material being placed in 6 inch lift.
- Golder observed finish grading of placed topsoil to specifications.
- Golder observed installation of posts for the perimeter fence along west side of Ponds 1 and 2.
- Golder observed seeding, fertilizing of topsoil of Pond 1 in accordance to specifications, straw placed over seeded area.
- Golder observed installation and compaction of asphalt for access ramp.

SUMMARY OF SURVEYOR'S ACTIVITIES

None

SUMMARY OF PROBLEMS AND RESOLUTIONS

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paul Ghan

Installing Jersey barriers around horseshoe between Pond 2 and Chemical Pond, looking south

Placement and compaction of asphalt for access ramp, looking southwest

Asphalt being placed for access ramp, looking southwest

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 11/21/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0700/1400

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)

SITE CONDITIONS

Weather (AM): Cloudy
Weather (PM): Cloudy
Precipitation: Rain
Temperature: 38
Temperature: 48
Wind: NW, 6-10 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-CAT Water Truck; 1-CAT A200 LGP Dozer; 1-Cat CS56B Smooth Drum Roller; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 2 Operators, 1 Laborer

- Import topsoil to chemical pond.
- Place topsoil east end of chemical pond and access road.
- Import 23AA for access road.
- Place 23AA along shoulders of access road asphalt ramp.
- · Level sub-grade around monitoring wells.
- Demobilized Cat D6 dozer.

NERC

Began seed/mulch, fertilize and straw of topsoil in Pond 2.

Future Fence

Continued installing fence posts for the east and north perimeter.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed placement of topsoil in chemical pond, material being placed in 6 inch lift.
- Golder observed leveling of sub-grade around monitoring wells for concrete pads.
- Golder observed installation of posts for the east and north perimeter fence of Ponds 1 and 2.
- Golder observed seeding, fertilizing of topsoil of Pond 2 in accordance to specifications, straw placed over seeded area.
- Golder preformed depth checks of topsoil to verify minimum 6 inch thickness.

Golder observed installation and compaction of asphalt for access ramp.

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe shot remaining certification points for topsoil in Pond 2.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

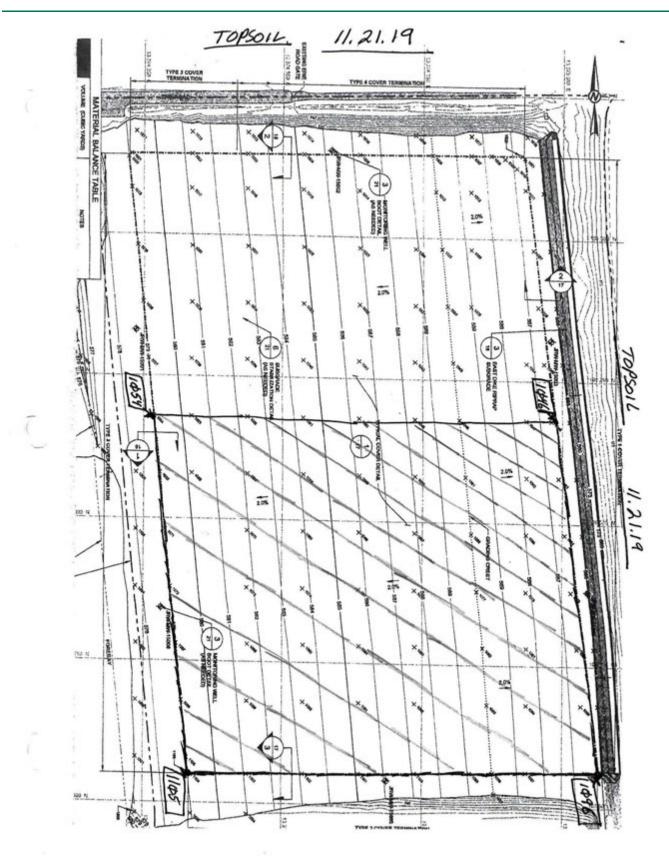
SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paril 94


Import of 23AA for shoulder of asphalt access ramp, looking south

23AA placed along shoulder of asphalt access ramp, looking southeast

Overview of Pond 1's seed/mulch progress, looking south

Area surveyed prior to seeding

PROJECT OVERVIEW

Project Title: J.R. Whiting Ponds 1

and 2 Closure CQA

Project Number: 1788523 **Date:** 11/27/2019

Client: Consumers Energy Site/Location: Erie, MI

GAI Arrival/Departure Time:

Personnel: David Hutchinson 0700/1300

Contractor(s): Contractor(s) Rep:

Ryan Central Inc. John Johnson (Ryan Central)
Rowe Will Smith (Rowe)

SITE CONDITIONS

Weather (AM): Cloudy
Weather (PM): Cloudy
Temperature: 47
Temperature: 53
Precipitation: Rain
Wind: W, 8-22 mph

EQUIPMENT ON SITE

1-Kubota RTV X112OD; 1-Cat D6T Dozer; 1-Cat 299D Skid Steer.

SUMMARY OF CONSTRUCTION

Work performed while Golder was onsite:

Ryan Central -1 Foreman, 1 Operator

- Touch-up of access road.
- General clean-up of pond construction area.

Future Fence

• Continued installing perimeter fence.

GAI CQA ACTIVITIES AND TEST RESULTS

Construction:

- Golder onsite documenting the construction progress.
- Golder observed installation of perimeter fence around Ponds 1 and 2.
- Golder observed Rowe shooting top of monitoring well pipe casings.
- Golder observed Rowe survey of access road and control points along top of rip-rap.

SUMMARY OF SURVEYOR'S ACTIVITIES

Rowe shot top of pipe for monitoring wells, surveyed access road and control points along top of rip-rap.

SUMMARY OF PROBLEMS AND RESOLUTIONS

None

SUMMARY OF MEETINGS/DISCUSSIONS HELD (ATTENDEES AND ISSUES)

None

SUMMARY OF INCIDENTS / ACCIDENTS / HEALTH AND SAFETY ISSUES

None

SUBMITTED BY GOLDER:

CQA Field Manager: David Hutchinson

Signature: Paul Ghan

MW-15002 with protective casing and bollards installed

MW-15003 ground flush in east access road

Overview of perimeter fence along north side of Pond 1

APPENDIX D

Soil Laboratory Testing

12/11/2019

Sample I dentification Sample No.		Sample Depth (ft)	Soil Classi- fication	In-situ Moisture %	Atterberg Limits				Grain Size Distribution		Standard Proctor		Specific			Hydraulic Conductivity	Additional Tests Conducted (See
	Sample Type				LL	PL	PI	LI	% Finer #4 sieve	% Finer #200 sieve	Maximum Dry Density (pcf)	Optimum Moisture %	Gravity	Unit V Dry (pcf)	Veight Moisture %	(cm/sec)	Notes)
AB-1	Bulk	-	GW	3.1	-	-	-	-	47.2	4.1	133.2	8.2	-	-	-	-	
											Modified	Proctor					
CS-1	Bulk	-	SP-SM	8.1	-	-	-	-	100.0	6.4	112.4	8.9	-	-	-	-	
CS-2	Bulk	-	SP-SM	16.2	-	-	-	-	99.9	7.9	-	-	-	-	-	-	
CS-3	Bulk	-	SP-SM	16.5	-	-	-	-	99.8	7.4	-	-	-	-	-	-	
PC-01	Bag	0.5-1.0	CL	11.5	23	13	10	-0.15	97.1	70.8	-	-	-	-	-	-	
PC-02	Bag	0.5-1.0	CL	11.9	23	14	9	-0.24	96.6	70.7	-	-	-	-	-		
PC-03	Bulk	0.5-1.0	CL	9.4	24	14	10	-0.46	95.3	67.8	-	-	-	-	-		
PC-04	Bulk	0.5-1.0	CL	9.1	25	14	11	-0.44	96.9	67.3	-	-	-	-	-		
PC-05	Bulk	0.5-1.0	CL	6.7	26	13	13	-0.48	96.7	73.0	=	-	-	-	-		
PC-06	Bulk	-	CL	8.3	26	13	13	-0.36	98.5	73.7	-	-	-	-	-		
PC-07	Bulk	-	CL	8.5	25	14	11	-0.50	94.5	66.8	=	-	-	-	-		
PC-08	Bulk	-	CL	10.4	24	12	12	-0.13	95.1	68.5	-	-	-	-	-		
PC-09	Bulk	0.5-1.5	CL	10.8	28	16	12	-0.44	98.9	71.5	=	-	-	-	-		
PC-10	Bulk	0.5-1.0	CL	10.1	25	15	10	-0.49	95.1	68.3	=	-	-	-	-		
PC-11	Bulk	0.5-1.0	CL	10.2	26	15	11	-0.43	97.5	69.8	=	-	-	-	-		
PC-12	Bulk	0.5-1.0	CL	18.3	25	12	13	0.48	98.3	70.4	=	-	-	-	-		
PC-13	Bulk	0.5-1.0	CL	11.7	27	13	14	-0.09	97.0	69.1	=	-	-	-	-		
PC-14	Bulk	0.5-1.0	CL	12.0	27	13	14	-0.07	97.8	71.7	=	-	-	-	-		
PC-15	Bulk	0.5-1.0	CL	13.1	25	15	10	-0.19	97.6	71.7	=	-	-	-	-		
PC-16	Bulk	0.5-1.0	CL	13.3	25	15	10	-0.17	98.7	71.2	=	-	-	-	-		
PC-17	Bulk	0.5-1.0	CL	14.1	24	14	10	0.01	98.3	71.4	=	-	-	-	-		
PC-18	Bulk	0.5-1.0	CL	11.6	24	15	9	-0.38	98.4	71.5	=	-	-	-	-		
RB-1	Bulk	-	GW-GM	3.4	-	-	-	-	46.7	5.6	139.0	8.4	-	-	-	-	
RB-2	Bulk	2.0"-6.0"	GW-GM	2.6	-	-	-	-	49.7	8.9	134.4	2.5	-	-	-	-	
SB-01	Bulk	-	SM	7.4	-	-	-	-	100.0	13.4	107.0	12.2	-	-	-	-	
SF-01	Bulk	-	CL	11.5				-0.35		69.2	128.6	8.2	-	-	-	-	
SF-02	Bulk	-	CL-ML	12.4				-0.10		65.4	133.0	8.3	-	-	-	-	
SF-03	Bulk	-	CL	11.1				-0.39	96.2	74.9	128.2	9.8	-	-	-	-	
SF-04	Bulk	-	CL	11.3	24	14	10	-0.27	96.2	67.1	131.9	9.1	-	-	-	-	
VB-1	Bulk	-	SP	2.3	-	-	-	-	57.0	0.4	-	-	-	-	-	-	
6AA-1	Bulk	-	GP	0.4	-	-	-	-	0.6	0.2	-	-	-	-	-	-	
6AA-2	Bulk	-	GP	0.4	-	-	-	-	2.2	0.7	-	-	-	-	-	-	

Geotechnical Laboratory Test Results

APPENDIX D.1

Structural Fill

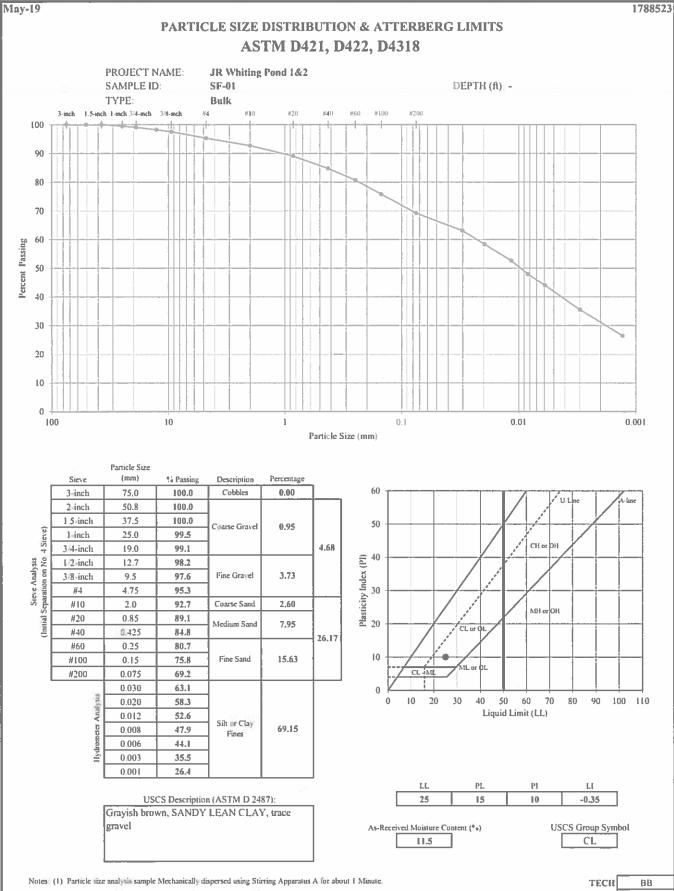
JR Whiting Pond 1 and 2 Geotechnical Laboratory Test Results

Sample I dentification			Soil	In-situ	Atterberg Limits		Grain Size	e Distribution	M odified Proctor		Specific			Hydraulic Conductivity	Additional Tests Conducted (See		
	Sample	Sample	Classi-	Moisture %				% Finer #4	% Finer #200	M aximum	Optimum	Gravity	Unit Weight		(cm/sec)	Notes)	
Sample No.	Type	Depth (ft)	fication		LL	PL	PI	LI	sieve	sieve	Dry Density (pcf)	Moisture %		Dry (pcf)	Moisture %	(0 0.0)	
SF-01	Bulk	-	CL	11.5	25	15	10	-0.35	95.3	69.2	128.6	8.2	-	-	-	-	
SF-02	Bulk	-	CL-ML	12.4	19	13	6	-0.10	93.9	65.4	133.0	8.3	-			-	
SF-03	Bulk	-	CL	11.1	25	15	10	-0.39	96.2	74.9	128.2	9.8	-	-	-	-	
SF-04	Bulk	-	CL	11.3	24	14	10	-0.27	96.2	67.1	131.9	9.1	-	•		•	

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST


U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

P = pH

NP = NON-PLASTIC
*Classified Visually

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH BB
DATE 5/30/2019
CHECK P

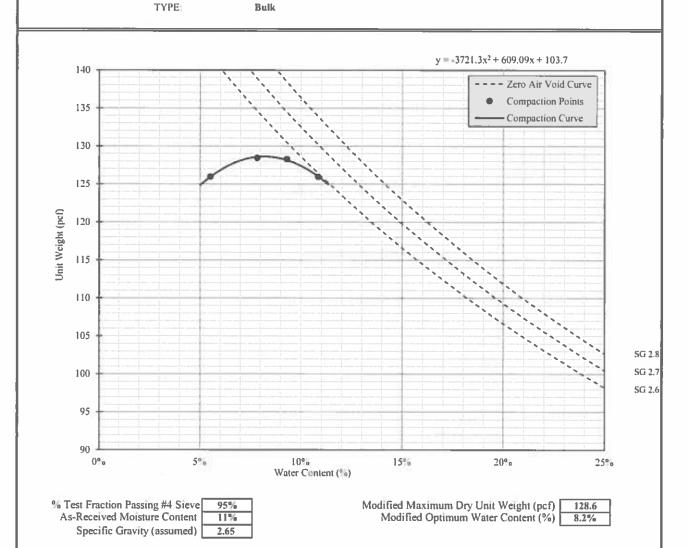
May-19

1788523

LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method A

Mechanical Rammer | Moist Preparation

PROJECT NAME

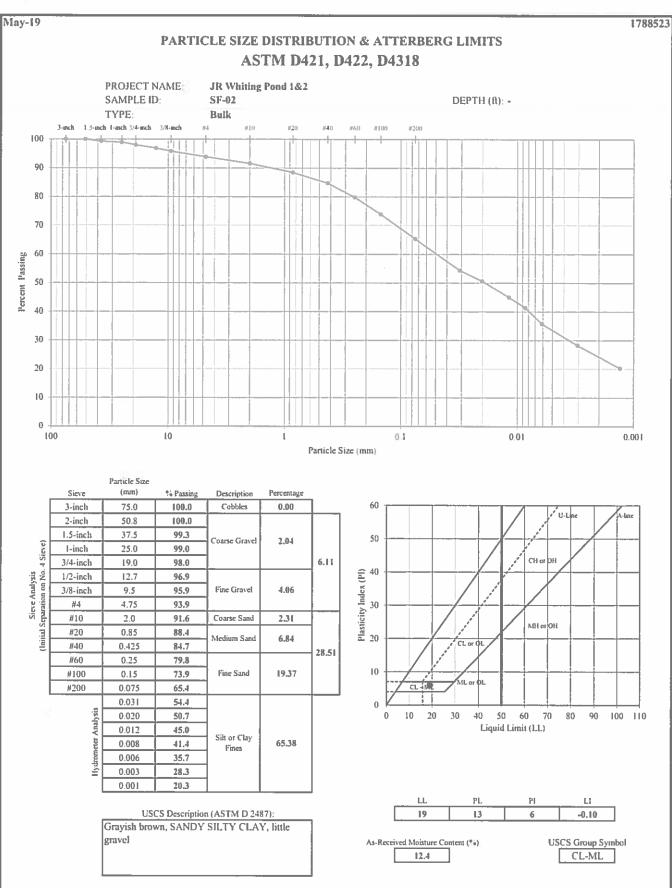

JR Whiting Pond 1&2

SAMPLE ID:

SF-01

Bulk

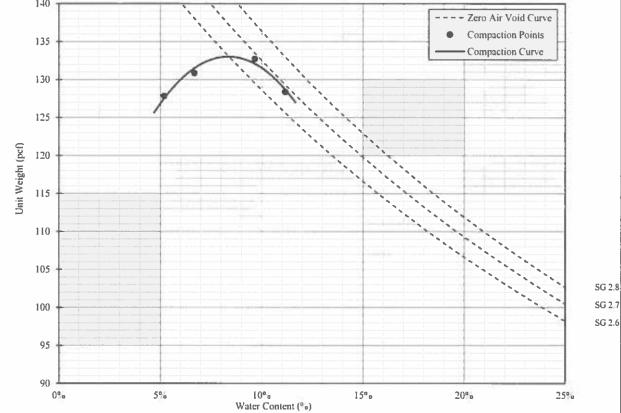
DEPTH (ft): -


USCS Description (ASTM D 2487): Grayish brown, SANDY LEAN CLAY, trace gravel

CL

TECH DATE CHECK REVIEW

BB 5/31/2019

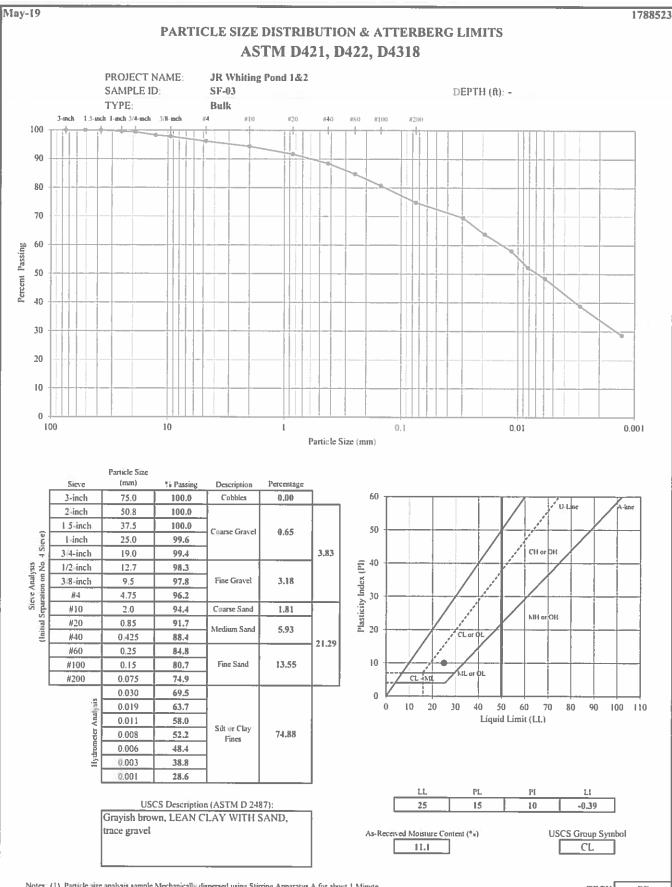


(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH BB
DATE 5/30/2019
CHECK
REVIEW

% Test Fraction Passing #4 Sieve 94%
As-Received Moisture Content 12%
Specific Gravity (assumed) 2.65

Modified Maximum Dry Unit Weight (pcf) [
Modified Optimum Water Content (%)


133.0 8.3%

USCS Description (ASTM D 2487): Grayish brown, SANDY SILTY CLAY, little gravel

USCS CL-ML

TECH BB
DATE 5/31/2019
CHECK PS
REVIEW

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

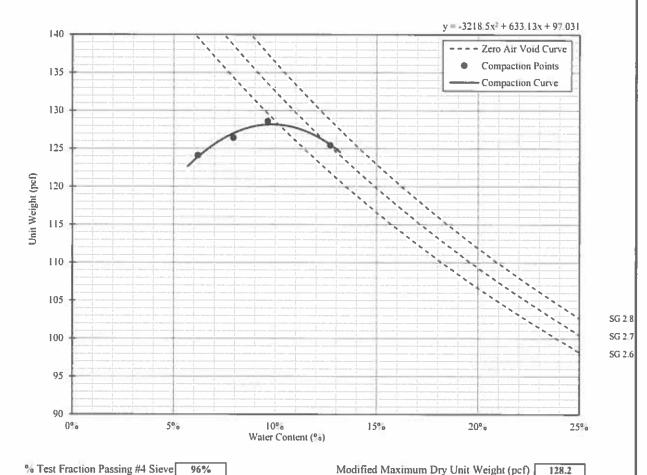
TECH BB DATE 5/30/2019 及人 CHECK REVIEW

May-19

1788523

LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method A

Mechanical Rammer | Moist Preparation


PROJECT NAME

JR Whiting Pond 1&2

SAMPLE ID: TYPE:

SF-03 Bulk

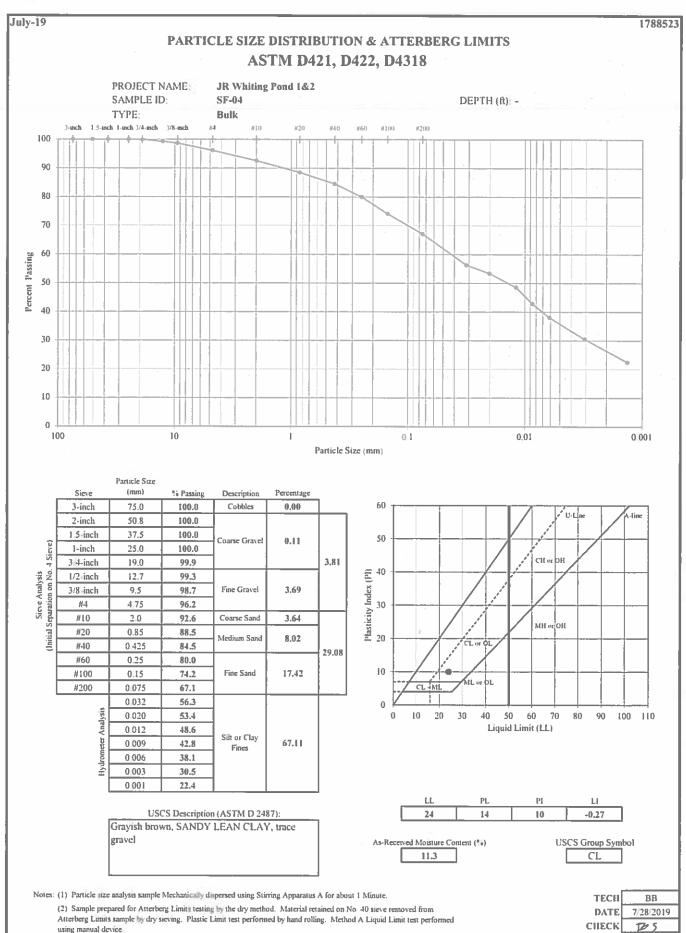
DEPTH (ft): -

As-Received Moisture Content Specific Gravity (assumed) 2.65 Modified Maximum Dry Unit Weight (pcf) Modified Optimum Water Content (%)

128.2

USCS Description (ASTM D 2487): Grayish brown, LEAN CLAY WITH SAND, trace gravel

USCS


CL

TECH DATE CHECK REVIEW

BB 5/31/2019

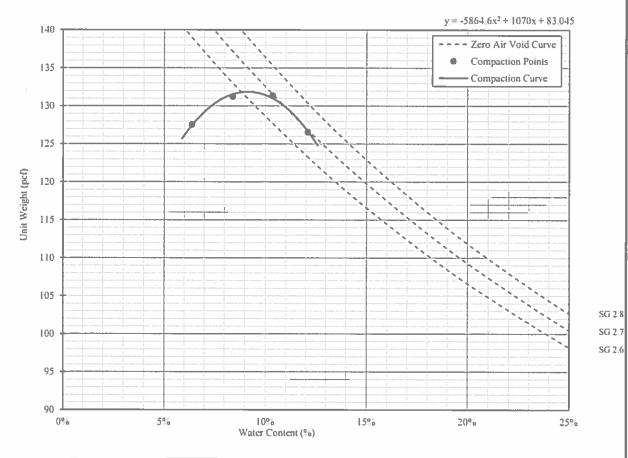
using manual device

REVIEW 784/2

July-19

1788523

LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method A


Mechanical Rammer | Moist Preparation

PROJECT NAME:

JR Whiting Pond 1&2

SAMPLE ID

SF-04 Bulk DEPTH (A) -

% Test Fraction Passing #4 Sieve 96%
As-Received Moisture Content 11%
Specific Gravity (assumed) 2.65

Modified Maximum Dry Unit Weight (pcf) Modified Optimum Water Content (%)

9.1%

USCS Description (ASTM D 2487): Grayish brown, SANDY LEAN CLAY, trace gravel

TECH BB

DATE 7/29/2019
CHECK P

USCS

APPENDIX D.2

Protective Cover Material

822 Schuster Ave Kalamazoo, MI. 49001 269-321-3800

5.10.2019

The following letter serves to communicate at this time that the 100% Natural bank material designated as **Clay Overburden** out of the following location is a naturally occurring, non-processed, non-synthetic material.

Dundee-Holcim Limestone Quarry (MDOT Pit #58-006) Aggregate Industries 15215 Day Rd Dundee, MI 48131 734*529*5876

To the knowledge of Aggregate Industries this material is virgin, clean, free of external contamination and mirrors all similar naturally occurring clay material in the surrounding region.

Sincerely,

John Crawley

Technical Services Manager

Pond 1 and 2 Geotechnical Laboratory Test Results

Sample I dentification			Soil	In-situ	At	tterbe	erg L	imits	Grain Siz	e Distribution	M odi Proc		Specific			Hydraulic Conductivity	Additional Tests Conducted (See
	Sample	Sample	Classi-	Moisture %					% Finer #4	% Finer #200	M aximum	Optimum	Gravity	Unit W	eight eight	(cm/sec)	Notes)
Sample No.	Type	Depth (ft)	fication		LL	PL	PI	LI	sieve	sieve	Dry Density (pcf)	Moisture %		Dry (pcf)	Moisture %	(0 0.0)	110.009
PC-01	Bag	0.5-1.0	CL	11.5	23	13	10	-0.15	97.1	70.8	-	-	-	-	-	-	
PC-02	Bag	0.5-1.0	CL	11.9	23	14	9	-0.24	96.6	70.7	-	-		-	-		
PC-03	Bulk	0.5-1.0	CL	9.4	24	14	10	-0.46	95.3	67.8	•	-	-	-	-		
PC-04	Bulk	0.5-1.0	CL	9.1	25	14	11	-0.44	96.9	67.3	•	-	-	-	-		
PC-05	Bulk	0.5-1.0	CL	6.7	26	13	13	-0.48	96.7	73.0	-	-		-	-		
PC-06	Bulk		CL	8.3	26	13	13	-0.36	98.5	73.7	-	-	-	-	-		
PC-07	Bulk	-	CL	8.5	25	14	11	-0.50	94.5	66.8	•	-	-	-	-		
PC-08	Bulk		CL	10.4	24	12	12	-0.13	95.1	68.5	•	-	-	-	-		
PC-09	Bulk	0.5-1.5	CL	10.8	28	16	12	-0.44	98.9	71.5	-	-	-	-	-		
PC-10	Bulk	0.5-1.0	CL	10.1	25	15	10	-0.49	95.1	68.3	-	-	-	-	-		
PC-11	Bulk	0.5-1.0	CL	10.2	26	15	11	-0.43	97.5	69.8	-	-	-	-	-		
PC-12	Bulk	0.5-1.0	CL	18.3	25	12	13	0.48	98.3	70.4	-	-	-	-	-		
PC-13	Bulk	0.5-1.0	CL	11.7	27	13	14	-0.09	97.0	69.1	-	-	-	-	-		
PC-14	Bulk	0.5-1.0	CL	12.0	27	13	14	-0.07	97.8	71.7	-	-	-	-	-		
PC-15	Bulk	0.5-1.0	CL	13.1	25	15	10	-0.19	97.6	71.7	-	-	-	-	-		
PC-16	Bulk	0.5-1.0	CL	13.3	25	15	10	-0.17	98.7	71.2	-	-	-	-	-		
PC-17	Bulk	0.5-1.0	CL	14.1	24	14	10	0.01	98.3	71.4	-	-	-	-	-		
PC-18	Bulk	0.5-1.0	CL	11.6	24	15	9	-0.38	98.4	71.5		-	-	-	-		

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

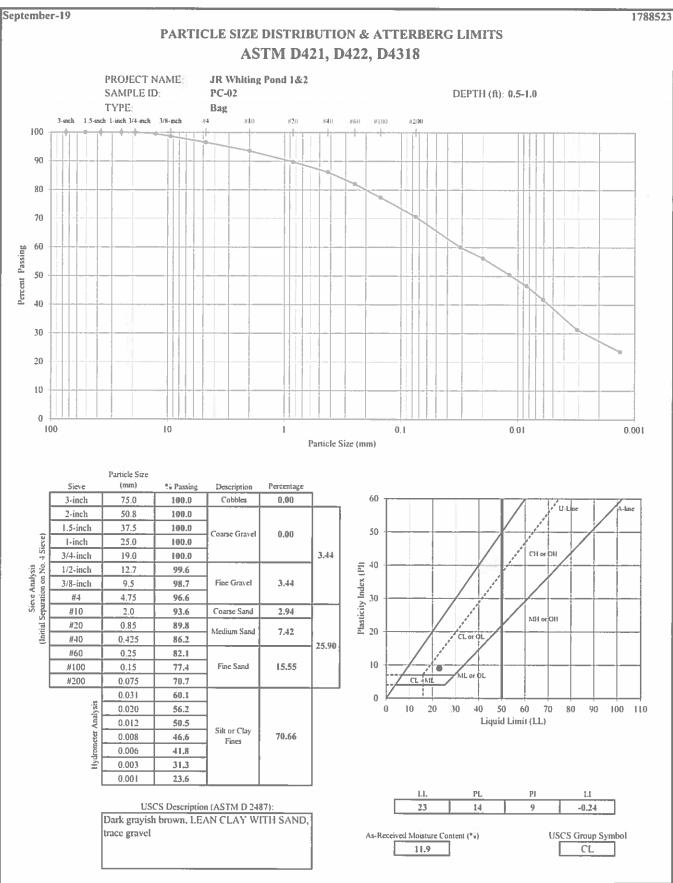
NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST
DS = DIRECT SHEAR TEST
O = ORGANIC CONTENT

P = pH

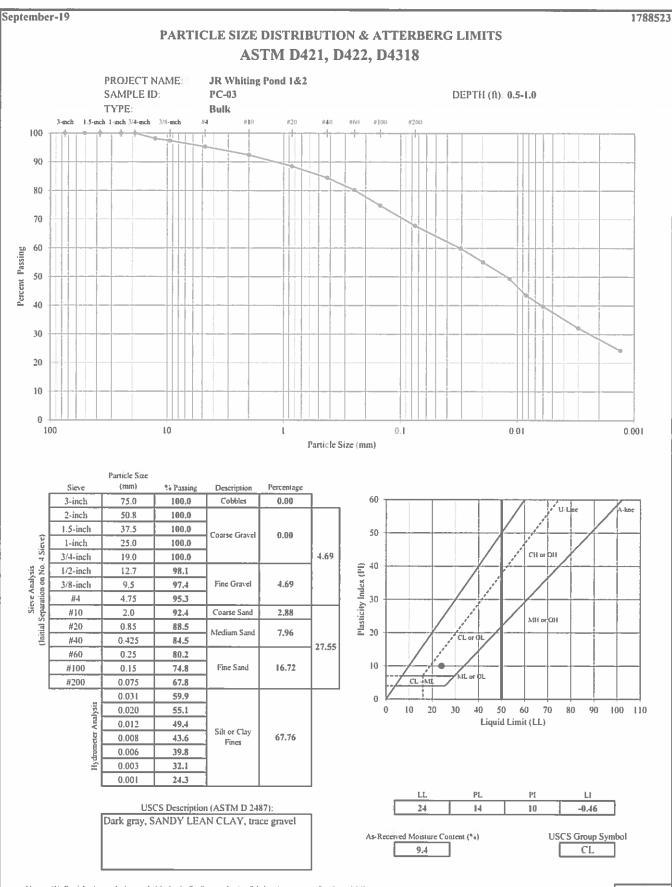
NP = NON-PLASTIC
*Classified Visually


September-19 1788523 PARTICLE SIZE DISTRIBUTION & ATTERBERG LIMITS ASTM D421, D422, D4318 PROJECT NAME JR Whiting Pond 1&2 SAMPLE ID: PC-01 DEPTH (ft): 0.5-1.0 TYPE: Bag 1.5-inch 1-inch 3/4-inch #40 #20 #100 #60 #200 100 90 80 70 60 Percent Passing 40 30 20 10 0 100 10 0.01 0.001 Particle Size (mm) Particle Size (mm) % Passing Description Percentage 100.0 Cobbles 0.00 60 U Las 2-inch 100.0 1.5-inch 100.0 50 Coarse Gravel 0.00 I-inch 100.0 CH or DH 3/4-inch 2.90 19.0 100.0 Plasticity Index (PI) 30 50 Sieve Analysis (Initial Separation on No. 1/2-inch 100.0 3/8-inch Fine Gravel 98.9 2.90 4.75 97.1 #10 2.0 94.3 Coarse Sand 2.77 HO to HIM #20 0.85 90.6 Medium Sand 7.35 #40 0.425 87.0 26.30 #60 0.25 82.7 #100 0.15 77.7 Fine Sand 16.19 10 #200 0.075 70.8 CL -ML 0.031 61.2 0 Hydrometer Analysis 0.020 55.5 20 30 40 50 60 100 110 90 0.012 Liquid Limit (LL) 48.9 Silt or Clay 0.008 45.1 70.79 Fines 0.006 41.3 0.003 31.9 23.3 11. PL Ρŧ LI USCS Description (ASTM D 2487): 23 13 10 -0.15 Dark grayish brown, LEAN CLAY WITH SAND, trace gravel USCS Group Symbol As-Received Moisture Content (%) 11.5 CL

Notes: (1) Particle size analysis sample Mechanically dispersed using Stirring Apparatus A for about 1 Minute.

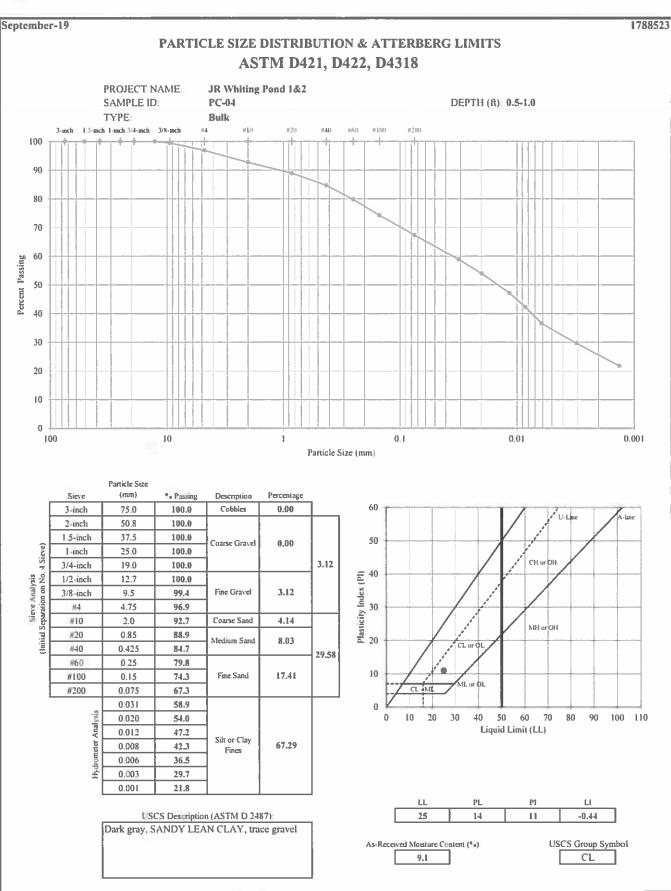
(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS DATE 9/8/2019 CHECK BAB REVIEW



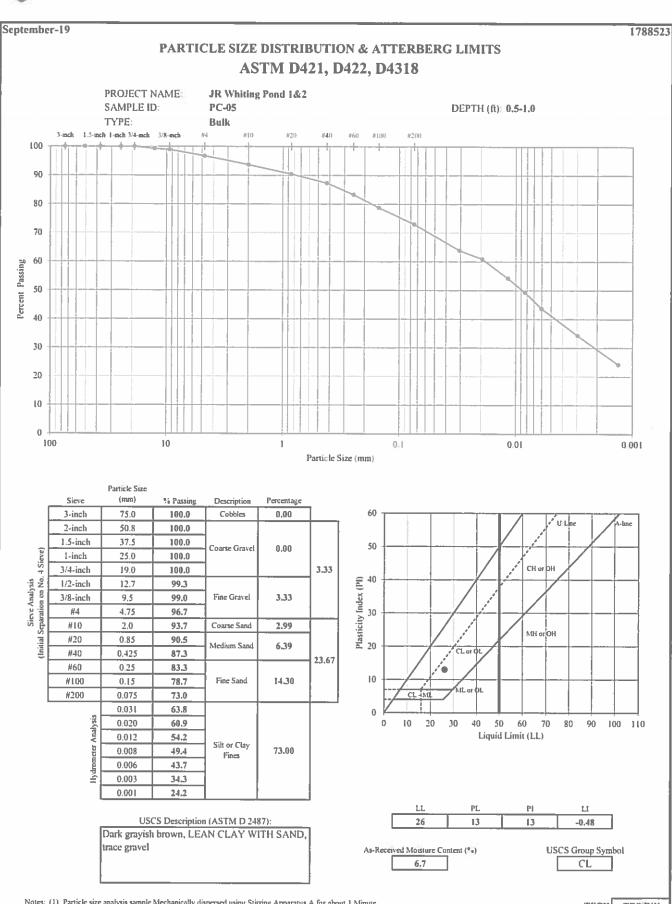
(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECII TDS
DATE 9/8/2019
CHECK (3/40)
REVIEW



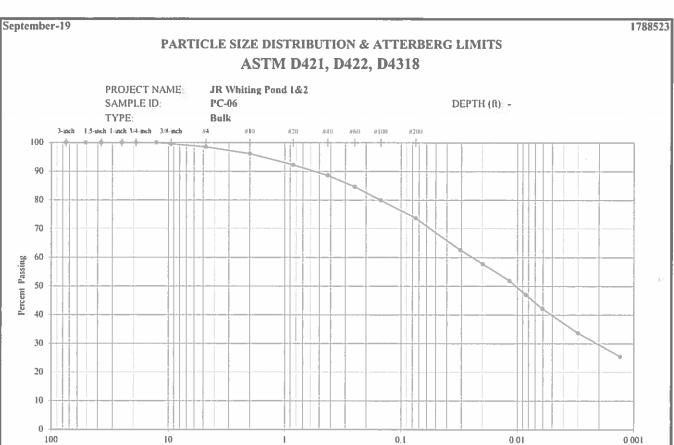
(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/DW
DATE 9/13/2019
CHECK AB
REVIEW DM

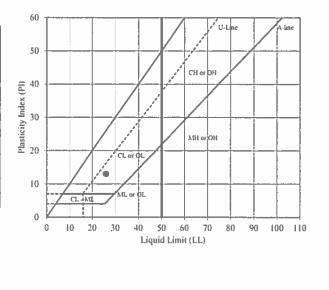


(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/DW
DATE 9/13/2019
CHECK AB
REVIEW



(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.


TECH TDS DW 9/24/2019 DATE CHECK REVIEW

Particle Size (mm)

		Particle Size				
	Sieve	(mm)	% Passing	Description	Percentage	_
	3-inch	75.0	100,0	Cobbles	0.00	<u> </u>
2-inch	50.8	100.0				
	1.5-inch	37.5	100.0	Coarse Gravel	0.00	
Sieve)	1-inch	25.0	100,0	Compc Grance	v.vv	ľ
7	3/4-inch	19.0	100.0			1.50
Si Si	1/2-inch	12.7	100,0]
Sieve Analysis paration on No	3/8-inch	9.5	99.5	Fine Gravel	1.50	
atio	#4	4.75	98.5			
S E	#10	2.0	96.2	Coarse Sand	2.34	
Sieve Analysis (Initial Separation on No.	#20	0.85	92.3	Medium Sand	7.54	
Ē	#40	0.425	88.6	Medium Sand	1,54	24.78
	#60	0.25	84.7			24.70
	#100	0.15	79.9	Fine Sand	14.90	
	#200	0.075	73.7			
		0.031	62.7			
	Analysis	0.020	57.8]		
	Ana	0.012	51.9]		
	Hydrometer	0.008	47.0	Silt or Clay Fines	73.73	
	Lom	0,006	42.2			
	H _y	0.003	33.7]		
		0,001	25.5			
						-

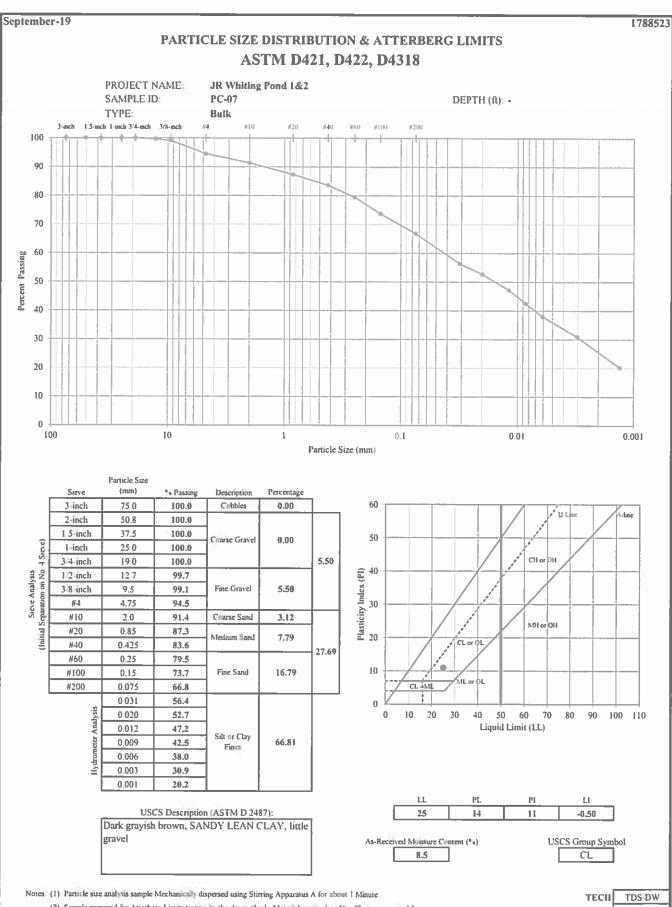
USCS Description (ASTM D 2487):

Dark grayish brown, LEAN CLAY WITH SAND, trace gravel

 LL
 Pt.
 Pt.
 LI

 26
 13
 13
 -0.36

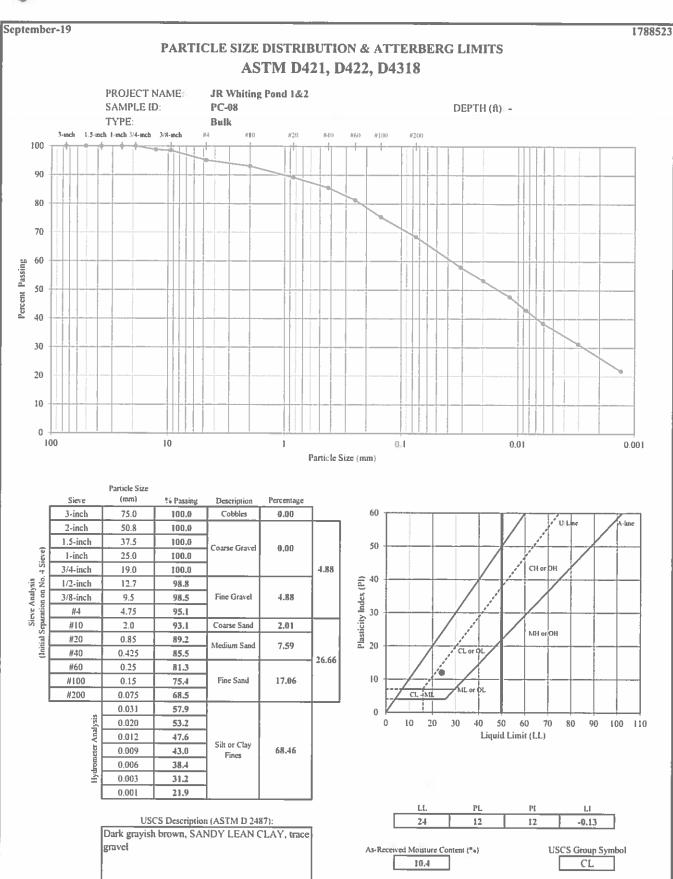
As-Received Moisture Content (*•)
8.3


USCS Group Symbol

Notes: (1) Particle size analysis sample Mechanically dispersed using Stirring Apparatus A for about 1 Minute.

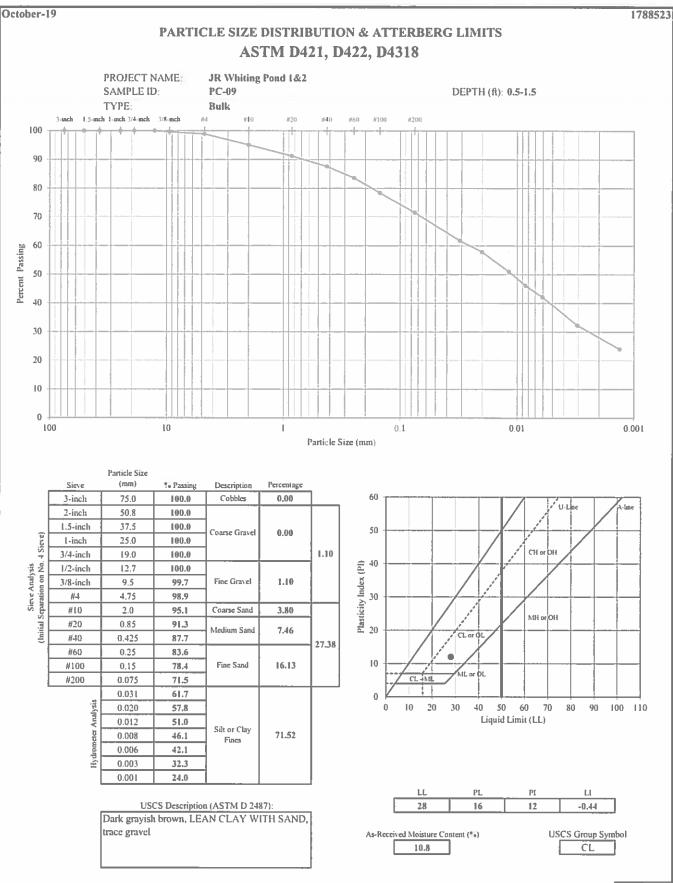
(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/DW
DATE 9/24/2019
CHECK ASS
REVIEW



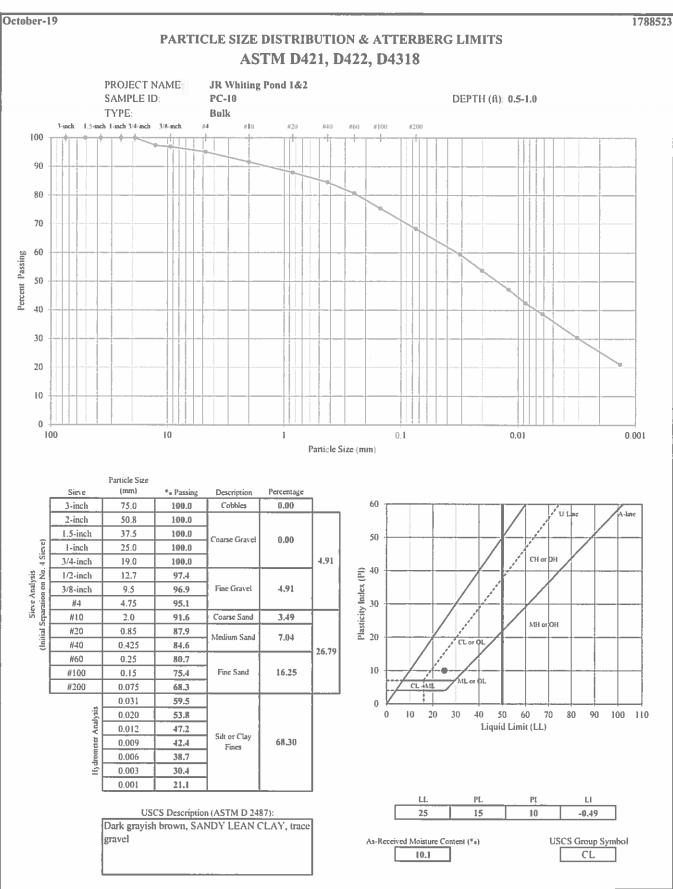
(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/DW DATE 9/27/2019 CHECK AS REVIEW

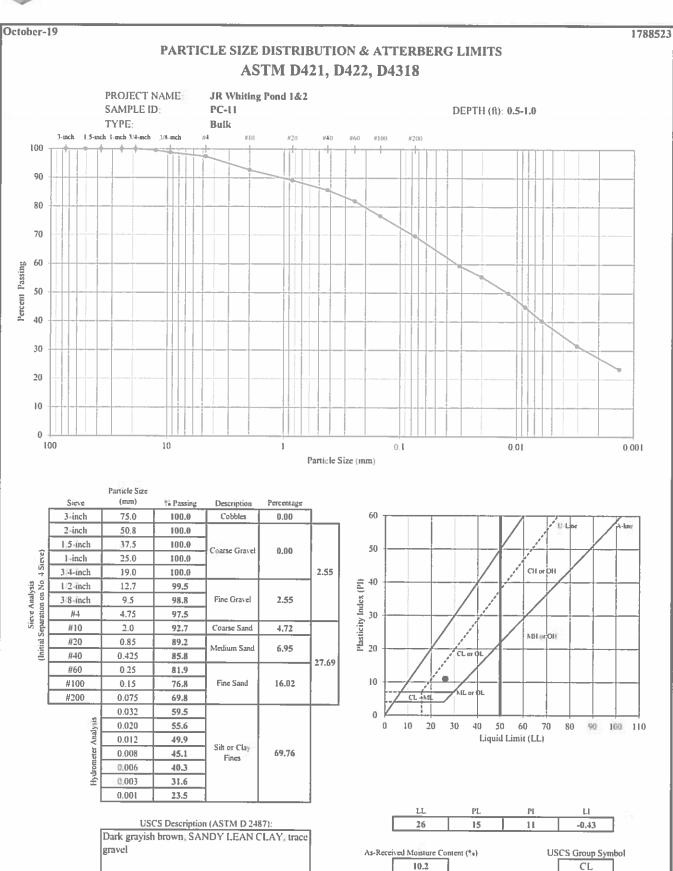


(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

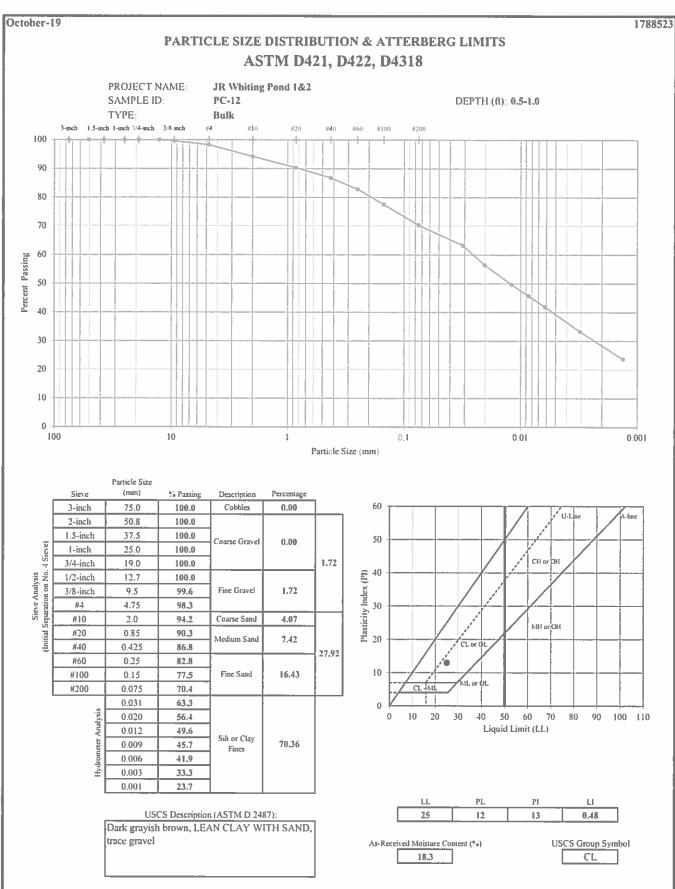
TECH TDS/DW
DATE 9/27/2019
CHECK REVIEW



(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.


TECH TDS/DW
DATE 10/11/2019
CHECK TATALOR
REVIEW

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.



(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/DW
DATE 10/11/2019
CHECK TREVIEW

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

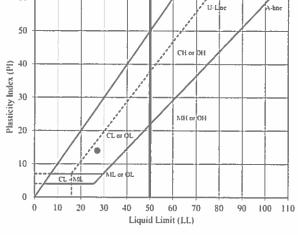
TECH TDS/DW
DATE 10/11/2019
CHECK REVIEW

GOLDER October-19 1788523 PARTICLE SIZE DISTRIBUTION & ATTERBERG LIMITS ASTM D421, D422, D4318 PROJECT NAME: JR Whiting Pond 1&2 SAMPLE ID: PC-13 DEPTH (ft): 0.5-1.0 TYPE: Bulk 3-inch 1.5-inch 1-inch 3/4-mch 3/8-inch arro #4n #100 100 90 80 70 60 Percent Passing 50 40 30 20 10 0 100 10 1 0.1 0.01 0.001 Particle Size (mm) Particle Size (mm) Percentage Sieve % Passing Description 60 Cobbles 0.00 3-inch 75.0 100.0 ULbe 100.0 2-inch 50.8 1.5-inch 37.5 100.0 50 Coarse Gravel 0.00 1-inch 25.0 100.0 3.04 CH or DH 3/4-inch 19.0 100.0 Plasticity Index (PI) 00 04 00 Sieve Analysis (Initial Separation on No. 4 1/2-inch 12.7 98.0 3/8-inch 9.5 97.7 Fine Gravel 3.04 #4 4.75 97.0 #10 2.0 89.7 Coarse Sand 7.24 MH or OH #20 0.85 86.1 Medium Sand 6.88 CL or OI #40 0.425 82.8 27.83 #60 0.25 79.3 10 Fine Sand #100 0.15 74.9 13.71 NIL or OL #200 0.075 69.1 0.031 61.6 0 0.020 54.8 20 30 40 50 60 100 110 Liquid Limit (LL) 0.012 49.1 Silt or Clay 0.009 69.13 44.3

USCS Description (ASTM D 2487)

41.4

32.7


23.6

0.006

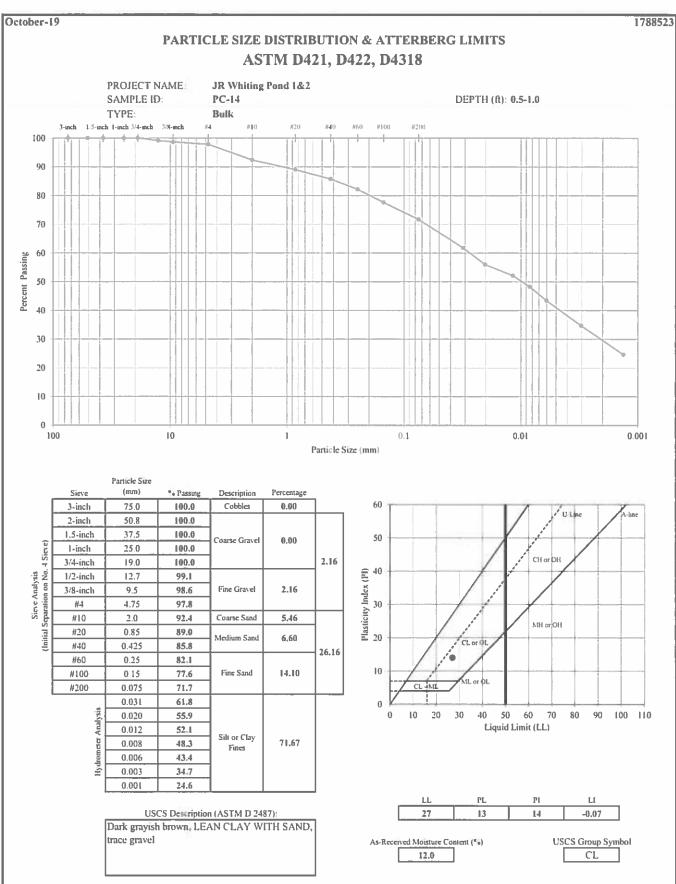
0.003

100.0

Dark grayish brown, SANDY LEAN CLAY, trace gravel

PL ы

As-Received Moisture Content (%) 11.7


USCS Group Symbol CL

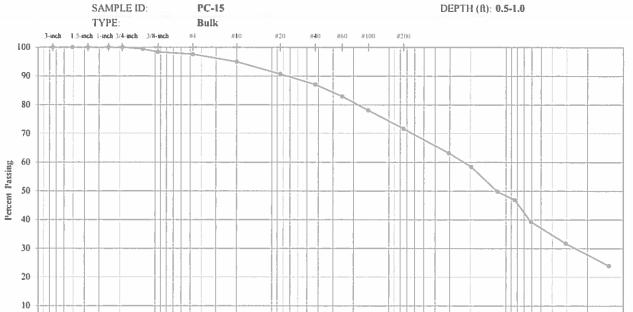
Notes: (1) Particle size analysis sample Mechanically dispersed using Stirring Apparatus A for about 1 Minute

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TDS/DW TECII DATE 10/11/2019 снеск /// REVIEW

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/DW
DATE 10/11/2019
CHECK REVIEW

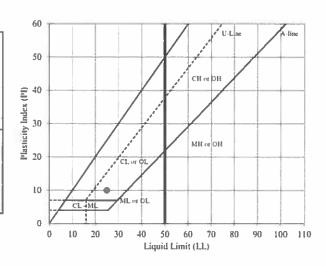

ASTM D421, D422, D4318

JR Whiting Pond 1&2

1788523

0.001

Particle Size (mm)


0.1

Pari	ticle	Size	

10

100

	Sieve	(mm)	% Passing	Description	Percentage	
	3-inch	75.0	100.0	Cobbles	0.00	
	2-inch	50.8	100.0			
	1.5∙inch	37.5	100.0	Coarse Gravel	0.00	
Sieve)	I-inch	25.0	100.0	Coarse Graver	0.00	
7	3/4-inch	19.0	100.0	L.		2.39
Sieve Analysis (Initial Separation on No.	1/2-inch	12.7	99.4			
Sieve Analysis paration on No	3/8-inch	9.5	98.4	Fine Gravel	2.39	
ratio	#4	4.75	97.6			
Si Si	#10	2.0	95.0	Coarse Sand	2.64	
lei.	#20	0.85	90.7	Medium Sand	7.92	
Ē	#40	0.425	87.1	Wicoun Said	1176	25.92
	#60	0.25	82.9			23.72
	#100	0.15	78.1	Fine Sand	15.36	
	#200	0.075	71.7			
		0.031	63.2			
	Analysis	0.020	58.4			
		0.012	49.8	C'h CI		
	0.008	46.9	Silt or Clay Fines	71.69		
	Hydrometer	0.006	39.3			
	Hy	0.003	31.8			
		0.001	24.0			
						,

0.01

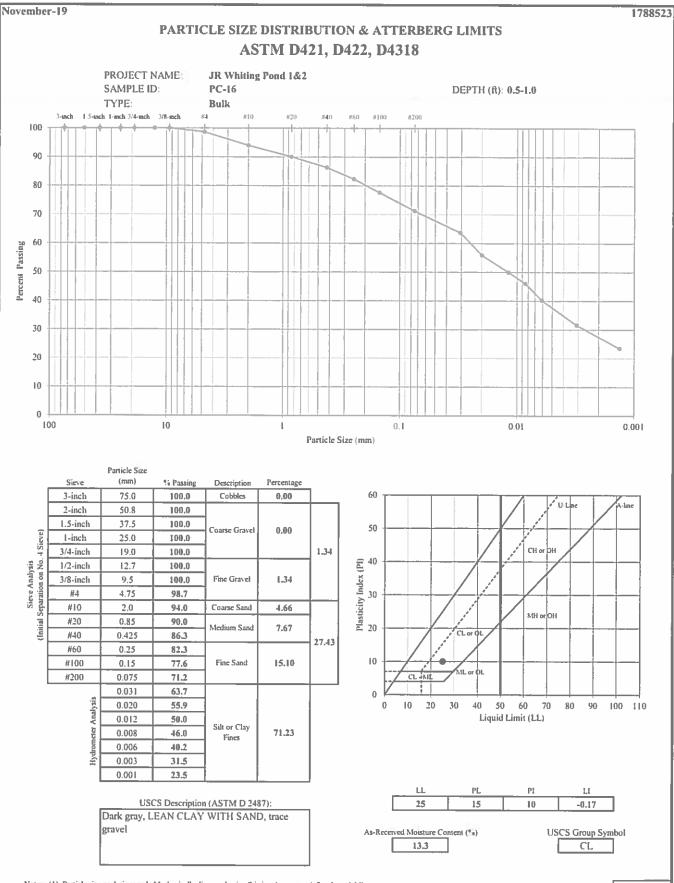
USCS Description (ASTM D 2487):

Dark gray, LEAN CLAY WITH SAND, trace gravel

PL Pl 25 15 10 -0.19

As-Received Moisture Content (%)

13.1


USCS Group Symbol CL

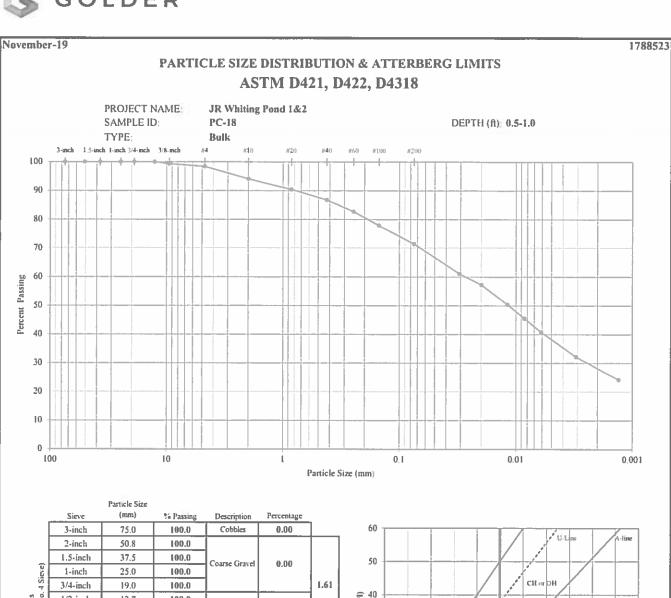
Notes: (1) Particle size analysis sample Mechanically dispersed using Stirring Apparatus A for about 1 Minute

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

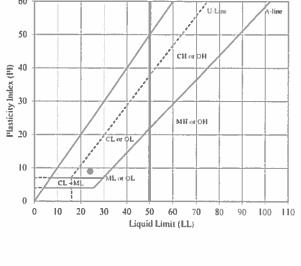
TECH TDS/ACB DATE 10/31/2019 CITECK REVIEW

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TECH TDS/ACB
DATE 10/31/2019
CHECK PREVIEW



November-19 1788523 PARTICLE SIZE DISTRIBUTION & ATTERBERG LIMITS ASTM D421, D422, D4318 PROJECT NAME: JR Whiting Pond 1&2 SAMPLE ID: PC-17 DEPTH (ft): 0.5-1.0 TYPE: Bulk 3-inch 1.5-inch 1-inch 3/4-inch 3/8-inch #60 #100 #200 100 90 80 70 60 Percent Passing 50 40 30 20 10 0 10 100 1 0.01 0.001 Particle Size (mm) Particle Size Sieve (mm) % Passing Percentage Description 3-inch 75.0 100.0 Cobbles 0.00 60 U-Line 2-inch 50.8 100,0 37.5 1.5-inch 100.0 50 Coarse Gravel 0.00 L-inch 25.0 100.0 3/4-inch 19.0 100.0 1.68 CHOLDH. Sieve Analysis Il Separation on No. 4 (ld) 40 30 1/2-inch 12.7 99,4 Fine Gravel 3/8-inch 9.5 98.9 1.68 4.75 #4 98.3 30 Plasticity I #10 2.0 94.2 Coarse Sand 4.13 MH w OH (Initial) #20 0.85 90.3 Medium Sand 7.61 #40 0.425 86.6 26.94 #60 0.25 82,3 Fine Sand 10 #100 0.15 77.6 15.20 #200 0.075 71.4 CL 4MI 0.031 61.1 0 Analysis 0.020 57.2 20 30 50 40 60 70 80 90 100 110 0.012 50.5 Liquid Limit (LL) Silt or Clay 0.008 45.6 Fines 0.006 41.7 0.003 31.2 0.001 22.3 LL PL ΡI LI USCS Description (ASTM D 2487): 24 10 0.01 Dark gray, LEAN CLAY WITH SAND, trace gravel LISCS Group Symbol As-Received Moisture Content (%) 14.1 CL Notes: (1) Particle size analysis sample Mechanically dispersed using Stirring Apparatus A for about 1 Minute.


(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

TDS/ACB TECH DATE 10/31/2019 CHECK REVIEW

	Sieve	(mm)	% Passing	Description	Percentage	
	3-inch	75.0	100.0	Cobbles	0.00	
	2-inch	50.8	0.001			
_	1.5-inch	37.5	100,0	Coarse Gravel	0.00	
4 Sieve)	1-inch	25.0	0.001	Coarse Graver	0.00	
	3/4-inch	19,0	100.0			1.61
St O	1/2-inch	12.7	100.0			1
(fem)	3/8-inch	9.5	99,3	Fine Gravel	1.61	l
Sieve Analysis paralion on No	#4	4.75	98.4			
Sieve Analysts (Initial Separation on No.	#10	2.0	94.1	Coarse Sand	4.32	
ia S	#20	0.85	90.4	Medium Sand	7,28	1
Ē	#40	0.425	86.8	Medium Sand	1.40	26.92
	#60	0.25	82.7		15.32	
	#100	0.15	77.9	Fine Sand		
	#200	0.075	71.5	l		
		0.031	61.1			
	lysis	0.020	57.2]		
	Ana	0.012	50.5	en illier		
	g	0.008	45.5	Silt or Clay Fines	71.47	
	Hydrometer Analysis	0.006	40.8			
	Hyd	0.003	32.2]		
		0.001	24.2			
						-

USCS Description (ASTM D 2487):

Dark gray, LEAN CLAY WITH SAND, trace gravel

 LL
 PL
 PI
 LI

 24
 15
 9
 -0.38

As-Received Moisture Content (%)

USCS Group Symbol

Notes: (1) Particle size analysis sample Mechanically dispersed using Stirring Apparatus A for about 1 Minute

(2) Sample prepared for Atterberg Limits testing by the dry method. Material retained on No. 40 sieve removed from Atterberg Limits sample by dry sieving. Plastic Limit test performed by hand rolling. Method A Liquid Limit test performed using manual device.

DATE I

REVIEW

TDS/ACB
1931/2019

APPENDIX D.3

Culvert Sand

Pond 1 and 2 Geotechnical Laboratory Test Results

Sample I dentification			Soil	In-situ	At	terbe	rg Lir	nits	Grain Size	e Distribution	M odi Proc		Specific			Hydraulic Conductivity	Additional Tests Conducted (See
	Sample	Sample	Classi-	Moisture %					% Finer #4	% Finer #200	M aximum	Optimum	Gravity	Unit W	/eight	(cm/sec)	Notes)
Sample No.	Type	Depth (ft)	fication		LL	PL	PI	LI	sieve	sieve	Dry Density (pcf)	Moisture %		Dry (pcf)	Moisture %	(0	110.009
CS-1	Bulk	-	SP-SM	8.1	-	-	-	-	100.0	6.4	112.4	8.9	-	-	-	-	
CS-2	Bulk	-	SP-SM	16.2	-	-	-		99.9	7.9	•	-	-	-	-	-	
CS-3	Bulk	-	SP-SM	16.5	-	-	-		99.8	7.4	-	-	-	-	-	-	

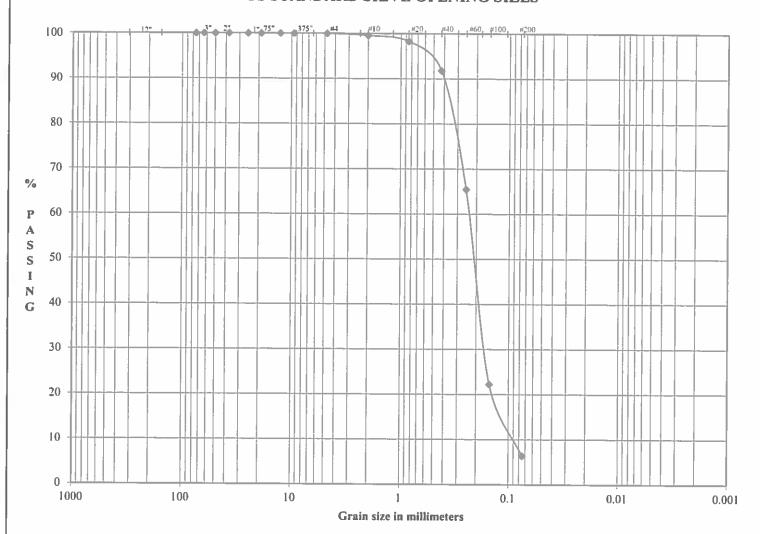
ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)

MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST


C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

P = pH

NP = NON-PLASTIC
*Classified Visually

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 PROJECT TITLE JR Whiting Ponds 1 & 2 SAMPLE ID CS-1 PROJECT NO. 1788523 SAMPLE TYPE Bulk REMARKS Class IIA & Class IIIA SAMPLE DEPTH (ft) Hygroscopic Moisture For Sieve Sample WATER CONTENT (Delivered Moisture) 1.00 Wet Soil & Tare (gm) Wt Wet Soil & Tare (gm) 171.59 (w1) Dry Soil & Tare (gm) 1.00 Wt Dry Soil & Tare (gm) 162.57 (w2)Tare Weight (gm) 0.00 Weight of Tare (gm) 51.26 (w3) Moisture Content (%) 0.00% Weight of Water (gm) (w4=w1-w2)9.02 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Dry Soil (gm) (w5=w2-w3)111.31 Weight Of Sample (gm) 1129:04 Moisture Content (%) (w4/w5)*100 8.10 Tare Weight (gm) 369.75 (W6) Total Dry Weight (gm) 759.29 SIEVE ANALYSIS Cum. Ret. Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE 369.75 +Tare (dry) {(wt ret/w6)*100} (100-%ret) 3.0" 369.75 0.00 0.00 100.00 3.0" coarse gravel 2.5" 369.75 0.00 0.00 100.00 2.5" coarse gravel 369.75 0.00 2.0ⁿ 0.00 100.00 2.0" coarse gravel 1.5" 369.75 0.00 0.00 100.00 1.5" coarse gravel 1.0" 369.75 0.00 0.00 100.00 1.0" coarse gravel 0,75" 369.75 0.00 0.00 100.00 0.75" fine gravel 0.00 0.50" 369.75 0.00 00.001 0.50" fine gravel 0.375" 369.75 0.00 0.00 100.00 0.375" fine gravel 369.93 0.18 0.02 99.98 #4 #4 coarse sand #10 373.20 3.45 0.45 99.55 #10 medium sand #20 382.68 12.93 1.70 98.30 #20 medium sand #40 432.25 62.50 8.23 91.77 #40 fine sand #60 631.94 262.19 34.53 65.47 #60 fine sand #100 960.17 590.42 77.76 22.24 #100 fine sand #200 1080.50 710.75 93.61 6.39 #200 fines % C GRAVEL 0.00 **Descriptive Terms** > 10% mostly coarse (c) % F GRAVEL 0.02 trace 0 to 5% > 10% mostly medium (m) LL % C SAND 0.43 little 5 to 12% < 10% fine (c-m) PL % M SAND 7.78 12 to 30% < 10% coarse (m-f) some Ρī % F SAND 85.38 30 to 50% < 10% coarse and fine (m) and Gs % FINES 6.39 < 10% coarse and medium (f) % TOTAL 100.00 > 10% equal amounts each (c-f) Brown, POORLY GRADED SAND WITH SILT, trace VISUAL DESCRIPTION gravel USCS SP-SM **TECH** BB 6/17/2019 DATE **CHECK** * material finer than #4 sieve corrected for hygroscopic moisture. REVIEW

PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 US STANDARD SIEVE OPENING SIZES

		Coarse	Fine	Cor	Med	Fine	SILT OR CLAY
Boulders	Cobbles	GRAVEL			SAI	ND G	FINES
	0.00	0.00	0.02	0.43	7.78	85.38	6.39
		0.02		93,58			

SAMPLE ID	CS-1
SAMPLE TYPE	Bulk
SAMPLE DEPTH (ft)	

LL	-	
PL	-	_
PI	-	

VISUAL DESCRIPTION	Brown, POORI	LY GRADED SAND	WITH SILT, trace gra	vel
USCS	SP-SM			

TECH BB
DATE 6/17/2019
CHECK PS
REVIEW

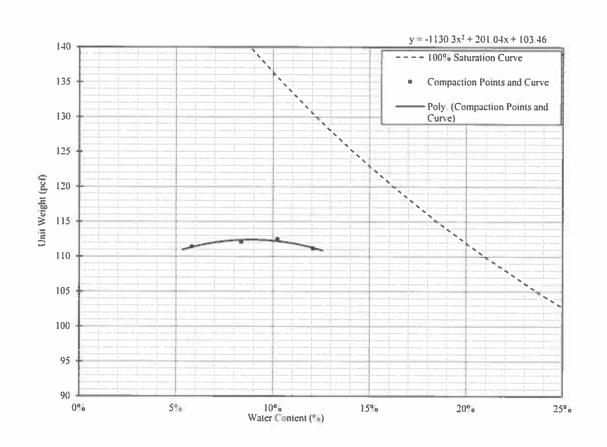
1788523

LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method A

Mechanical Rammer | Moist Preparation

PROJECT NAME

JR Whiting Ponds 1 & 2


SAMPLE ID:

CS-1

DEPTH (ft): -

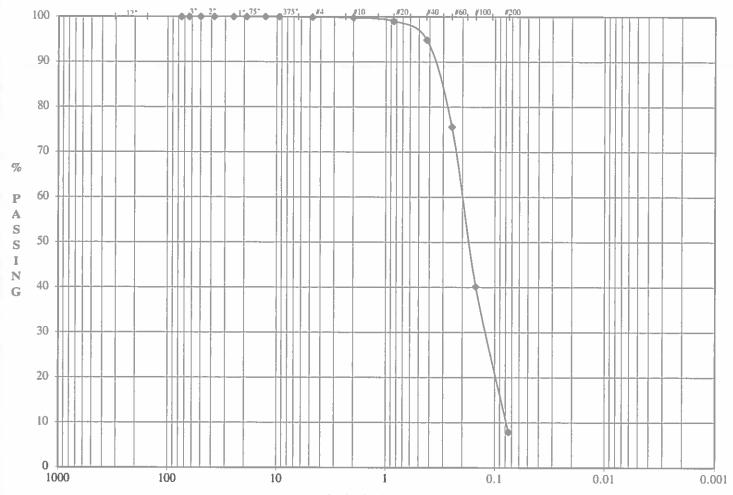
TYPE:

Bulk

% Test Fraction Passing #4 Sieve As-Received Moisture Content Specific Gravity (assumed)

99.98% 8.1%

Modified Maximum Dry Unit Weight (pcf) Modified Optimum Water Content (%)


Description Brown, POORLY GRADED SAND WITH SILT, trace gravel

USCS SP-SM

TECH CHECK

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 PROJECT TITLE JR Whiting Ponds 1 & 2 SAMPLE ID CS-2 1788523 PROJECT NO. SAMPLE TYPE Bulk REMARKS Class IIA & Class IIIA SAMPLE DEPTH (ft) 0.5 - 1.0Hygroscopic Moisture For Sieve Sample **WATER CONTENT (Delivered Moisture)** Wet Soil & Tare (gm) 1.00 1237.09 Wt Wet Soil & Tare (gm) (wl) Dry Soil & Tare (gm) 0.00 Wt Dry Soil & Tare (gm) 1105.52 Tare Weight (gm) (w2)0.00 295.11 Moisture Content (%) Weight of Tare (gm) (w3)0.00% Weight of Water (gm) (w4=w1-w2)131.57 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Dry Soil (gm) (w5=w2-w3)810.41 Weight Of Sample (gm) 1105.52 16.23 Moisture Content (%) (w4/w5)*100 Tare Weight (gm) 295.11 (W6) Total Dry Weight (gm) 810.41 SIEVE ANALYSIS Cum. Ret. Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE 295.11 +Tare (dry) ((wt ret/w6)*100) (100-%ret) 3.0" 295.11 0.00 0.00 100.00 3.0" coarse gravel 2.5" 0.00 295.11 0.00 100.00 2.5" coarse gravel 2.0" 295.11 0.00 0.00 100.00 2.0" coarse gravel 1.5" 295.11 0.00 0.00 100.00 1.5" coarse gravel 1.0" 295.11 0.00 0.00 100.00 1.0" coarse gravel 0.75" 295.11 0.00 0.00 100,00 0.75" fine gravel 0.50" 295.11 0.00 0.00 100.00 0.50" fine gravel 0.375" 295.11 0.00 0.00 100.00 0.375" fine gravel 0.89 #4 296.00 0.11 99.89 #4 coarse sand #10 297.05 1.94 0.24 99.76 #10 medium sand #20 302.97 7.86 0.97 99.03 #20 medium sand 41.59 #40 336.70 5.13 94.87 #40 fine sand #60 493.40 198.29 24.47 75.53 #60 fine sand #100 780.05 484.94 59.84 40.16 #100 fine sand 1041.42 746.31 92.09 7.91 #200 #200 fines % C GRAVEL 0.00 Descriptive Terms > 10% mostly coarse (c) % F GRAVEL 0.11 trace 0 to 5% > 10% mostly medium (m) LL % C SAND 0.13 little 5 to 12% < 10% fine (c-m) PL. % M SAND 4.89 some 12 to 30% < 10% coarse (m-f) PΙ % F SAND 86.96 30 to 50% and < 10% coarse and fine (m) Gs % FINES 7.91 < 10% coarse and medium (f) % TOTAL 00.001 > 10% equal amounts each (c-f) VISUAL DESCRIPTION Brown, POORLY GRADED SAND WITH SILT, trace gravel USCS SP-SM **TECH** TDS 10/22/2019 DATE CHECK * material finer than #4 sieve corrected for hygroscopic moisture. **REVIEW**

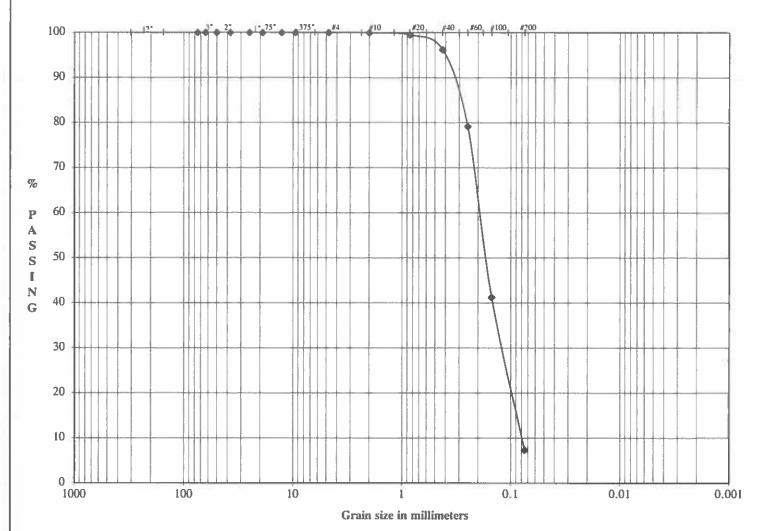
PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 US STANDARD SIEVE OPENING SIZES

Grain size in millimeters

		Coarse	Fine	Сог	Med	Fine	SILT OR CLAY
Boulders	Cobbles	GRAVEL			SAI	ND.	FINES
	0.00	0.00	11.0	0.13	4.89	86.96	7,91
		0.11		91.98			

SAMPLE ID	
SAMPLE TYPE	
SAMPLE DEPTH (ft)	0,5-1,0

LL	
PL	9.5
PI	22


VISUAL DESCRIPTION	Brown, POOR	LY GRADED	SAND WITH SILT, trace (gravel
USCS	SP-SM			

TECH TDS
DATE 10/22/2019
CHECK APO
REVIEW

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142

PROJECT TITLE	JR '	Whiting Ponds 1	l & 2	7	S	AMPLE ID		'S-3
PROJECT NO.		1788523		1		PLE TYPE		Bulk
REMARKS	Cla	ss IIA & Class	IIIA	1		DEPTH (ft)		5-1.0
			= =	Hygroscopic N	Moisture For Si			
WATER CONTENT (De	livered Moist	ure)		10,8,000,000		Wet Soil &	Tare (gm)	1.00
Wt Wet Soil & Tare (gm)		(wt)	1402.99	1		Dry Soil & 1		1.00
Wt Dry Soil & Tare (gm)		(w2)	1256.86	1		Tare Weight		0,00
Weight of Tare (gm)		(w3)	373.15	1		Moisture Co		0.00%
Weight of Water (gm)		(w4=w1-w2)	146.13	Total Weight	Of Sample Use			groscopic Moistur
Weight of Dry Soil (gm)		(w5=w2-w3)	883.71	1	•	Weight Of S		1256.86
Moisture Content (%)		(w4/w5)*100	16.54	1		Tare Weigh		373.15
				<u> </u>	(W6)	Total Dry W		883.71
SIEVE ANALYSIS			Cum. Ret.	Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
373.15		+Tare	(dry)	{(wt ret/w6)*100}	(100-%ret)			
	3.0"	373.15	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	373.15	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	373.15	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	373.15	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	373.15	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	373.15	0.00	0.00	100.00	0.75"	fine gravel	
	0.50"	373.15	0.00	0.00	100.00	0.50"	fine gravel	
	0.375"	373.15	0.00	0.00	100.00	0.375"	fine gravel	
	#4	373.30	0.15	0.02	99.98	#4	coarse sand	
	#10	373.81	0.66	0.07	99.93	#10	medium sand	
	#20	377.73	4.58	0.52	99.48	#20	medium sand	
	#40	407.28	34.13	3.86	96.14	#40	fine sand	
	#60	557.43	184.28	20.85	79.15	#60	fine sand	
	#100	892.39	519.24	58.76	41.24	#100	fine sand	
	#200	1191.81	818.66	92.64	7.36	#200	fines	
% C GRAVEL	0.00	Descript	ive Terms	> 10% ma	stly coarse (c)			
% F GRAVEL	0.02	trace	0 to 5%	> 10% mo	stly medium (r	n)	LL	-
% C SAND	0.06	little	5 to 12%	< 10% fin	e (c-m)		PL	
% M SAND	3.79	some	12 to 30%	< 10% cos	, ,		PI	-
% F SAND	88.78	and	30 to 50%	< 10% coa	rse and fine (n	n)	Gs	
% FINES	7.36			< 10% coa	irse and mediu	m (f)		
% TOTAL	100,00]		> 10% equ	ual amounts eac	ch (c-f)		
VISUAL DES	CRIPTION	1	LY GRADED	SAND WITH S	ILT, trace			
		gravel						
	USCS	SP-SM					TECH	TDS
							DATE	10/22/2019
							CHECK	14(1)
		than #4 sieve cor					REVIEW	<i>a b</i>

PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 US STANDARD SIEVE OPENING SIZES

		Coarse	Fine	Cor	Med	Fine	SILT OR CLAY		
Boulders	Cobbles	GRAV	/EL		SA!	D	FINES		
	0.00	0.00 0.02		0.06	3,79	88.78	7.36		
·		0.0			92.				

SAMPLE ID	CS-3
SAMPLE TYPE	
SAMPLE DEPTH (ft)	0.5-1.0

LL	×
PL	×
ΡI	<i>y</i> :

VISUAL DESCRIPTION	Brown, POOR	LY GRADED	SAND WITH SILT, trace gravel	
USCS	SP-SM			

TECH TDS
DATE 10/22/2019
CHECK / / / /
REVIEW / / /

APPENDIX D.4

Sub-Base for Road

Pond 1 and 2 Geotechnical Laboratory Test Results

Sample I dentification			Soil	In-situ	At	terbe	rg Li	imits	Grain Size	e Distribution	M odified Proctor		Specific			Hydraulic	Additional Tests
•	Sample	Sample	Classi-	Moisture %					% Finer #4	% Finer #200	M aximum	Optimum	Gravity	Unit W	/eight	Conductivity (cm/sec)	Conducted (See Notes)
Sample No.	Type	Depth (ft)	fication		LL	PL	PI	LI	sieve	sieve	Dry Density (pcf)	Moisture %		Dry (pcf)	Moisture %	(011100)	Notosy
CS-1	Bulk	-	SP-SM	8.1	-	-	•	-	100.0	6.4	112.4	8.9	-	-	-	-	

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

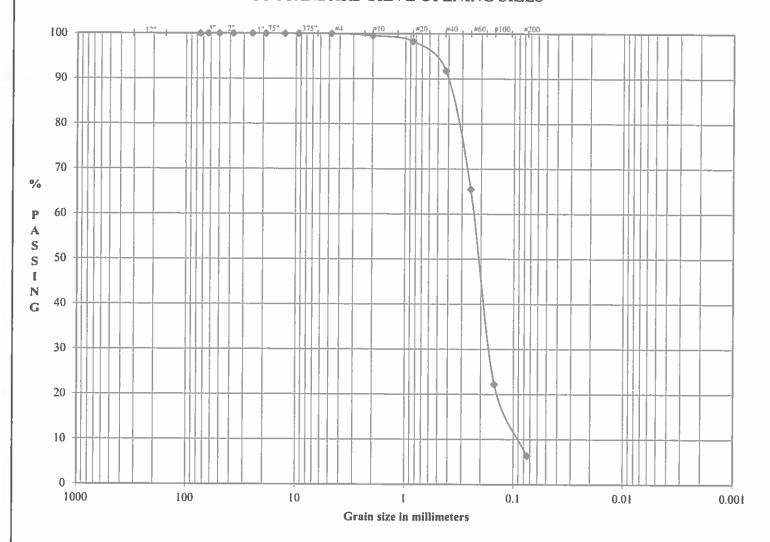
NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

P = pH

NP = NON-PLASTIC
* Classified Visually


ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 PROJECT TITLE JR Whiting Ponds 1 & 2 SAMPLE ID CS-1 PROJECT NO. 1788523 SAMPLE TYPE Bulk REMARKS Class IIA & Class IIIA SAMPLE DEPTH (ft) Hygroscopic Moisture For Sieve Sample WATER CONTENT (Delivered Moisture) Wet Soil & Tare (gm) 1.00 Wt Wet Soil & Tare (gm) 171.59 (wl) Dry Soil & Tare (gm) 1.00 Wt Dry Soil & Tare (gm) 162.57 (w2)Tare Weight (gm) 0.00 Weight of Tare (gm) (w3)51.26 Moisture Content (%) 0.00% Weight of Water (gm) (w4=w1-w2)9.02 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Dry Soil (gm) (w5=w2-w3)111.31 Weight Of Sample (gm) 1129.04 Moisture Content (%) (w4/w5)*100 8.10 Tare Weight (gm) 369.75 (W6) Total Dry Weight (gm) 759.29 SIEVE ANALYSIS Cum. Ret. Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE 369.75 +Tare (dry) !(wt ret/w6)*100) (100-%ret) 3.0" 369.75 0.00 0.00 100.00 3.0" coarse gravel 2.5" 369.75 0.00 0.00 100.00 2.5" coarse gravel 2.0" 369.75 0.00 0.00 100.00 2.0" coarse gravel 369.75 0.00 1.5" 0.00 100.00 1.5" coarse gravel 1.0" 369.75 0.00 0.00 100.00 1.0" coarse gravel 369.75 0.75" 0.00 0.00 100.00 0.75" fine gravel 0.50" 369.75 0.00 0.00 100.00 0.50" fine gravel 0.375" 369.75 0.00 0.00 100.00 0.375" fine gravel 369.93 #4 0.18 0.02 99.98 #4 coarse sand #10 373.20 3.45 0.45 99.55 #10 medium sand #20 382.68 12.93 1.70 medium sand 98.30 #20 432,25 #40 62.50 8.23 91.77 #40 fine sand #60 631.94 262.19 34.53 65.47 #60 fine sand #100 960.17 590.42 77.76 22.24 #100 fine sand 1080.50 710.75 #200 93.61 6.39 #200 fines % C GRAVEL 0.00 Descriptive Terms > 10% mostly coarse (c) % F GRAVEL 0.02 trace 0 to 5% > 10% mostly medium (m) LL % C SAND 0.43 little 5 to 12% < 10% fine (c-m) PL % M SAND 7.78 12 to 30% some < 10% coarse (m-f) ΡI % F SAND 85.38 and 30 to 50% < 10% coarse and fine (m) Gs % FINES 6.39 < 10% coarse and medium (f) % TOTAL 100.00 > 10% equal amounts each (c-f) Brown, POORLY GRADED SAND WITH SILT, trace VISUAL DESCRIPTION gravel **USCS** SP-SM TECH BB DATE 6/17/2019

* material finer than #4 sieve corrected for hygroscopic moisture.

CHECK

REVIEW

PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 US STANDARD SIEVE OPENING SIZES

		Coarse	Fine	Cor	Med	Fine	SILT OR CLAY
Boulders	Cobbles	0.00 0.02			SAI	(D	FINES
	0.00			0.43 7.78 85.38			6.39
		0.02			91	58	

SAMPLE ID	CS-1
SAMPLE TYPE	
SAMPLE DEPTH (ft)	-

LL	_
PL	
PI	*

VISUAL DESCRIPTION	Brown, POORLY GRADED SAND WITH SILT, trace gravel
USCS	SP-SM

TECH BB

DATE 6/17/2019

CHECK S

REVIEW

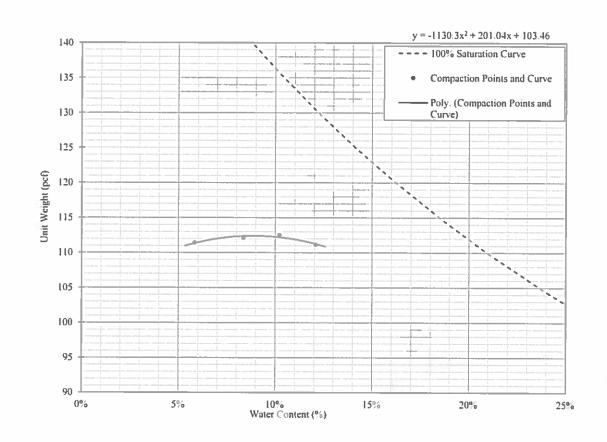
1788523

LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method A

Mechanical Rammer | Moist Preparation

PROJECT NAME

JR Whiting Ponds 1 & 2


SAMPLE ID:

CS-1

DEPTH (ft) -

TYPE:

Bulk

% Test Fraction Passing #4 Sieve As-Received Moisture Content 99.98% 8.1% Specific Gravity (assumed) 2.80

Modified Maximum Dry Unit Weight (pcf) Modified Optimum Water Content (%)

Description Brown, POORLY GRADED SAND WITH SILT, trace gravel

USCS SP-SM

> TECH[CHECK REVIEW

APPENDIX D.5

Road Base Material

Pond 1 and 2 Geotechnical Laboratory Test Results

Sample I dentification			Soil	In-situ	At	Atterberg Limits		Grain Size Distribution		M odified Proctor		Specific			Hydraulic Conductivity	Additional Tests Conducted (See	
	Sample	Sample	Classi-	Moisture %					% Finer #4	% Finer #200	M aximum	Optimum	Gravity	Unit W	/eight	(cm/sec)	Notes)
Sample No.	Type	Depth (ft)	fication		LL	PL	PI	LI	sieve	sieve	Dry Density (pcf)	Moisture %		Dry (pcf)	Moisture %	(0.11000)	110100)
RB-1	Bulk	-	GW-GM	3.4	-	-	-	-	46.7	5.6	139.0	8.4	-	-	-	-	
RB-2	Bulk	2.0"-6.0"	GW-GM	2.6	-	-		-	49.7	8.9	134.4	2.5	-	-	-	-	

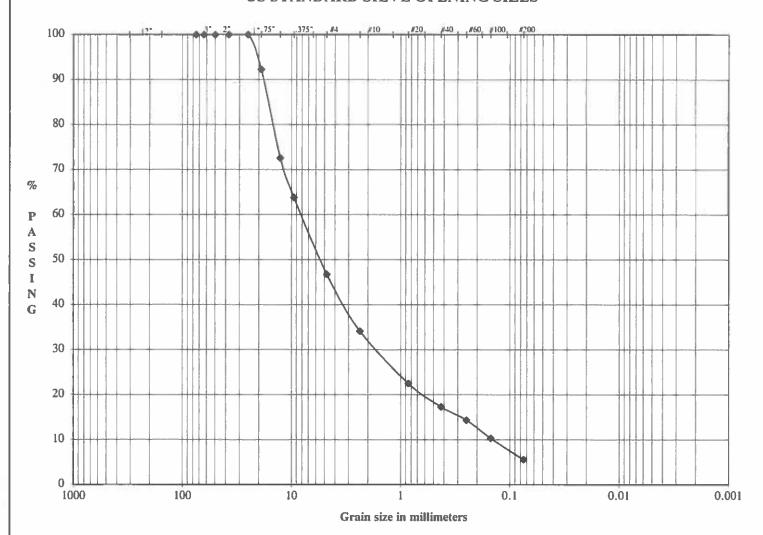
ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST
DS = DIRECT SHEAR TEST
O = ORGANIC CONTENT


P = pH

NP = NON-PLASTIC
*Classified Visually

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142

PROJECT TITLE	JR	Whiting Ponds	1&2			AMPLE ID	R	B-I
PROJECT NO.		1788523		_		PLE TYPE	В	ułk
REMARKS	<u></u>	23A				DEPTH (ft)		
				Hygroscopic N	Aoisture For Si	ieve Sample		
WATER CONTENT (Del	ivered Moist			_		Wet Soil &	Tare (gm)	1.00
Wt Wet Soil & Tare (gm)		(w1)	3298.20			Dry Soil &	Γare (gm)	1.00
Wt Dry Soil & Tare (gm)		(w2)	3203.75	_		Tare Weight	(gm)	0.00
Weight of Tare (gm)		(w3)	426.60			Moisture Co		0.00%
Weight of Water (gm)		(w4=w1-w2)	94.45	Total Weight	Of Sample Use	d For Sieve C	orrected For Hyg	roscopic Moisture
Weight of Dry Soil (gm)		(w5=w2-w3)	2777.15			Weight Of S	ample (gm)	3203.75
Moisture Content (%)		(w4/w5)*100	3,40			Tare Weigh	t (gm)	426.60
]	(W6)	Total Dry W	eight (gm)	2777.15
SIEVE ANALYSIS			Cum. Ret.	Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
426.60		+Tare	(dry)	(wt ret/w6)*100	(100-%ret)	0.0		
*********			(1)		(coo thins)			
	3.0"	426.60	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	426.60	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	426.60	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	426.60	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	426.60	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	641.60	215.00	7.74	92.26	0.75"	fine gravel	
	0.75	1188.23	761.63	27.42	72.58	0.73	_	
	0.375"	1432.08	1005.48	36/21	63.79		fine gravel	
	#4	1905.58			46.74	0.375"	fine gravel	
	#4		1478.98	53.26		#4	coarse sand	
		2256.66	1830.06	65.90	34.10	#8	coarse sand	
	#20	2578.94	2152.34	77,50	22.50	#20	medium sand	
	#40	2723.18	2296.58	82.70	17.30	#40	fine sand	
	#60	2804.73	2378.13	85.63	14.37	#60	fine sand	
	#100	2917.18	2490.58	89.68	10:32	#100	fine sand	
	#200	3048.49	2621.89	94.41	5.59	#200	fines	
							<u> </u>	
% C GRAVEL	7.74	l Baradar	T	> 100/				
% F GRAVEL	45.51	1	ive Terms		stly coarse (c)			
		trace	0 to 5%		stly medium (i	m)	LL	
% C SAND	12.64	little	5 to 12%	< 10% fin			PL	
% M SAND	16.80	some	12 to 30%	< 10% co:	, .	>	PI	
% F SAND	11.71	and	30 to 50%		arse and fine (r	,	Gs	
% FINES	5.59	-			arse and mediu	. ,		
% TOTAL	100.00	J		> 10% eq	ual amounts ea	en (e-f)		
4787741A B P P	CDIDTICS	C 17/51 1 C	DADED OF	37777 33777774 2747	T TO A STORE			
VISUAL DES	CKIPTION	SAND	KADED GK/	VEL WITH SH	LIAND			
		SAND						
		- T						
	USCS	GW-GM					ТЕСН	BB
							DATE	6/21/2019
							CHECK	72/
	* material fine	r than #4 sieve coi	rrected for hygi	roscopic moisture			REVIEW	4/1

PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 **US STANDARD SIEVE OPENING SIZES**

		Coarse	Fine	Cor	Med	Fine	SILT OR CLAY
Boulders	Cobbles				SAI		FINES
	0.00	7.74	45.51	12.64	16.80	11,71	5.59
		53.26			41	15	

SAMPLE ID	
SAMPLE TYPE	
SAMPLE DEPTH (ft)	•

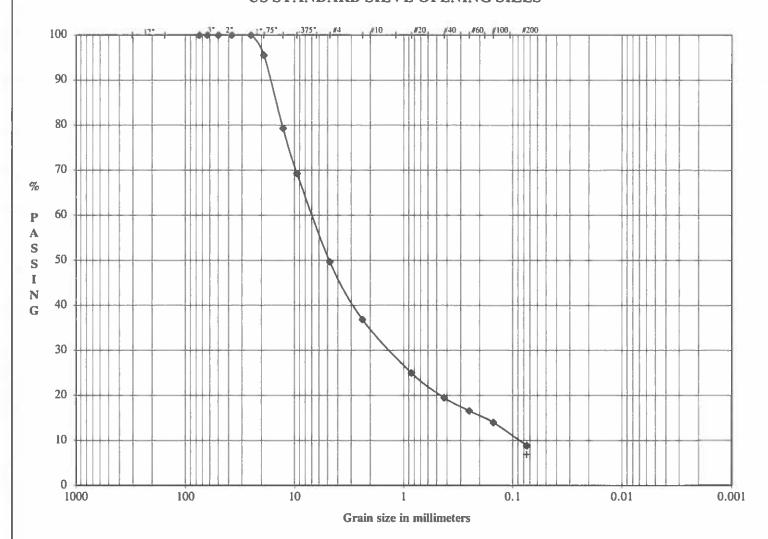
LL	-
PL	-
PI	-

VISUAL DESCRIPTION	Gray, WELL GRADED GRAVEL WITH SILT AND SAND
USCS	GW-GM

TECH DATE 6/21/2019 **CHECK** REVIEW

BB

1788523 LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method C Manual Rammer Preparation PROJECT NAME: JR Whiting Ponds 1&2 SAMPLE ID: RB-1 DEPTH (ft) -TYPE: Bulk $y = -4306.8x^2 + 621.66x + 118.13$ 155 - 100% Saturation Curve Compaction Points and Curve 150 Poly. (Compaction Points and Curve) 145 140 Unit Weight (pcf) 135 130 125 120 115 10% Water Content (%) 15% 20° a 25° 0 % Test Fraction Passing 3/4-inch Sieve Modified Maximum Dry Unit Weight (pcf) 139.0 As-Received Moisture Content Modified Optimum Water Content (%) Specific Gravity (assumed) Visual Description Gray, WELL GRADED GRAVEL WITH SILT AND SAND USCS GW-GM TECH BB DATE 6/20/2019 CHECK


REVIEW

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142 PROJECT TITLE JR Whiting Ponds 1&2 SAMPLE ID RB-2 SAMPLE TYPE PROJECT NO. 1788523 Bulk REMARKS 23A SAMPLE DEPTH (ft) 2.0"-6.0" Hygroscopic Moisture For Sieve Sample 00.1 WATER CONTENT (Delivered Moisture) Wet Soil & Tare (gm) 3574.78 Wt Wet Soil & Tare (gm) (w1) Dry Soil & Tare (gm) 1.00 Wt Dry Soil & Tare (gm) (w2)3494.06 Tare Weight (gm) 0.00 Weight of Tare (gm) 358.68 Moisture Content (%) 0.00% (w3)(w4=w1-w2) Weight of Water (gm) 80.72 Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Weight of Dry Soil (gm) (w5=w2-w3)3135:38 Weight Of Sample (gm) 3494.06 Moisture Content (%) (w4/w5)*100 2.57 Tare Weight (gm) 358.68 (W6) Total Dry Weight (gm) 3135.38 SIEVE ANALYSIS Cum. Ret. Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE 358.68 +Tare (dry) (100-%ret) (wt ret/w6)*100 3.0" 358.68 0.00 0.00 100.00 3.0" coarse gravel 358.68 0.00 0.00 100.00 2.5" 2.5" coarse gravel 0.00 0.00 100:00 2.0" 358.68 2.0" coarse gravel 0.00 0.00 1.5" 358.68 100.00 1.5" coarse gravel 358.68 0.00 0.00 100.00 1.0" 1.0" coarse gravel 0.75" 498.63 139.95 4.46 95.54 0.75" fine gravel 0.50" 1006.82 648.14 20.67 79.33 0.50" fine gravel 0.375" 1321.92 963.24 30.72 69.28 0.375" fine gravel 1937.06 1578.38 50.34 49.66 #4 #4 coarse sand 2338.75 1980.07 63.15 36.85 #8 coarse sand #8 #20 2710.43 2351.75 75.01 24.99 #20 medium sand #40 2523.75 80.49 19.51 #40 fine sand 2882.43 2973.53 2614.85 83.40 16.60 #60 fine sand #60 85.99 #100 3054.66 2695.98 14.01 #100 fine sand 3215.59 #200 #200 2856.91 91.12 8.88 fines % C GRAVEL Descriptive Terms 4.46 > 10% mostly coarse (c) 45.88 % F GRAVEL trace 0 to 5% > 10% mostly medium (m) LL % C SAND 12.81 little 5 to 12% < 10% fine (c-m) PL % M SAND 17.34 12 to 30% < 10% coarse (m-f) PI some % F SAND 10.63 30 to 50% < 10% coarse and fine (m) Gs and % FINES 8.88 < 10% coarse and medium (f) % TOTAL 100.00 > 10% equal amounts each (c-f) Gray, WELL GRADED GRAVEL WITH SILT AND VISUAL DESCRIPTION SAND USCS GW-GM TECH TDS 10/31/2019 DATE CHECK

* material finer than #4 sieve corrected for hygroscopic moisture.

REVIEW

PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 US STANDARD SIEVE OPENING SIZES

		Coarse	Fine	Cor	Med	Fine	SILT OR CLAY
Boulders	Cobbles	GRAVEL			SAI	dv.	FINES
	0.00	4.46	4.46 45.88		17:34	10.63	8.88
•		50.3	4		40.1	78	

SAMPLE ID	RB-2
SAMPLE TYPE	
SAMPLE DEPTH (ft)	2.0"-6.0"

LL	-
PL	-
PI	-

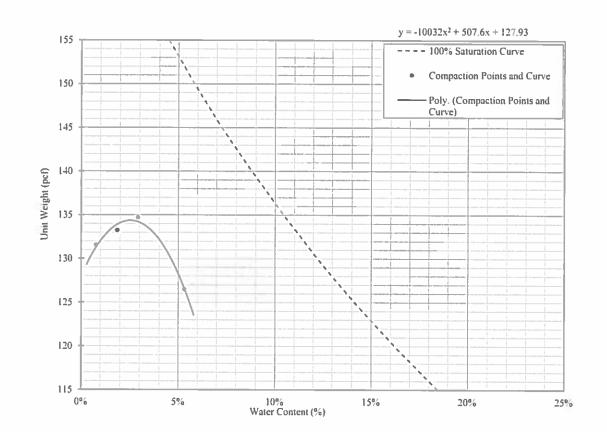
VISUAL DESCRIPTION	Gray, WELL O	RADED GRAVEL	WITH SILT AND SAND	
USCS	GW-GM			_

TECH TDS
DATE 10/31/2019
CHECK
REVIEW

1788523

LABORATORY COMPACTION CHARACTERISTICS OF SOIL ASTM D1557 - Method C

Manual Rammer Preparation


PROJECT NAME: SAMPLE ID:

JR Whiting Ponds 1&2

TYPE

RB-2 Bulk

DEPTH (ft) 2.0"-6.0"

% Test Fraction Passing 3/4-inch Sieve 96%
As-Received Moisture Content 3%
Specific Gravity (assumed) 2.80

Modified Maximum Dry Unit Weight (pcf) | Modified Optimum Water Content (%)

134.4

Visual Description Gray, WELL GRADED GRAVEL WITH SILT AND SAND

USCS GW-GM

TECH RH
DATE 10/31/2019
CHECK ACC

APPENDIX D.6

MDOT 6AA Aggregate

Pond 1 and 2 Geotechnical Laboratory Test Results

Sample I dentification			Soil	In-situ	Atterberg Limits		Grain Size Distribution		M odified Proctor		Specific			Hydraulic Conductivity	Additional Tests Conducted (See		
	Sample	Sample	Classi-	Moisture %					% Finer #4	% Finer #200	M aximum	Optimum	Gravity	Unit W	/eight	(cm/sec)	Notes)
Sample No.	Type	Depth (ft)	fication		LL	PL	PI	LI	sieve	sieve	Dry Density (pcf)	Moisture %		Dry (pcf)	Moisture %	(0.1100)	1101009
6AA-1	Bulk	-	GP	0.4	-	-	-	-	0.6	0.2	-	-	-	-	-	-	
6AA-2	Bulk	-	GP	0.4	-	•	-	-	2.2	0.7	•	-	-	-	-	-	

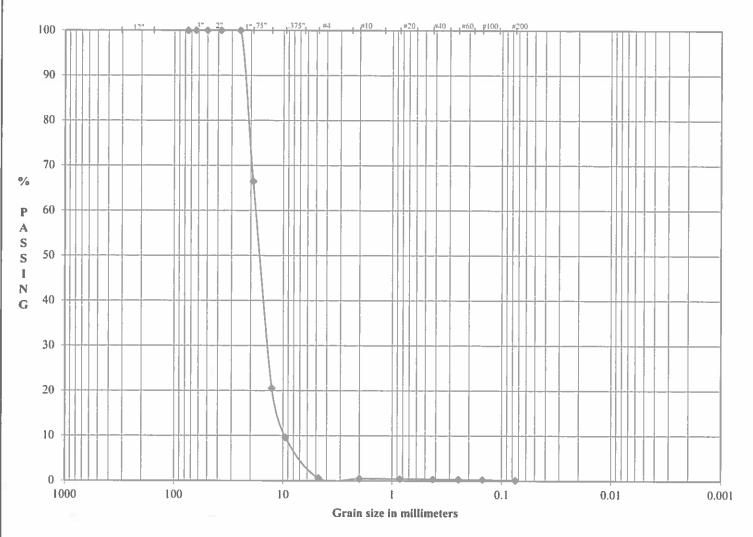
ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST
DS = DIRECT SHEAR TEST
O = ORGANIC CONTENT


P = pH

NP = NON-PLASTIC
*Classified Visually

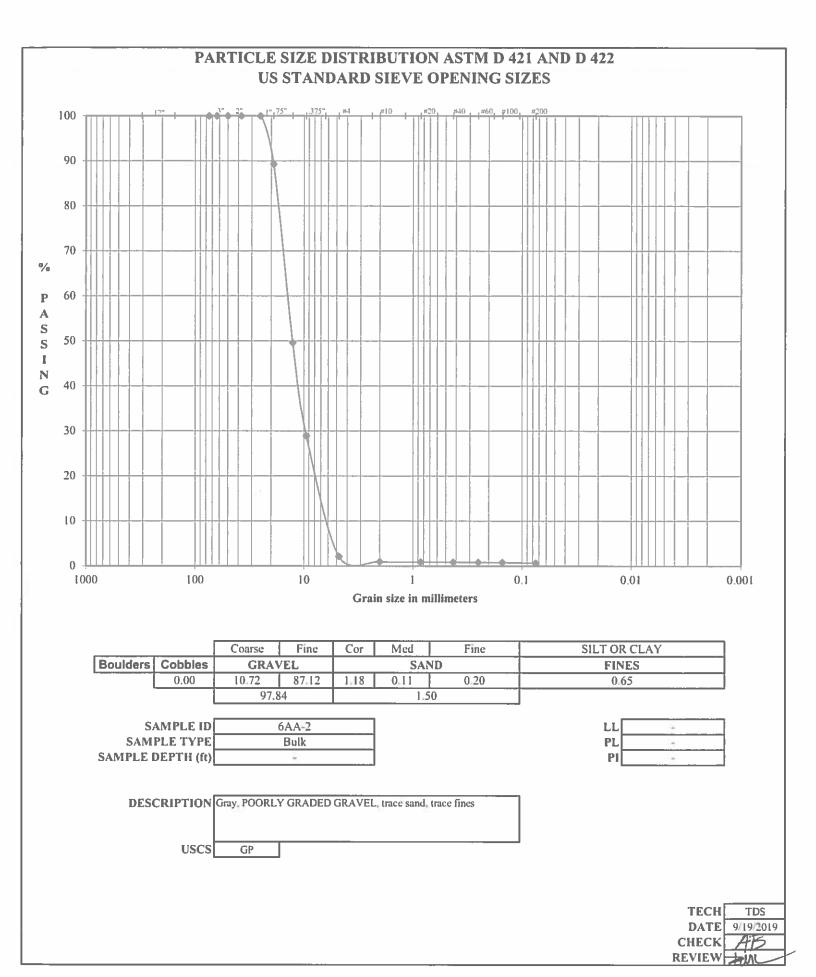
ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142

PROJECT TITLE	JR	Whiting Ponds	1&2	_[AMPLE ID		A-1
PROJECT NO.		17888523		_		PLE TYPE	В	ulk
REMARKS		6AA			SAMPLE	-		
	=			Hygroscopic N	Aoisture For Si			
WATER CONTENT (De	livered Moist			_		Wet Soil &		1.00
Wt Wet Soil & Tare (gm)		(wI)	2698.69	-		Dry Soil & T	_	1.00
Wt Dry Soil & Tare (gm)		(w2)	2689.05	-		Tare Weight		0.00
Weight of Tare (gm)		(w3)	458.07			Moisture Co		0.00%
Weight of Water (gm)		(w4=w1-w2)	9.64	Total Weight (Of Sample Use			roscopic Moistu
Weight of Dry Soil (gm)		(w5=w2-w3)	2230.98	_		Weight Of S		2689.05
Moisture Content (%)		(w4/w5)*100	0.43	1		Tare Weigh		458.07
					(W6)	Total Dry W	eight (gm)	2230.98
SIEVE ANALYSIS			Cum. Ret.	Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
458.07		+Tare	(dry)	((wt ret w6)*100)	(100-%ret)			
	•				,			
	3.0"	458.07	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	458.07	0.00	0.00	100.00	2.5"	coarse gravel	
	2.0"	458.07	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	458.07	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	458.07	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	1206.78	748.71	33.56	66.44	0.75"	fine gravel	
	0.50"	2231.76	1773.69	79.50	20.50	0.50"	fine gravel	
	0.375"	2475.39	2017.32	90.42	9.58	0.375"	fine gravel	
	#4	2675.00	2216.93	99.37	0.63	#4	coarse sand	
	#10	2678.62	2220.55	99.53	0.47	#10	medium sand	
	#20	2679.15	2221.08	99.56	0.44	#20	medium sand	
	#40	2680.61	2222.54	99.62	0.38	#40	fine sand	
	#60	2681.69	2223.62	99.67	0.33	#60	fine sand	
	#100	2682.72	2224.65	99.72	0.28	#100	fine sand	
	#200	2685.36	2227.29	99.83	0.17	#200	fines	
					5111			
		,						
% C GRAVEL	33.56	Descript	ive Terms	> 10% ma	stly coarse (c)			
% F GRAVEL	65.81	trace	0 to 5%		stly medium (r	n)	LL	-
% C SAND	0.16	little	5 to 12%	< 10% fin	e (c-m)		PL	-
% M SAND	0.09	some	12 to 30%	< 10% cos	irse (m-f)		PI	-
% F SAND	0.21	and	30 to 50%	< 10% coa	arse and fine (n	n)	Gs	-
% FINES	0.17			< 10% coa	arse and mediu	m (f)		
% TOTAL	100.00	J		> 10% equ	ual amounts ea	ch (c-f)		
		a						
DES	CRIPTION		GRADED C	SRAVEL, trace s	and, trace			
		fines						
		<u> </u>						
	USCS	GP					TECH	TDS
							DATE	9/12/2019
							CHECK	BAB
	* material fine	than #4 sieve cor	rected for hygi	roscopic moisture.			REVIEW	41%

PARTICLE SIZE DISTRIBUTION ASTM D 421 AND D 422 US STANDARD SIEVE OPENING SIZES

		Coarse	Fine	Cor	Med	Fine	SILT OR CLAY
Boulders	Cobbles	GRAVEL		SAND			FINES
	0.00	33,56	65.81	0.16	0.09	0.21	0.17
		99.37			0.4	6	

SAMPLE ID	
SAMPLE TYPE	
SAMPLE DEPTH (ft)	•


LL	
PL	
PI	-

DESCRIPTION	Gray, POORLY	Y GRADED GRAVEL, trace sand, trace fines	
USCS	GP		

TECH	
DATE	9
CHECK	
REVIEW	4

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136, C 142

PROJECT TITLE	JR	Whiting Ponds	1&2	1		AMPLE ID		A-2
PROJECT NO.		17888523				PLE TYPE	Bu	ılk
REMARKS		6AA				DEPTH (ft)	<u> </u>	
				Hygroscopic N	Moisture For S	-		
WATER CONTENT (De	livered Moist	· ·		_		Wet Soil &		1.00
Wt Wet Soil & Tare (gm)		(wl)	3551.99	_		Dry Soil & 7	Tare (gm)	1.00
Wt Dry Soil & Tare (gm)		(w2)	3539.48			Tare Weight		0.00
Weight of Tare (gm)		(w3)	443.82	23		Moisture Co		0.00%
Weight of Water (gm)		(w4=w1-w2)	12,51	Total Weight	Of Sample Use	d For Sieve C	orrected For Hyg	roscopic Moistur
Weight of Dry Soil (gm)		(w5=w2-w3)	3095.66			Weight Of S		3539.48
Moisture Content (%)		(w4/w5)*100	0.40			Tare Weigh	t (gm)	443.82
				<u> </u>	(W6)	Total Dry W	eight (gm)	3095.66
SIEVE ANALYSIS			Cum. Ret.	Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
443.82]	+Tare	(dry)	((wt ret/w6)*100)	(100-%ret)	-		
	•			1 200	,			
	3.0"	443.82	0.00	0.00	100.00	3.0"	coarse gravel	
	2.5"	443.82	0.00	0.00	100.00	2.5"	coarse gravel	
	2,0	443.82	0.00	0.00	100.00	2.0"	coarse gravel	
	1.5"	443.82	0.00	0.00	100.00	1.5"	coarse gravel	
	1.0"	443.82	0.00	0.00	100.00	1.0"	coarse gravel	
	0.75"	775.78	331.96	10.72	89.28	0.75"	fine gravel	
	0.50"	2003.97	1560.15	50.40	49.60	0.50"	fine gravel	
	0.375"	2643.93	2200.11	71.07	28.93	0.375"	fine gravel	
	#4	3472.72	3028.90	97.84	2.16	#4	coarse sand	
	#10	3509.39	3065.57	99.03	0.97	#10	medium sand	
	#20	3511.88	3068.06	99.11	0.89	#10	medium sand	
	#40	3512.89	3069.07	99.14	0.86	#40	fine sand	
	#60	3514.04	3070.22	99.18	0.82	#60	fine sand	
	#100	3515.15	3071.33	99.21	0.32	#100	fine sand	
	#200	3519.22	3075.40	99.35	0.79			
	#200	3319.22	3073.40	39.33	0.05	#200	fines	
					H			
% C GRAVEL	10.72	Descript	ive Terms	> 10% mo	stly coarse (c)			
% F GRAVEL	87.12	trace	0 to 5%		stly medium (1	n)	LL	-
% C SAND	1.18	little	5 to 12%	< 10% fin	•		PL	-
% M SAND	0.11	some	12 to 30%	< 10% coa	-		PI	-
% F SAND	0.20	and	30 to 50%		arse and fine (r	n)	Gs	-
% FINES	0.65	1			arse and mediu	*		
% TOTAL	100.00	1			ual amounts ca	* *		
'						\ <i>/</i>		
DES	SCRIPTION	1 '	GRADED C	GRAVEL, trace s	and, trace			
		fines						
	11000	GD I					1	****
	USCS	GP					TECH	TDS
							DATE	9/19/2019
							СНЕСК	AB.
	* material fine	<u>r</u> than #4 sieve cor	rected for hygi	roscopic moisture.	ı		REVIEW	BUUL

APPENDIX D.7

Topsoil Results

Certification provided to: Ryan Incorporated Central

15070 S. Telegraph Rd. Monroe, MI 48161 Ph: 734-241-1051 Fax: 734-457-5606

Certification of Virgin Topsoil

	t	
In considerati	on of the "fresh farming" of di	rt located at the property known as
	CANTON TOPSOIL	,by the address of
	50530 CHERRY HILL ROAD	CANTON, MI 48187
Tyler General	Trucking, LLC. does hereby c	ertify the topsoil delivered to the
consumer was	s extracted from fresh "virgin s	soil" which has never before been
cultivated and	is free of contamination.	
Signed		2 Lates
	Tyler Gene	eral Trucking, LLC.
Print	: Dav	id L. Lorton
Phone #	(734	4) 241-1051
Date	. Jul	y 24, 2019

MICHIGAN STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY
SOIL AND PLANT NUTRIENT LABORATORY
EAST LANSING, MICHIGAN 48824-1325
(517) 355-0218

Tyler Trucking - Intersection of Cherry Hill and Ridge Rd, Canton, MI

SOID IEST	REPORT F	OR:				CONSULTA	NT			
4525	NSUMERS E 5 E. ERIE RE E MI 48133					963 S MON	IROE COUN S RAISINVII IROE MI 48 240-3170	LE ROAD		ION
DATE	LAB#	COUNT	ГУ	GROWE	R'S EMAIL	ACRES	FIELD ID		OIL	TEXTURE
8/23/2019	237956	Monro	pe s	scott.rogers	ryancentral.co	om	Cherry H	Iill M	Aineral	
Next to Lake	or Stream?		Year Are	ea Planted		Fertilizer Till	ed in Prior to	Planting?		How Deep?
										3 Inches
OIL NUTRI	ENT LEVE	LS		Belo	w Optimum	Optimu	m	Abov	e Optimu	ım
2										
² Phosphorus ³ Potassium (³ Magnesium	K) 153		ppm ppm					-		
³ Potassium (K) 153 (Mg) 218		ppm				Options	al Tests:		
³Potassium (K) 153 (Mg) 218		ppm ppm	able Bases	В	Micronutri			Organic Matter %	
³ Potassium (³ Magnesium ADDITIONAI Calcium (Ca)	(Mg) 153 (Mg) 218 RESULTS	: % of E	ppm ppm xchangea		В		ents (ppm)		_	Nitrate-N ppm
³ Potassium (³ Magnesium ADDITIONAI Calcium (Ca) (ppm)	(Mg) 218 RESULTS CEC (meq/100 g) 10.7	% of E K 3.7	ppm ppm xchangea Mg 16.9	Ca 79.4	В		ents (ppm)		Matter %	
³ Potassium (³ Magnesium ADDITIONAI Calcium (Ca) (ppm) 1704	(Mg) 218 (RESULTS CEC (meq/100 g) 10.7 DATIONS F	% of E K 3.7	ppm ppm xchangea Mg 16.9	Ca 79.4	В		ents (ppm)		Matter %	
³ Potassium (³ Magnesium ADDITIONAL Calcium (Ca) (ppm) 1704 RECOMMEN	(Mg) 218 RESULTS CEC (meq/100 g) 10.7 DATIONS F	: % of E K 3.7 FOR: La	ppm ppm xchangea Mg 16.9	Ca 79.4	В		ents (ppm)		Matter %	
³ Potassium () ³ Magnesium ADDITIONAI Calcium (Ca) (ppm) 1704 RECOMMEN Limestone	(Mg) 218 RESULTS CEC (meq/100 g) 10.7 DATIONS F	: % of E K 3.7 FOR: La	ppm ppm xchangea Mg 16.9	Ca 79.4 ed grasses	B (Cosphate (P ₂ O ₅):		ents (ppm)		Matter % 2.7	

MESSAGES

scott.rogers@ryancentral.com

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net MDNRE Certified #9404 NELAC Accredited #176507

Sample Date:

08/08/2019

Submit Date: Report Date: 08/08/2019 08/20/2019 To:

Golder Associates Inc. 27200 Haggerty Road

Suite B-12

Farmington Hills, MI 48331-5719

BA Report Number:

60313

Project Name:

Project Number:

JRW

Tyler Trucking - Intersection of Cherry Hill

1788523 and Ridge Rd, Canton, MI

BA Sample ID: **CK07736**

Sample ID

Sample ID: TS-1

	5	ample ID:	8-1			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Total Metal Analysis						
Total Arsenic	1600	ug/Kg	100	SW846 6020A	LT	08/12/2019
Total Barium	13000	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Total Cadmium	60	ug/Kg	50	SW846 6020A	LT	08/12/2019
Total Chromium	4300	ug/Kg	500	SW846 6020A	LT	08/12/2019
Total Copper	2400	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Total Lead	6200	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Total Mercury	Not detected	ug/Kg	50	SW846 7471A	LS	08/12/2019
Total Selenium	Not detected	ug/Kg	200	SW846 6020A	LT	08/12/2019
Total Silver	Not detected	ug/Kg	100	SW846 6020A	LT	08/12/2019
Total Zinc	9100	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Metal Soil (digestion)	Digested			3050	EB	08/12/2019
Mercury (digestion)	Digested			7470/7471	LS	08/12/2019
Pesticide Analysis						
a-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Aldrin	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
ь-внс	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
BP-6(PBB)	Not detected	ug/Kg	50	SW846 8081B	BY	08/16/2019
cis-Chlordane(a)	Not detected	ug/Kg	25	SW846 8081B	BY	08/16/2019
d-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
4,4-DDD	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
4,4-DDE	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
4,4-DDT	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Dieldrin	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endosulfan I	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endosulfan II	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endosulfan sulfate	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endrin	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endrin aldehyde	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endrin ketone	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
g-BHC(Lindane)	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Heptachlor	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Heptachlor epoxide	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Hexabromobenzene	Not detected	ug/Kg	100	SW846 8081B	BY	08/16/2019
Methoxychlor	Not detected	ug/Kg	50	SW846 8081B	BY	08/16/2019
Mirex	Not detected	ug/Kg	50	SW846 8081B	BY	08/16/2019
Toxaphene	Not detected	ug/Kg	170	SW846 8081B	BY	08/16/2019

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net MDNRE Certified #9404 NELAC Accredited #176507

Sample Date:

08/08/2019

Submit Date: Report Date:

08/08/2019 08/20/2019 To:

Golder Associates Inc. 27200 Haggerty Road

Suite B-12

Farmington Hills, MI 48331-5719

BA Report Number:

60313

Project Name:

JRW

BA Sample ID:

CK07736

Project Number:

1788523

Sample ID:

TS-1

	36	ample ID.	15-1			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Pesticide Analysis						
trans-Chlordane(g)	Not detected	ug/Kg	25	SW846 8081B	BY	08/16/2019
Pesticide solid (extraction)	Extracted			3510C/3545	MB	08/13/2019
Volatile Analysis (Methanol Preserved)						
Benzene	Not detected	ug/Kg	50	SW846 8260C	RG	08/13/2019
Ethylbenzene	Not detected	ug/Kg	50	SW846 8260C	RG	08/13/2019
Toluene	Not detected	ug/Kg	50	SW846 8260C	RG	08/13/2019
Xylenes(total)	Not detected	ug/Kg	150	SW846 8260C	RG	08/13/2019
EPA Method 5035 Methanol Preserv	Extracted			EPA 5035	GAI	08/08/2019
%Solid	91	%			EB	08/12/2019

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve MDNR designated target detection limits (TDL).

All soil results based on dry weight.

Released by

Date

8/20/2019

SALENBIEN MATERIALS

Salenbien Materials - 14467 Ida West Rd, Petersburg, MI

9217 ANN ARBOR RD

DUNDEE MI, 48131

734-529-3823 EXT 114

ANDY & BETH SALENBIEN

To whom it may concern,

The proposed topsoil to be hauled from Salenbien Materials pit located at 11467 Ida West Rd Petersburg MI, used for capping the Consumers Energy ash landfills is from a virgin pit and is non-contaminated. We look forward to working with you on this project.

Thank you,

Beth Salenbien
Bettyrnsalenbuen

Salenbien Materials - 14467 Ida West Rd, Petersburg, MI

"Lawn" Soil Test Report for John Johnson "chem pond" (Oct 16, 2019, #5J5K34)

		Below Optimum	Optimum	Above Optimum
Phosphorus (P)	67 ppm			
Potassium (K)	45 ppm		rena companya	TO THE PERSON NAMED AS A STATE OF THE PERSON NAMED AS A STATE
Magnesium (Mg)	86 ppm			
Calcium (Ca)	771 ppm			
CEC	4.7 meq/100 g			
Soil Type	Mineral (Loamy sand)	*For more information click on the underlined	on each individual nutri I word	ient, or the bar graph,
Soil pH	6.4			
Lime Index	70			
Organic Matter	3 %			

Follow Your Personalized Recommendations

Important: Always apply fertilizers according to label instructions

Your soil test indicates, on a yearly basis

per 1,000 sq. feet:

- · Nitrogen (3 to 4 lb) is needed
- · Potassium (3 lb) is needed
- No lime required

See below for more information on each

Lawn Organic Matter

Organic matter in your soil is 3%. Your soil has an adequate level of organic matter and no further actions need to be taken. To maintain organic matter in this range make sure to return clippings to the lawn.

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net MDNRE Certified #9404 NELAC Accredited #176507

Sample Date:

08/08/2019

Submit Date: Report Date:

08/08/2019 08/20/2019 To:

Golder Associates Inc. 27200 Haggerty Road

Suite B-12

Farmington Hills, MI 48331-5719

BA Report Number:

60313

Project Name:

JRW

1788523

Salenbien Materials - 14467 Ida West Rd,

Petersburg, MI

BA Sample ID: CK07737

Sample ID: TS-2

Project Number:

	28	imple ID:	8-2			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Total Metal Analysis						
Total Arsenic	3200	ug/Kg	100	SW846 6020A	LT	08/12/2019
Total Barium	31000	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Total Cadmium	170	ug/Kg	50	SW846 6020A	LT	08/12/2019
Total Chromium	8000	ug/Kg	500	SW846 6020A	LT	08/12/2019
Total Copper	7100	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Total Lead	9400	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Total Mercury	Not detected	ug/Kg	50	SW846 7471A	LS	08/12/2019
Total Selenium	Not detected	ug/Kg	200	SW846 6020A	LT	08/12/2019
Total Silver	Not detected	ug/Kg	100	SW846 6020A	LT	08/12/2019
Total Zinc	27000	ug/Kg	1000	SW846 6020A	LT	08/12/2019
Metal Soil (digestion)	Digested			3050	EB	08/12/2019
Mercury (digestion)	Digested			7470/7471	LS	08/12/2019
Pesticide Analysis						
a-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Aldrin	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
b-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
BP-6(PBB)	Not detected	ug/Kg	50	SW846 8081B	BY	08/16/2019
cis-Chlordane(a)	Not detected	ug/Kg	25	SW846 8081B	BY	08/16/2019
d-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
4,4-DDD	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
4,4-DDE	26	ug/Kg	20	SW846 8081B	BY	08/16/2019
4,4-DDT	22	ug/Kg	20	SW846 8081B	BY	08/16/2019
Dieldrin	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endosulfan I	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endosulfan II	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endosulfan sulfate	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endrin	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endrin aldehyde	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Endrin ketone	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
g-BHC(Lindane)	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Heptachlor	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Heptachlor epoxide	Not detected	ug/Kg	20	SW846 8081B	BY	08/16/2019
Hexabromobenzene	Not detected	ug/Kg	100	SW846 8081B	BY	08/16/2019
Methoxychlor	Not detected	ug/Kg	50	SW846 8081B	BY	08/16/2019
Mirex	Not detected	ug/Kg	50	SW846 8081B	BY	08/16/2019
Toxaphene	Not detected	ug/Kg	170	SW846 8081B	BY	08/16/2019

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net MDNRE Certified #9404 NELAC Accredited #176507

Sample Date:

08/08/2019

Submit Date: Report Date: 08/08/2019 08/20/2019

To:

Golder Associates Inc.

27200 Haggerty Road

Suite B-12

Farmington Hills, MI 48331-5719

BA Report Number:

60313

Project Name:

JRW

BA Sample ID:

CK07737

Project Number:

1788523

Sample ID

	Sa	ample ID: T	S-2			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Pesticide Analysis						
trans-Chlordane(g)	Not detected	ug/Kg	25	SW846 8081B	BY	08/16/2019
Pesticide solid (extraction)	Extracted			3510C/3545	MB	08/13/2019
Volatile Analysis(Methanol Preserved)						
Benzene	Not detected	ug/Kg	50	SW846 8260C	RG	08/13/2019
Ethylbenzene	Not detected	ug/Kg	50	SW846 8260C	RG	08/13/2019
Toluene	Not detected	ug/Kg	50	SW846 8260C	RG	08/13/2019
Xylenes(total)	Not detected	ug/Kg	150	SW846 8260C	RG	08/13/2019
EPA Method 5035 Methanol Preserv	Extracted	0.00		EPA 5035	GAI	08/08/2019
%Solid	86	%			EB	08/12/2019

DL Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve MDNR designated target detection limits (TDL).

All soil results based on dry weight.

Released by

Date

8/20/2019

MICHIGAN STATE UNIVERSITY SOIL AND PLANT NUTRIENT LABORATORY EAST LANSING, MICHIGAN 48824-1325 (517) 355-0218

SOIL TEST	T REPORT F	·OP·			CO	NSULTAI	UT.			
RY 270	AN INC CEN 0 E. RACINI NESVILLE V	TRAL EST.				NSOLIA	\1			
DATE	LAB#	COUNTY	GROV	ER'S EMA	IL /	ACRES	FIELD ID	, [SOIL	TEXTURE
10/21/2019	239823		scott.roge	rs@ryancen	tral.com		Devos		Mineral	
Next to Lak	e or Stream?	Year	Area Plante	ı	Fer	tilizer Tille	d in Prior to	Planting	g?	How Deep? 3 Inches
SOIL NUTR	IENT LEVE	LS	В	elow Optin	num	Optimun	1	Al	ove Optin	num
¹ Soil pH 7. ² Phosphoru	s (P) 22	ne Index ppm	•							
³ Potassium ³ Magnesiun	` '	ppm ppm								
	n (Mg) 276	ppm					Option	al Tests	I■■	
³ Magnesiun	L RESULTS	ppm S: % of Excha		s B		licronutries Mn		al Tests	Organic Matter 9	
³ Magnesiun ADDITIONA Calcium (Ca) (ppm)	L RESULTS CEC (meq/100 g) 21.5	ppm 8:	ngeable Base 1g C 0.7 88	6 B	M		nts (ppm)		Organic Matter	
Magnesiun ADDITIONA Calcium (Ca) (ppm) 3776	L RESULTS CEC (meq/100 g) 21.5	ppm 8:	ngeable Base 1g C 0.7 88	6 B	M		nts (ppm)		Organic Matter	
3Magnesiun ADDITIONA Calcium (Ca) (ppm) 3776 RECOMMEN	L RESULTS CEC (meq/100 g) 21.5 NDATIONS ne:	ppm 3: % of Excha K N 1.3 1 FOR: Lawn, 1	ngeable Base 1g C 0.7 88	6 B	M		nts (ppm)		Organic Matter	
3Magnesiun ADDITIONA Calcium (Ca) (ppm) 3776 RECOMMEN Limestor	L RESULTS CEC (meq/100 g) 21.5 NDATIONS ne:	ppm 3: % of Excha K N 1.3 1 FOR: Lawn, I	ngeable Base Ag C 0.7 88 nixed grasse	6 B	M Cu		rits (ppm) Zn	Fe	Organic Matter	% ppm

MESSAGES

Consumers Energy JR Whiting

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 10/17/2019 Submit Date: 10/17/2019

Report Date: 10/22/2019

To:

Ryan Inc. Central P.O. Box 206

Jamesville, WI 53547

BA Report Number: 61737 Project Name: JR Whiting Ponds 1&2

BA Sample ID: CL02522 Project Number: 3909.1

BA Sample 1D. CL02522	rioje	ct Nulliber.	909.1			
	Sa	ample ID: D	evos			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Total Metal Analysis						
Total Arsenic	3500	ug/Kg	100	SW846 6020A	LT	10/21/2019
Total Barium	47000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Total Cadmium	300	ug/Kg	50	SW846 6020A	LT	10/21/2019
Total Chromium	8600	ug/Kg	500	SW846 6020A	LT	10/21/2019
Total Copper	14000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Total Lead	27000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Total Mercury	Not detected	ug/Kg	50	SW846 7471A	LS	10/21/2019
Total Selenium	280	ug/Kg	200	SW846 6020A	LT	10/21/2019
Total Silver	Not detected	ug/Kg	100	SW846 6020A	LT	10/21/2019
Total Zinc	51000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Metal Soil (digestion)	Digested			3050	EB	10/18/2019
Mercury (digestion)	Digested			7470/7471	LS	10/21/2019
Herbicide Analysis						
2,4-D	Not detected	ug/Kg	200	SW846 8151A	BY	10/21/2019
Dicamba	Not detected	ug/Kg	50	SW846 8151A	BY	10/21/2019
Dinoseb	Not detected	ug/Kg	20	SW846 8151A	BY	10/21/2019
2,4,5-T	Not detected	ug/Kg	50	SW846 8151A	BY	10/21/2019
2,4,5-TP(Silvex)	Not detected	ug/Kg	50	SW846 8151A	BY	10/21/2019
Herbicide solid (extraction)	Extracted			8151/615	BY	10/18/2019
Volatile Analysis(Methanol Preserved)						
Benzene	Not detected	ug/Kg	50	SW846 8260C	CW	10/18/2019
Ethylbenzene	Not detected	ug/Kg	50	SW846 8260C	CW	10/18/2019
Toluene	Not detected	ug/Kg	50	SW846 8260C	CW	10/18/2019
Xylenes(total)	Not detected	ug/Kg	150	SW846 8260C	CW	10/18/2019
EPA Method 5035 Methanol Preserv	Extracted			EPA 5035	BAL	10/17/2019
%Solid	84	%			MH	10/18/2019

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 10/17/2019 Submit Date: 10/17/2019

Report Date: 10/22/2019

To:

Ryan Inc. Central P.O. Box 206

Jamesville, WI 53547

BA Report Number: 61737

Project Name:

JR Whiting Ponds 1&2

BA Sample ID: CL02522

Project Number:

3909.1

Sample ID:

Units

Devos

Parameters Result

DL

Method Reference

Analyst

Analysis Date

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

All soil results based on dry weight.

Released by

Date

10/22/2019

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 10/17/2019 Submit Date: 10/17/2019

Report Date: 10/24/2019

To:

Ryan Inc. Central P.O. Box 206

Jamesville, WI 53547

BA Report Number: 61737B Project Name: JR Whiting Ponds 1&2

BA Sample ID: CL02522 Project Number: 3909.1

	Г	Sample ID:	Devos			Analysis
Parameters	Result	Units	DL	Method Reference	Analyst	Date
Total Metal Analysis						
Total Arsenic	3500	ug/Kg	100	SW846 6020A	LT	10/21/2019
Total Barium	47000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Total Cadmium	300	ug/Kg	50	SW846 6020A	LT	10/21/2019
Total Chromium	8600	ug/Kg	500	SW846 6020A	LT	10/21/2019
Total Copper	14000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Total Lead	27000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Total Mercury	Not detected		50	SW846 7471A	LS	10/21/2019
Total Selenium	280	ug/Kg	200	SW846 6020A	LT	10/21/2019
Total Silver	Not detected	ug/Kg	100	SW846 6020A	LT	10/21/2019
Total Zinc	51000	ug/Kg	1000	SW846 6020A	LT	10/21/2019
Metal Soil (digestion)	Digested			3050	EB	10/18/2019
Mercury (digestion)	Digested			7470/7471	LS	10/21/2019
Pesticide Analysis						
a-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Aldrin	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
b-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
BP-6(PBB)	Not detected	ug/Kg	50	SW846 8081B	BY	10/23/2019
cis-Chlordane(a)	Not detected	ug/Kg	25	SW846 8081B	BY	10/23/2019
d-BHC	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
4,4-DDD	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
4,4-DDE	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
4,4-DDT	24	ug/Kg	20	SW846 8081B	BY	10/23/2019
Dieldrin	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Endosulfan I	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Endosulfan II	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Endosulfan sulfate	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Endrin	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Endrin aldehyde	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Endrin ketone	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
g-BHC(Lindane)	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Heptachlor	Not detected	ug/Kg	20	SW846 8081B	BY	10/23/2019
Heptachlor epoxide	Not detected		20	SW846 8081B	BY	10/23/2019
Hexabromobenzene	Not detected		100	SW846 8081B	BY	10/23/2019
Methoxychlor	Not detected		50	SW846 8081B	BY	10/23/2019
Mirex	Not detected	ug/Kg	50	SW846 8081B	BY	10/23/2019
Toxaphene	Not detected	ug/Kg	170	SW846 8081B	BY	10/23/2019

2105 Pless Drive Brighton, Michigan 48114 Phone: (810)229-7575 (810)229-8650 e-mail:bai-brighton@sbcglobal.net EGLE Certified #9404 NELAC Accredited #176507

Sample Date: 10/17/2019 Submit Date: 10/17/2019

10/24/2019

To:

Ryan Inc. Central P.O. Box 206

Jamesville, WI 53547

BA Report Number: **61737B**

Report Date:

Project Name:

JR Whiting Ponds 1&2

BA Sample ID: CL02522

Project Number: 3909.1

Parameters	Result	Sample ID: Units	Devos DL	Method Reference	Analyst	Analysis Date
Pesticide Analysis						
trans-Chlordane(g)	Not detected	ug/Kg	25	SW846 8081B	BY	10/23/2019
Pesticide solid (extraction)	Extracted			3510C/3545	MB	10/22/2019
Herbicide Analysis						
2,4-D	Not detected	ug/Kg	200	SW846 8151A	BY	10/21/2019
Dicamba	Not detected	ug/Kg	50	SW846 8151A	BY	10/21/2019
Dinoseb	Not detected	ug/Kg	20	SW846 8151A	BY	10/21/2019
2,4,5-T	Not detected	ug/Kg	50	SW846 8151A	BY	10/21/2019
2,4,5-TP(Silvex)	Not detected	ug/Kg	50	SW846 8151A	BY	10/21/2019
Herbicide solid (extraction)	Extracted			8151/615	BY	10/18/2019
Volatile Analysis(Methanol Preserved)						
Benzene	Not detected	ug/Kg	50	SW846 8260C	CW	10/18/2019
Ethylbenzene	Not detected	ug/Kg	50	SW846 8260C	CW	10/18/2019
Toluene	Not detected	ug/Kg	50	SW846 8260C	CW	10/18/2019
Xylenes(total)	Not detected	ug/Kg	150	SW846 8260C	CW	10/18/2019
EPA Method 5035 Methanol Preserv	Extracted			EPA 5035	BAL	10/17/2019
%Solid	84	%			MH	10/18/2019

DL=Reported detection limit for analytical method requested. Some compounds require special analytical methods to achieve EGLE designated target detection limits (TDL).

All soil results based on dry weight.

Released by

Date

10/24/2019

APPENDIX E

Material Testing for 40-mil Textured HDPE FML

APPENDIX E.1

Geomembrane Inventory Log

	PROJECT NUI		8523		_]	PROJE	CT TITLE:		JRW Ash & Chemical Pond Clousure										
	OWNER:		C	EC	CONTRACTOR:						FLSI								
	LOCATION:		Erie	, Mi.			_												
	MATERIAL TYPE	_			EONE		GEOTE:	XTILE	OTHER					, , , , , , , , , , , , , , , , , , , ,					
	DATE OF ARRIVA				3/19							INVENTORY:		28/19					
	MATERIAL MAN			1GRO		سير ٥						RY MONITOR:		H					
	PRODUCT IDENT TRUCK TYPE:	SEMI W/			HUI	,	MICK	0 >1/10	<i>E</i>			N IN TRUCK:	600						
	IROCK IIIE.	JANI WII	CUTTIS	ED				,	· · · · · · · · · · · · · · · · · · ·	UN	NLUADII	NG METHOD:	EXC	Auaton_					
		T		MATI	ERIAL :	DIME	NSIONS	3	QC	C	ONF.		1						
	ROLL	BATCH OR					7	CKNESS	CERT		AMP.	OTHER							
	NUMBER	LOT NO.	LEN	NGTH	WI	DTH	OR W	VEIGHT	Y/N	,	Y/N] F	REMARKS					
16	7 p 00338 - 4 \$43\$		74	φ΄	23	′	401	MIL	·y	٨	IA		TRUC	K#1					
2	-40011	_	1		١ ،				Y		1			I					
3	-40043								Y										
4	-400 45								У										
5	-44442								Y										
6	- 4 \$\$ 35								У										
7	-40033)							Y										
8	-4005P								Y			·							
9	-40052								Y										
0	- 40037								4										
11	-49438		4		1	,	\	•	Y	4	1								
12	-46434		74	P'_	2	<u>3 ′</u>	401	nic	У	M	9		لا	1ck #2					
13	-40412	_)		ļ			- 4				TRU	ck #2					
14	-44916			<u> </u>					У		<u> </u>			1					
15	- 40008								7										
16	- 40418								У										
17	-4cpto42			1					Y	····									
18	-40028	_							4										
19	-40019	_							4										
20	-44032								Y		1								
21	-4pp#7								У										
22	-40449								У										
23	-4004		₩		b		4		Y										
24	-40009		79	23'		4¢ mil		У	1				<u> </u>						
25	GTWR200348	5000/					-		У	М		1 <i>\(\phi \ 5 \ P\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </i>	WELDI	NG ROD					
	Golder Form: G2						R	EVIEW	ED BY:	12.	<u> </u>	DATE:	12.	·メ-/ 5					

GOLDER ASSOCIATES INC.

GTWR166345-86661 × 10 (TRUCK #1)

(July 2000)

OWNER: LOCATION:	CEC	170000		CONTR	ACTOR:	PYAN									
MATERIAL TYPE DATE OF ARRIVA MATERIAL MAN PRODUCT IDENT TRUCK TYPE:	E: GEOMEM AL: IUFACTURER:	BRANE GI		GEOTEXTILE	OTHER	INVENTOR CONDITION	NVENTORY: Y MONITOR: N IN TRUCK: G METHOD:	7.1.19 DH GOOD FXCANATION							
ROLL NUMBER	BATCH OR LOT NO.	LENGTH	RIAL DIME	NSIONS THICKNESS OR WEIGHT	QC CERT Y/N	CONF. SAMP. Y/N	OTHER	REMARKS							
DP#3384-00	01	740'	23 '	4¢ mil	У	NA									
- 9005	_			i	y	1									
- \$4/\$	_				Y										
-0013	_				y										
-4014	_				Y										
- 0015	_				Y										
-0017					y										
<i>—фф2ф</i>					Y										
-4421					У										
-0424	_				Y										
-4025					У										
-0026				7	У										
-pp27	1				У										
- 9031					y										
- 4436					Y										
- 0039					Ý										
-0040					7										
-0041	_				Ÿ										
-0044					Ý										
-0046	_				Y										
-0047	-				y										
-0048	_				y										
- 0051					Y										
-0029	_		1		У										
Golder Form: G2 (July 2000)			* · · · · · · · · · · · · · · · · · · ·	REVIEW	ED BY:	POS	DATE:	12-2-19							

GOLDER ASSOCIATES INC.

TRUCE #1 4 #2

OWNER:	MBEK:		38523		CT TITLE:	JRW A	Ash & Chemic	al Pond Clousure						
LOCATION:		CEC Erie, Mi.		_ CONTI	RACTOR:	FLSI								
LOCALION.	-	Erie, Wil.		-										
MATERIAL TYPE	E: GEOMEM	BRANE) G	EONET (GEOTEXTILE	OTHER									
DATE OF ARRIVA	AL:	7.8.1	7	SECTEATILE	OTHER	DATE OF I	NVENTORY:	7 8 10						
MATERIAL MAN	UFACTURER:	ACUI	/				Y MONITOR:	7.8.19						
PRODUCT IDENT	TIFICATION:	4¢mil	HOPE A	11 CROSPILEF			N IN TRUCK:	0H 600P						
TRUCK TYPE:	SEMI-TA	ncon					IG METHOD:	BXCAUATOR						
	T							BACMONFOR						
nor r	n.marr on	MATI	ERIAL DIME	NSIONS	QC	CONF.								
ROLL NUMBER	BATCH OR			THICKNESS	CERT	SAMP.	OTHER							
	LOT NO.	LENGTH	WIDTH	OR WEIGHT	Y/N	Y/N		REMARKS						
FD 443384-400	56 -	749'	23'	4pmil	Y	NA								
- \$p\$ \$\psi_2\$		/	1	1	Y	1								
- 4422	-				y									
-4923		744'	23'	1/4 /	-/									
4473		774	23'	YAMIL		NA								
			······································											
			· · · · · · · · · · · · · · · · · · ·		-									
·														
Golder Form: G2				REVIEWE	D BY: 7-	25	DATE:	12-2-19						

GOLDER ASSOCIATES INC.

JR Whiting - Ash Ponds 1 & 2 Closures Chesapeake Containment Systems, Inc. 4525 Erie Road

Erie, MI 48133

SO#: 00003022

4 \$. MIL HD

T-desum T	y sentre	S where T		Erie, MI 48133			
	2 401111		-	FG-HDMSDS040BBBEA	52 rolls @ 740	885,040	ft².
		Englis	h				
roll#	width	length	area	Item	Count	weight	resin lot #
	ft.	ft.	ft².			lbs.	1001111011
GTD0033840001	23	740	17,020	FG-HDMSDS040BBBEA	1	3766	HJM81046
GTD0033840002	23	740	17,020	FG-HDMSDS040BBBEA	2	3806	HJM81046
GTD0033840003	23	740	17,020	FG-HDMSDS040BBBEA	3	3798	HJM81046
3TD0033840004	23	740	17,020	FG-HDMSDS040BBBEA	4	3810	HJM81051
GTD0033840005	23	740	17,020	FG-HDMSDS040BBBEA	5	3800	HJM81051
3TD0033840006	23	740	17,020	FG-HDMSDS040BBBEA	6	3800	HJM81051
STD0033840007	23	740	17,020	FG-HDMSDS040BBBEA	7	3808	HJM81051
STD0033840008	23	740	17,020	FG-HDMSDS040BBBEA	8	3810	HJM81051
STD0033840009	23	740	17,020	FG-HDMSDS040BBBEA	9	3810	HJM81051
STD0033840010	23	740	17,020	FG-HDMSDS040BBBEA	10	3798	HJM81051
TD0033840011	23	740	17,020	FG-HDMSDS040BBBEA	11	3802	HJM81051
TD0033840012	23	740	17,020	FG-HDMSDS040BBBEA	12	3800	HJM81051
GTD0033840013	23	740	17,020	FG-HDMSDS040BBBEA	13	3794	HJM81051
3TD0033840014	23	740	17,020	FG-HDMSDS040BBBEA	14	3800	HJM81051
3TD0033840015	23	740	17,020	FG-HDMSDS040BBBEA	15	3802	HJM81051
3TD0033840016	23	740	17,020	FG-HDMSDS040BBBEA	16	3806	HJM81051
GTD0033840017	23	740	17,020	FG-HDMSDS040BBBEA	17	3810	HJM81051
STD0033840018	23	740	17,020	FG-HDMSDS040BBBEA	18	3810	HJM81051
STD0033840019	23	740	17,020	FG-HDMSDS040BBBEA	19	3814	HJM81051
TD0033840020	23	740	17,020	FG-HDMSDS040BBBEA	20	3812	HJM81051
TD0033840021	23	740	17,020	FG-HDMSDS040BBBEA	21	3806	HJM81051
TD0033840022	23	740	17,020	FG-HDMSDS040BBBEA	22	3806	HJM81051
TD0033840023	23	740	17,020	FG-HDMSDS040BBBEA	23	3810	HJM81051
TD0033840024	23	740	17,020	FG-HDMSDS040BBBEA	24	3810	HJM81051
TD0033840025	23	740	17,020	FG-HDMSDS040BBBEA	25	3804	HJM81051
TD0033840026	23	740	17,020	FG-HDMSDS040BBBEA	26	3804	HJM81051
TD0033840027	23	740	17,020	FG-HDMSDS040BBBEA	27	3800	HJM81051
TD0033840028	23	740	17,020	FG-HDMSDS040BBBEA	28	3796	HJM81051
STD0033840029	23	740	17,020	FG-HDMSDS040BBBEA	29	3796	HJM81051
TD0033840030	23	740	17,020	FG-HDMSDS040BBBEA	30	3802	HJM81051
TD0033840031	23	740	17,020	FG-HDMSDS040BBBEA	31	3810	HJM81051
TD0033840032	23	740	17,020	FG-HDMSDS040BBBEA	32	3800	HJM81051
TD0033840033	23	740	17,020	FG-HDMSDS040BBBEA	33	3814	HJM81051
TD0033840034	23	740	17,020	FG-HDMSDS040BBBEA	34	3812	HJK81005
TD0033840035	23	740	17,020	FG-HDMSDS040BBBEA	35	3804	HJK81005
TD0033840036	23	740	17,020	FG-HDMSDS040BBBEA	36	3780	HJK81005
TD0033840037	23	740	17,020	FG-HDMSDS040BBBEA	37	3794	HJK81005
TD0033840038	23	740	17,020	FG-HDMSDS040BBBEA	38	3794	HJK81005
TD0033840039	23	740	17,020	FG-HDMSDS040BBBEA	39	3794	HJK81005
TD0033840040	23	740	17,020	FG-HDMSDS040BBBEA	40	3796	HJK81005
TD0033840041	23	740	17,020	FG-HDMSDS040BBBEA	41	3798	HJK81005
TD0033840042	23	740	17,020	FG-HDMSDS040BBBEA	42	3804	HJK81005
TD0033840043	23	740	17,020	FG-HDMSDS040BBBEA	43	3808	HJK81005
TD0033840044	23	740	17,020	FG-HDMSDS040BBBEA	44	3820	HJK81005
TD0033840045	23	740	17,020	FG-HDMSDS040BBBEA	45	3754	HJK81005
TD0033840046	23	740	17,020	FG-HDMSDS040BBBEA	46	3746	HJK81005
TD0033840047	23	740	17,020	FG-HDMSDS040BBBEA	47	3738	HJK810050
TD0033840048	23	740	17,020	FG-HDMSDS040BBBEA	48	3744	HJK81005
TD0033840049	23	740	17,020	FG-HDMSDS040BBBEA	49	3746	HJK810050
TD0033840050	23	740	17,020	FG-HDMSDS040BBBEA	50	3738	HJK810050
TD0033840051	23	740	17,020	EC. HDMSDS040BBBEA	54	3730	HJK010050

885,040 total for order

17,020

17,020

GTD0033840051

GTD0033840052

23

23

740

740

10F1

FG-HDMSDS040BBBEA

FG-HDMSDS040BBBEA

51

52

3722

3718

HJK810050

HJK810050

APPENDIX E.2

Geomembrane Quality Control Certificates

2690-D Salisbury Hwy Statesville, NC 28677 P: 704.208.3440 www.ccsliners.com

SUBMITTAL COVER SHEET

ATTENTION TO:

DATE:	5/23/2019
DAIE.	J/ZJ/ZU17

SUBMITTAL NUMBER:	05 Rev A - Geomembrane MQC Certs - Response to Golder Review Dated 5/16/19
PROJECT NUMBER:	119-032
PROJECT NAME:	JR Whiting Ponds 1&2 Closure

OWNER: Consumers Energy
J.R. Whiting Generating Facility
4525 E. Erie Road
Erie, MI 48133

CONTRACTOR: Ryan Central Inc
2700 East Racine Street
Janesville, WI 53545

MANUFACTURER: Agru America 40 mil HDPE Microspike

Steve Ganong

Revised to include Stress Crack (NCTL) certification and information regarding Oven Aging and UV test results

SPEC. SECTION	SUBMITTAL ITEM DESCRIPTION
313800	Polyethylene Geomembrane Manufacturer Submittals
313800 1.04 A.2	Copies of dated quality control certificates issued by resin supplier.
313800 1.04 A.3	Results of tests conducted by geomembrane manufacturer to verify that resin used to manufacture geomembrane meets Specifications.
313800 1.04 A.8	Quality control certificates, signed by geomembrane manufacturer. Each quality control certificate shall include applicable roll identification numbers, testing procedures, and results of quality control tests.
313800 1.04 B.6	Certificate that extrudate to be used is comprised of same resin as geomembrane to be used.

SUBCONTRACTOR REVIEW:	ENGINEER APPROVAL:
These are submitted as checked below:	
For Approval: X	
For Your Use:	
As Requested:	
Signature of CCS Reviewer:	

Geomembrane Certification Package for

J.R. Whiting Ash Pond Closure

Erie, MI

MATERIAL CERTIFICATIONS IN THIS PACKAGE:

• 40 MIL HDPE MICROSPIKE

16 May 2019

Jennifer Battle Chesapeake Containment Systems, Inc. 2690 D Salisbury Hwy Statesville, NC 28677

RE: J.R. Whiting Generating Facility Ponds 1 & 2 Closure – UV/Oven Aging Testing Per Formulation and NCTL Testing – Golder Submittal 313800-02,03,04

Dear Ms. Battle,

Please find below AGRU's response to Golder's concerns indicated by item 3 in the referenced Submittal 313800-02, 03, 04:

- GRI GM 13 and GRI GM 17 require that UV Resistance and Oven Aging Testing be performed once per formulation. A formulation is described as a unique combination of virgin resin and carbon black. This testing is not specific to a particular thickness, surface characteristic or resin lot number, but rather describes properties intrinsic to the raw materials used to manufacture the finished product. Even though this testing is only required per formulation, we send samples of finished geomembrane to our resin supplier(s) periodically for testing to confirm continued compliance with standards. All rolls manufactured for the J.R. Whiting Generating Facility Ponds 1 & 2 Closure were produced from the same resin formulation as that for which UV/Oven Aging results were provided.
- NCTL testing is on-going, however AGRU does certify that all rolls supplied to this project shall achieve or surpass an NCTL transition time of 500 hours.

Sincerely,

Anthony Johnson

Technical Review Specialist

AGRU America

10 May 2019

Jennifer Battle Chesapeake Containment Systems, Inc. 2690D Salisbury Hwy Statesville, NC 28677

RE: AGRU OA #03022 JR Whiting Ash Pond Closure - Weld Rod Compatibility

Dear Ms. Battle,

Please see below the requested certifications for the above referenced Project:

• All weld rod produced and supplied for this Project is fully compatible with all geomembrane produced and supplied for this Project.

Sincerely,

Anthony Johnson

Technical Review Specialist

AGRU America

SECTION 1

List of Materials

JR Whiting - Ash Ponds 1 & 2 Closures Chesapeake Containment Systems, Inc. 4525 Erie Road

SO#: 00003022

885,040 ft².

52 rolls @ 740

Erie, MI 48133 FG-HDMSDS040BBBEA

		English	1				
roll #	width	length	area	Item	Count	weight	resin lot#
	ft.	ft.	ft².			lbs.	
			U			-	
GTD0033840001	23	740	17,020	FG-HDMSDS040BBBEA	1	3766	HJM810460
GTD0033840002	23	740	17,020	FG-HDMSDS040BBBEA	2	3806	HJM810460
GTD0033840003	23	740	17,020	FG-HDMSDS040BBBEA	3	3798	HJM810460
GTD0033840004	23	740	17,020	FG-HDMSDS040BBBEA	4	3810	HJM810510
GTD0033840005	23	740	17,020	FG-HDMSDS040BBBEA	5	3800	HJM810510
GTD0033840006	23	740	17,020	FG-HDMSDS040BBBEA	6	3800	HJM810510
GTD0033840007	23	740	17,020	FG-HDMSDS040BBBEA	7 8	3808	HJM810510
GTD0033840008 GTD0033840009	23 23	740 740	17,020 17,020	FG-HDMSDS040BBBEA FG-HDMSDS040BBBEA	9	3810 3810	HJM810510 HJM810510
GTD0033840010	23	740	17,020	FG-HDMSDS040BBBEA	10	3798	HJM810510
GTD0033840011	23	740	17,020	FG-HDMSDS040BBBEA	11	3802	HJM810510
GTD0033840012	23	740	17,020	FG-HDMSDS040BBBEA	12	3800	HJM810510
GTD0033840013	23	740	17,020	FG-HDMSDS040BBBEA	13	3794	HJM810510
GTD0033840014	23	740	17,020	FG-HDMSDS040BBBEA	14	3800	HJM810510
GTD0033840015	23	740	17,020	FG-HDMSDS040BBBEA	15	3802	HJM810510
GTD0033840016	23	740	17,020	FG-HDMSDS040BBBEA	16	3806	HJM810510
GTD0033840017	23	740	17,020	FG-HDMSDS040BBBEA	17	3810	HJM810510
GTD0033840018	23	740	17,020	FG-HDMSDS040BBBEA	18	3810	HJM810510
GTD0033840019	23	740	17,020	FG-HDMSDS040BBBEA	19	3814	HJM810510
GTD0033840020	23	740	17,020	FG-HDMSDS040BBBEA	20	3812	HJM810510
GTD0033840021	23	740	17,020	FG-HDMSDS040BBBEA	21	3806	HJM810510
GTD0033840022	23	740	17,020	FG-HDMSDS040BBBEA	22	3806	HJM810510
GTD0033840023	23	740	17,020	FG-HDMSDS040BBBEA	23	3810	HJM810510
GTD0033840024	23	740	17,020	FG-HDMSDS040BBBEA	24	3810	HJM810510
GTD0033840025	23	740	17,020	FG-HDMSDS040BBBEA	25	3804	HJM810510
GTD0033840026	23	740	17,020	FG-HDMSDS040BBBEA	26	3804	HJM810510
GTD0033840027	23	740	17,020	FG-HDMSDS040BBBEA	27	3800	HJM810510
GTD0033840028 GTD0033840029	23	740 740	17,020	FG-HDMSDS040BBBEA FG-HDMSDS040BBBEA	28 29	3796 3796	HJM810510 HJM810510
GTD0033840029	23 23	740	17,020 17,020	FG-HDMSDS040BBBEA	30	3802	HJM810510
GTD0033840031	23	740	17,020	FG-HDMSDS040BBBEA	31	3810	HJM810510
GTD0033840032	23	740	17,020	FG-HDMSDS040BBBEA	32	3800	HJM810510
GTD0033840033	23	740	17,020	FG-HDMSDS040BBBEA	33	3814	HJM810510
GTD0033840034	23	740	17,020	FG-HDMSDS040BBBEA	34	3812	HJK810050
GTD0033840035	23	740	17,020	FG-HDMSDS040BBBEA	35	3804	HJK810050
GTD0033840036	23	740	17,020	FG-HDMSDS040BBBEA	36	3780	HJK810050
GTD0033840037	23	740	17,020	FG-HDMSDS040BBBEA	37	3794	HJK810050
GTD0033840038	23	740	17,020	FG-HDMSDS040BBBEA	38	3794	HJK810050
GTD0033840039	23	740	17,020	FG-HDMSDS040BBBEA	39	3794	HJK810050
GTD0033840040	23	740	17,020	FG-HDMSDS040BBBEA	40	3796	HJK810050
GTD0033840041	23	740	17,020	FG-HDMSDS040BBBEA	41	3798	HJK810050
GTD0033840042	23	740	17,020	FG-HDMSDS040BBBEA	42	3804	HJK810050
GTD0033840043	23	740	17,020	FG-HDMSDS040BBBEA	43	3808	HJK810050
GTD0033840044	23	740	17,020	FG-HDMSDS040BBBEA	44	3820	HJK810050
GTD0033840045	23	740 740	17,020	FG-HDMSDS040BBBEA	45 46	3754 3746	HJK810050
GTD0033840046 GTD0033840047	23 23	740 740	17,020 17,020	FG-HDMSDS040BBBEA FG-HDMSDS040BBBEA	46 47	3746 3738	HJK810050 HJK810050
GTD0033840047	23 23	740 740	17,020	FG-HDMSDS040BBBEA	47 48	3744	HJK810050
GTD0033840049	23	740	17,020	FG-HDMSDS040BBBEA	49	3746	HJK810050
GTD0033840050	23	740	17,020	FG-HDMSDS040BBBEA	50	3738	HJK810050
GTD0033840051	23	740	17,020	FG-HDMSDS040BBBEA	51	3722	HJK810050
GTD0033840052	23	740	17,020	FG-HDMSDS040BBBEA	52	3718	HJK810050
			,020				

885,040 total for order

SECTION 2

Geomembrane Quality Control Certifications

JR Whiting - Ash Ponds 1 & 2 Closures Chesapeake Containment Systems, Inc. 4525 Erie Road Erie, MI 48133 SO#: **00003022** Liner Type: **40HD micro**

Item: FG-HDMSDS040BBBEA

Current # of Rolls: 52

Roll Count: 1-52 (all)

ENGLISH Measurements

					D59	ASTM 994 (Modi	ified)		5TM 466			ASTM D3895	ASTM D792	ASTM D1238	ASTM D4218	ASTM D5596	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM	D1004	ASTM D4833	ASTM D5397	
Count	Roll#	(English))	Thickness (English)		nglish)	Asperity (Top)	ity (Bottom)	Weight	Lot#	(Standard)	fic Gravity	Flow Index	Black Content	ו Black Disp.	Str. @Yield (MD)	Str. @Yield (TD)	tr. @Break (MD)	Str. @Break (TD)	@Yield (MD)	@Yield (TD)	@Break (MD)	@Break (TD)	Resistance (MD)	sistance (TD)	e Resistance	L (500hrs.)	Production Date
S	Ro	Width	Length	Area	Min.	Max.	Ave.	Asp	Asperity		Го	TIO	Specific	неM	Carbon E	Carbon	Tensile S	Tensile S	Tensile St	Tensile S	Elong.	Elong.	Elong. (Elong. (Tear Re	Tear Re	Puncture	NCTL	Prodt
		ft.	ft.	ft².	mils	mils	mils	mils	mils	lbs.		min	g/cc	g/10 min.	%	(# in Cat. 1)	ppi	ppi	ppi	ppi	%	%	%	%	lbs.	lbs.	lbs.		
1	/linimum Results (ea. Col.)				37	42	40	29	29	3502		192	0.944	0.26	2.3	10	94	101	117	113	15	14	384	495	33	30	90		
1	GTD0033840001	23	740	17,020	38	47	43	36	33	3766	HJM810460	192	0.944	0.26	2.5	10	94	101	117	113	17	15	392	512	33	30	90	ONGOING	5/4/2019
2	GTD0033840002	23	740	17,020	39	47	43	37	33	3806	HJM810460	192	0.944	0.26	2.5	10	94	101	117	113	17	15	392	512	33	30	90	ONGOING	5/4/2019
3	GTD0033840003	23	740	17,020	38	48	42	37	33	3798	HJM810460	192	0.944	0.26	2.4	10	104	116	136	126	15	14	411	521	33	30	90	ONGOING	5/5/2019
4	GTD0033840004	23	740	17,020	40	46	43	40	33	3810	HJM810510	192	0.944	0.26	2.4	10	104	116	136	126	15	14	411	521	33	30	90	ONGOING	5/5/2019
5	GTD0033840005	23	740	17,020	39	45	43	32	33	3800	HJM810510	192	0.944	0.26	2.5	10	104	116	136	126	15	14	411	521	33	30	90	ONGOING	5/5/2019
6	GTD0033840006	23	740	17,020	39	46	41	33	33	3800	HJM810510	192	0.944	0.26	2.5	10	104	116	136	126	15	14	411	521	33	30	90	ONGOING	5/5/2019
7	GTD0033840007	23	740	17,020	39	44	41	34	34	3808	HJM810510	192	0.944	0.26	2.4	10	104	116	136	126	15	14	411	521	33	30	90	ONGOING	5/5/2019
8	GTD0033840008	23	740	17,020	39	45	42	32	33	3810	HJM810510	192	0.944	0.26	2.3	10	108	115	129	132	19	15	403	550	39	35	96	ONGOING	5/5/2019
9	GTD0033840009	23	740 740	17,020	39	46	42	32	32	3810	HJM810510	192 192	0.944	0.26	2.3	10	108	115	129	132	19	15	403	550	39	35	96	ONGOING	5/5/2019
	GTD0033840010 GTD0033840011	23 23	740	17,020 17,020	41 38	46 45	44	30 34	32 34	3798 3802	HJM810510 HJM810510	192	0.944	0.26	2.3	10	108	115 115	129 129	132 132	19 19	15 15	403	550 550	39 39	35 35	96 96	ONGOING ONGOING	5/5/2019 5/5/2019
11	GTD0033840011 GTD0033840012	23	740	17,020	40	45	43	33	34	3802	HJM810510	192	0.944	0.26	2.5	10	108	115	129	132	19	15	403	550	39	35	96	ONGOING	5/5/2019
13	GTD0033840012	23	740	17,020	39	43	41	30	33	3794	HJM810510	192	0.944	0.26	2.5	10	105	111	129	129	21	15	390	546	39	35	96	ONGOING	5/5/2019
14	GTD0033840013	23	740	17,020	39	43	41	31	33	3800	HJM810510	192	0.944	0.26	2.5	10	105	111	122	129	21	15	390	546	39	35	96	ONGOING	5/5/2019
15	GTD0033840015	23	740	17,020	38	45	41	32	32	3802	HJM810510	192	0.944	0.26	2.6	10	105	111	122	129	21	15	390	546	39	35	96	ONGOING	5/5/2019
16	GTD0033840016	23	740	17,020	39	44	42	30	33	3806	HJM810510	192	0.944	0.26	2.6	10	105	111	122	129	21	15	390	546	39	35	96	ONGOING	5/6/2019
17	GTD0033840017	23	740	17,020	40	43	41	31	32	3810	HJM810510	192	0.944	0.26	2.5	10	105	111	122	129	21	15	390	546	39	35	96	ONGOING	5/6/2019
18	GTD0033840018	23	740	17,020	38	43	41	30	33	3810	HJM810510	192	0.944	0.26	2.5	10	105	113	127	127	19	14	421	528	39	35	98	ONGOING	5/6/2019
19	GTD0033840019	23	740	17,020	37	44	41	31	33	3814	HJM810510	192	0.944	0.26	2.6	10	105	113	127	127	19	14	421	528	39	35	98	ONGOING	5/6/2019
20	GTD0033840020	23	740	17,020	40	47	42	32	34	3812	HJM810510	192	0.944	0.26	2.6	10	105	113	127	127	19	14	421	528	39	35	98	ONGOING	5/6/2019
21	GTD0033840021	23	740	17,020	39	45	42	34	33	3806	HJM810510	192	0.944	0.26	2.4	10	105	113	127	127	19	14	421	528	39	35	98	ONGOING	5/6/2019
22	GTD0033840022	23	740	17,020	40	45	42	33	34	3806	HJM810510	192	0.944	0.26	2.4	10	105	113	127	127	19	14	421	528	39	35	98	ONGOING	5/6/2019
23	GTD0033840023	23	740	17,020	40	46	43	35	35	3810	HJM810510	192	0.944	0.26	2.5	10	112	116	143	128	20	16	426	518	56	60	98	ONGOING	5/6/2019
24	GTD0033840024	23	740	17,020	38	44	42	34	36	3810	HJM810510	192	0.944	0.26	2.4	10	112	116	143	128	20	16	426	518	56	60	98	ONGOING	5/6/2019
25	GTD0033840025	23	740	17,020	40	45	43	31	29	3804	HJM810510	192	0.944	0.26	2.4	10	112	116	143	128	20	16	426	518	56	60	98	ONGOING	5/6/2019
26	GTD0033840026	23	740	17,020	41	50	45	36	34	3804	HJM810510	192	0.944	0.26	2.5	10	112	116	143	128	20	16	426	518	56	60	98	ONGOING	5/6/2019
27	GTD0033840027	23	740	17,020	40	47	43	37	33	3800	HJM810510	192	0.944	0.26	2.5	10	112	116	143	128	20	16	426	518	56	60	98	ONGOING	5/6/2019
28	GTD0033840028	23	740	17,020	42	48	44	35	35	3796	HJM810510	192	0.944	0.26	2.5	10	107	111	139	132	21	15	445	550	35	35	100	ONGOING	5/6/2019
29	GTD0033840029	23	740	17,020	40	46	43	37	34	3796	HJM810510	192	0.944	0.26	2.5	10	107	111	139	132	21	15	445	550	35	35	100	ONGOING	5/6/2019
30	GTD0033840030	23	740	17,020	41	45	43	35	34	3802	HJM810510	192	0.944	0.26	2.5	10	107	111	139	132	21	15	445	550	35	35	100	ONGOING	5/6/2019
31	GTD0033840031	23	740	17,020	40	45	43	35	35	3810	HJM810510	192	0.944	0.26	2.5	10	107	111	139	132	21	15	445	550	35	35	100	ONGOING	5/7/2019
32	GTD0033840032	23	740	17,020	40	45	43	31	30	3800	HJM810510	192	0.944	0.26	2.4	10	107	111	139	132	21	15	445	550	35	35	100	ONGOING	5/7/2019
33	GTD0033840033	23	740	17,020	42	46	45	37	35	3814	HJM810510	192	0.944	0.26	2.4	10	107	113	130	136	23	16	384	550	35	35	100	ONGOING	5/7/2019
34	GTD0033840034	23	740	17,020	39	48	43	35	35	3812	HJK810050	200	0.944	0.26	2.6	10	107	113	130	136	23	16	384	550	35	35	100	ONGOING	5/7/2019
35	GTD0033840035	23	740	17,020	39	47	43	38	36	3804	HJK810050	200	0.944	0.26	2.6	10	107	113	130	136	23	16	384	550	35	35	100	ONGOING	5/7/2019

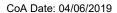
JR Whiting - Ash Ponds 1 & 2 Closures Chesapeake Containment Systems, Inc. 4525 Erie Road Erie, MI 48133

SO#: 00003022 Liner Type: 40HD micro

Item: FG-HDMSDS040BBBEA

Current # of Rolls: 52

Roll Count: 1-52


1-52 (all) ENGLISH Measurements

					D59	ASTM 994 (Modif	fied)	AS D74				ASTM D3895	ASTM D792	ASTM D1238	ASTM D4218		ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM D6693	ASTM	D1004	ASTM D4833	ASTM D5397	
Count	Roll#		(English))	Thick	ness (Er	nglish)	Asperity (Top)	ity (Bottom)	Weight	ot #	(Standard)	fic Gravity	Flow Index	Black Content	Black Disp.	Str. @Yield (MD)	tr. @Yield (TD)	tr. @Break (MD)	tr. @Break (TD)	@Yield (MD)	@Yield (TD)	@Break (MD)	@Break (TD)	sistance (MD)	Resistance (TD)	e Resistance	- (500hrs.)	Production Date
CO	8	Width	Length	Area	Min.	Max.	Ave.	Asp	Asperity		Lo	OIT	Specific	Melt	Carbon E	Carbon	Tensile S	Tensile Str.	Tensile Str.	Tensile Str	Elong.	Elong.	Elong. (Elong. (Tear Resi	Tear Re	Puncture	NCTI	Produ
		ft.	ft.	ft².	mils	mils	mils	mils	mils	lbs.		min	g/cc	g/10 min.	%	(# in Cat. 1)	ppi	ppi	ppi	ppi	%	%	%	%	lbs.	lbs.	lbs.		
N	linimum Results (ea. Col.)				37	42	40	29	29	3502		192	0.944	0.26	2.3	10	94	101	117	113	15	14	384	495	33	30	90		
36	GTD0033840036	23	740	17,020	39	49	43	38	36	3780	HJK810050	200	0.945	0.26	2.4	10	107	113	130	136	23	16	384	550	35	35	100	ONGOING	5/7/2019
37	GTD0033840037	23	740	17,020	39	43	41	30	33	3794	HJK810050	200	0.945	0.26	2.4	10	107	113	130	136	23	16	384	550	35	35	100	ONGOING	5/7/2019
38	GTD0033840038	23	740	17,020	38	44	41	29	32	3794	HJK810050	200	0.945	0.26	2.4	10	105	112	126	121	20	15	402	495	38	32	92	ONGOING	5/7/2019
39	GTD0033840039	23	740	17,020	38	48	42	33	32	3794	HJK810050	200	0.945	0.26	2.4	10	105	112	126	121	20	15	402	495	38	32	92	ONGOING	5/7/2019
40	GTD0033840040	23	740	17,020	38	42	41	30	33	3796	HJK810050	200	0.945	0.26	2.4	10	105	112	126	121	20	15	402	495	38	32	92	ONGOING	5/7/2019
41	GTD0033840041	23	740	17,020	39	42	41	30	33	3798	HJK810050	200	0.945	0.26	2.4	10	105	112	126	121	20	15	402	495	38	32	92	ONGOING	5/7/2019
42	GTD0033840042	23	740	17,020	41	48	44	36	34	3804	HJK810050	200	0.945	0.26	2.5	10	105	112	126	121	20	15	402	495	38	32	92	ONGOING	5/7/2019
43	GTD0033840043	23	740	17,020	43	48	46	38	34	3808	HJK810050	200	0.945	0.26	2.6	10	114	123	142	145	21	14	405	560	38	32	92	ONGOING	5/7/2019
44	GTD0033840044	23	740	17,020	38	48	43	33	33	3820	HJK810050	200	0.945	0.26	2.6	10	114	123	142	145	21	14	405	560	38	32	92	ONGOING	5/7/2019
45	GTD0033840045	23	740	17,020	41	47	44	31	33	3754	HJK810050	200	0.945	0.26	2.6	10	114	123	142	145	21	14	405	560	38	32	92	ONGOING	5/8/2019
46	GTD0033840046	23	740	17,020	42	47	44	37	33	3746	HJK810050	200	0.945	0.26	2.5	10	114	123	142	145	21	14	405	560	38	32	92	ONGOING	5/8/2019
47	GTD0033840047	23	740	17,020	42	47	44	35	34	3738	HJK810050	200	0.945	0.26	2.5	10	114	123	142	145	21	14	405	560	38	32	92	ONGOING	5/8/2019
48	GTD0033840048	23	740	17,020	42	45	43	31	33	3744	HJK810050	200	0.945	0.26	2.5	10	112	118	146	137	21	15	416	547	39	33	97	ONGOING	5/8/2019
49 50	GTD0033840049 GTD0033840050	23	740 740	17,020 17,020	39 42	48 48	43	36 40	37 34	3746 3738	HJK810050 HJK810050	200	0.945	0.26	2.5	10 10	112 112	118 118	146 146	137 137	21	15 15	416 416	547 547	39 39	33	97 97	ONGOING ONGOING	5/8/2019 5/8/2019
51	GTD0033840050 GTD0033840051	23	740	17,020	38	48	45 42	38	35	3738	HJK810050	200	0.945	0.26	2.4	10	112	118	146	137	21	15	416	547	39	33	97	ONGOING	5/8/2019
52	GTD0033840051	23	740	17,020	38	49	42	30	33	3718	HJK810050	200	0.945	0.26	2.4	10	112	118	146	137	21	15	416	547	39	33	97	ONGOING	5/8/2019
JZ	G 1 D0000040002	20	740	17,020	50	44	40	30	33	31 10	11010010000	200	0.940	0.20	۷.4	10	114	110	140	131	41	13	410	J41	33	55	31	CINGOING	3/0/2019

SECTION 3

Resin Certifications

Certificate of Analysis

Shipped To: AGRU AMERICA INC: GEORGETOWN

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 89874473

PO #: 15893

Weight: 187100.000 LB Ship Date: 04/06/2019

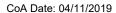
Package: BULK Mode: Hopper Car Car #: NAHX610138

Seal No: 143201

Product:

MARLEX K307 POLYETHYLENE in Bulk

Lot Number: HJM810460


Property	Test Method	Value	Unit
Melt Index HLMI Flow Rate Density Pellet Count Production Date	ASTM D1238 ASTM D1238 D1505 or D4883 P02.08.03	0.26 20 0.937 28 11/08/2018	g/10min g/10min g/cm3 pelet/gram

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Patricia Royall at +1-832-813-4806

Certificate of Analysis

Shipped To: AGRU AMERICA INC: GEORGETOWN

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 89877535

PO #: 15893

Weight: 189300.000 LB Ship Date: 04/11/2019 Package: BULK

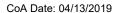
Mode: Hopper Car Car #: SHQX041464

Seal No: 143423

Product:

MARLEX K307 POLYETHYLENE in Bulk

Lot Number: HJM810510


Property	Test Method	Value	Unit
Melt Index HLMI Flow Rate Density Pellet Count Production Date	ASTM D1238 ASTM D1238 D1505 or D4883 P02.08.03	0.26 21 0.938 27 11/09/2018	g/10min g/10min g/cm3 pelet/gram

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Patricia Royall at +1-832-813-4806

Certificate of Analysis

Shipped To: AGRU AMERICA INC: GEORGETOWN

500 GARRISON RD

GEORGETOWN SC 29440

USA

Recipient: PALMER

Fax:

Delivery #: 89879178

PO #: 15893

Weight: 181300.000 LB Ship Date: 04/13/2019 Package: BULK

Mode: Hopper Car Car #: CEFX054011

Seal No: 85788

Product:

MARLEX K307 POLYETHYLENE in Bulk

Lot Number: HJK810050

Property	Test Method	Value	Unit	
Melt Index HLMI Flow Rate Density Pellet Count Production Date	ASTM D1238 ASTM D1238 D1505 or D4883 P02.08.03	0.26 22 0.938 28 10/01/2018	g/10min g/10min g/cm3 pelet/gram	

The data set forth herein have been carefully compiled by Chevron Phillips Chemical Company LP (CPChem). However, there is no warranty of any kind, either expressed or implied, applicable to its use, and the user assumes all risk and liability in connection therewith.

Troy Griffin

Quality Systems Coordinator

For CoA questions contact Patricia Royall at +1-832-813-4806

Vergil H. Rhodes, PE, CPlasT - Tech Svc & App Dev Engineer, Geomembranes Highways 60 & 123, Bartlesville Research and Technology Center, Room 103 PTC Bartlesville, OK 74003

■□918-977-4229 ■□rhodevh@cpchem.com ■□Fax: 918-977-7599 ■ <u>www.cpchem.com</u>

October 31, 2017

Filename: Agru Oven and QUV Exposure Testing_103117.pdf

Nathan Ivy - Corporate Quality Control/Technical Manager Agru America, Inc. 800 Rockmead #122 Kingwood, TX 77339 281-358-4741

Dear Mr. Ivy:

Please recall your request for testing of oven-exposed and UV-exposed geomembrane samples produced primarily from Marlex® 7104 LLDPE and Marlex® K307 HDPE. Agru blended other components with each of these polyethylenes to produce the geomembrane samples for testing. Smooth geomembrane samples have been received from Agru and test results are reported below. The samples were tested for HP-OIT in their as-received condition, and were also tested after oven and UV exposures of 90 days and 1600 hours of irradiance, respectively, in accordance with GRI-GM13 and GRI-GM17.

The following geomembrane sheet samples were received from Agru in mid-June 2017 and were reported to be primarily composed of each of the Chevron Phillips Chemical Company grades in the description below:

- K307 Lot #HHB620720, Agru Roll #G17D000534, black sheet, smooth, nominal 0.040" thick.
- 7104 Lot #CFJ810540, Agru Roll #G15B434055, black sheet, smooth, nominal 0.040" thick.

Exposure and testing conditions, along with the test results are tabulated on the next page. GM-13 and GM-17 require minimum % HP-OIT retention after a 90-day oven exposure and after a 1600 hour UV irradiance exposure. These test results indicate these GM-13 and GM-17 minimum % HP-OIT retentions were exceeded by these Agru-supplied K307 and 7104 sheet samples, respectively.

If you have any questions, please feel free to contact me (contact information given above).

Sincerely,

Vergil Rhodes

Polyethylene Technical Service and Applications Development, Geomembrane

NOTICES

The following oven aging and UV exposure test methods were conducted in accordance with the GRI-GM13 (HDPE) and GRI-GM17 (LLDPE) requirements:

Test Name	Exposure Conditions	Test Method
Oven Aging	90 days in an oven at 85 °C	ASTM D5721
UV	1600 UV irradiance hours. Cycle: 20 hours UVA-340 at 75 °C	ASTM D7238
Exposure	followed by 4 hours dark with condensation at 60 °C. Irradiance was	
	0.78 W/m ² at wavelength 340 nm.	
	Note: This implies a total UV chamber residence time of 1920 hours, e.g., 1600 hours	
	of irradiance and 320 hours of dark/condensation.	
HP-OIT	150 °C in an oxygen atmosphere at 500 psi	ASTM D5885

Oven Aging Results:

Oven Aging Results.				
Sample	Initial	HP-OIT after	% HP-OIT	GRI-GM13 and GRI-GM17
	HP-OIT	90 days of oven	Retained after	minimum % HP-OIT
	(min)	aging.	90 days of oven	retained after 90 days of
		(min)	aging.	oven aging.
K307 Lot #HHB620720, Agru Roll #G17D000534,	1264	1123	89	GRI-GM13: 80 minimum
black sheet, smooth, nominal 0.040" thick				
7104 Lot #CFJ810540, Agru Roll #G15B434055,	550	508	92	GRI-GM17: 60 minimum
black sheet, smooth, nominal 0.040" thick				

UV Aging Results:

Sample	Initial	HP-OIT after	% HP-OIT	GRI-GM13 and GRI-GM17
•	HP-OIT	1600 hrs of UV	Retained after	minimum % HP-OIT
	(min)	exposure.	1600 hrs of UV	retained after 1600 hrs of
	, ,	(min)	exposure.	UV exposure.
K307 Lot #HHB620720,	1264	1024	81	GRI-GM13: 50 minimum
Agru Roll #G17D000534,				
black sheet, smooth,				
nominal 0.040" thick				
7104 Lot #CFJ810540,	550	470	85	GRI-GM17: 35 minimum
Agru Roll #G15B434055,				
black sheet, smooth,				
nominal 0.040" thick				

Note: 1600 hours of UV exposure in accordance with ASTM D7238 implies a total UV chamber residence time of 1920 hours, e.g., 1600 hours of irradiance and 320 hours of darkness with condensation.

NOTICES

APPENDIX F

Material Testing Geotextile

APPENDIX F.1

Geotextile Inventory Log

OWNER: LOCATION:		CEC CONTRACTOR:		ACTOR:	FLSI			
MATERIAL TYPE DATE OF ARRIVA MATERIAL MAN PRODUCT IDENT TRUCK TYPE:	AL: UFACTURER: UFICATION:	7.22 AGRU 802 7	19 EXTILE	SEOTEXTILE	OTHER	CONDITION	NVENTORY: Y MONITOR: N IN TRUCK: IG METHOD:	7,22.1 DH Good
ROLL NUMBER	BATCH OR LOT NO.	MATE	WIDTH	NSIONS THICKNESS OR WEIGHT	QC CERT Y/N	CONF. SAMP. Y/N	OTHER	REMARK
10030290112	NA	600'	15	8 02	Y	NA	NA	
-001/		1		1	Y	1	1	
-0094			1		Y			
- 444	1				Y	1		
- 4435	NA	600'	15	802	Y	NA	NA	
-\$135	Name of the State	600'			M			NO CERT
423414146	NA	600'	15	802	Y	NA	NA	
#23410173	NA	2301	15	807	Y	NA	NA	
					-			
								•
				-				
								la.
			*					
Golder Form: G2				REVIEWE	D BY:	725	DATE:	12-2-19